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ABSTRACT Land cover change detection (LCCD) based on bitemporal remote sensing images has become
a popular topic in the field of remote sensing. Despite numerous methods promoted in recent decades,
an improvement on the usability and performance of these methods has remained necessary. In this paper,
a novel LCCD approach based on the integration of k-means clustering and adaptive majority voting (k-
means_AMV) techniques have been developed. The proposed k-means_AMV method consists of three
major techniques. First, to utilize the contextual information in an adaptive manner, an adaptive region
around a central pixel is constructed by detecting the spectral similarity between the central pixel and its eight
neighboring pixels. Second, when the extension for the adaptive region is terminated, the k-means clustering
method is applied to determine the label of each pixel within the adaptive region. Finally, an existing AMV
technique is used to refine the label of the central pixel of the adaptive region. When change magnitude
image (CMI) is scanned and processed in this manner, the label of each pixel in the CMI can be refined and
the binary change detection map can be generated. Three image scenes related to different land cover change
events are adapted to test the effectiveness and performance of the proposed k-means_AMV approach. The
results show that the proposed k-means_AMV approach demonstrates better detection accuracies and visual
performance than that of the several extensively used methods.

INDEX TERMS Adaptive majority voting, k-means clustering, land cover change detection, remote sensing
images.

I. INTRODUCTION
Land cover change detection (LCCD) using bitempo-
ral remote sensing images has been a popular topic in
remote sensing application [1]–[3] because LCCD can pro-
vide timely and large-scale land cover change informa-
tion for assisting urban development plans, such as urban
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expansion [4], [5], urban build-up changing [6], [7], and
city surface temperature change analysis [8]. In addition,
LCCD also plays an important role in the Earth’s sur-
face resource monitoring, including landslide inventory
mapping [9]–[11], forest monitoring [12]–[14], and environ-
mental evaluation [15]–[17].

Numerous change detection techniques have been pro-
moted and applied in practice [18]–[23]. Considering their
detection results, these methods can be categorized into
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‘‘post-classification change detection method’’ and ‘‘binary
change detection method’’ [3], [24]. We concentrate on the
binary change detection method because it is straight-
forward and operational [3]; we also review its related
methods as follows. The binary change detection method
has two major steps, namely, generating of change mag-
nitude image (CMI) and binary threshold to divide the
CMI into binary change detection maps (BCDM). The
most popular methods for generating a CMI are image
difference [22], [25], image ratios [24], and change vec-
tor analysis [26], [27]. Furthermore, several notable derived
methods for generating CMI have drawn attention; for exam-
ple, Chen et al. [28] proposed a spectral gradient difference
for measuring the change magnitude between bitemporal
multi-spectral remote sensing images; moreover, Lv and
Zhang [20] promoted a change magnitude for very high reso-
lution (VHR) remote sensing images on the basis of adaptive
contextual information. In addition to generating a binary
detection map, a binary threshold is required to obtain the
final change inventory map. The most frequently used binary
threshold-determining methods are Otsu’s method [20], [29]
and expectation maximization [30]. However, an optimal
binary threshold for balancing pseudo-changes and an
unchanged area is difficult to obtain given the uncertainty and
complexity of a changed area in terms of change magnitude
and spatial distribution. According to several studies, deter-
mining an optimal binary threshold in practical application
for LCCD is time-consuming [21], [22], [31].

In the past decades, various LCCD methods have been
promoted and applied in practice [1], [17], [32]–[34]. For
example, Lunetta et al. [33] explored the use of 250 m
multi-temporal MODIS NDVI 1-day composite data to pro-
vide an automated change detection; similar change detection
cases based on the MODIS data can be found in [35]–[37].
In addition, Landsat satellite images are another popular
data source for LCCD, such as the related cases studied
in [38]–[40]. Furthermore, the data acquired by the Sen-
tinel satellite are frequently used for detecting land cover
change [41]–[43]. With the development of remote sensing
techniques [44], [47], LCCD based on the remote sensing
images with high or VHR has drawn attention. For exam-
ple, Bruzzone and Bovolo [46] promoted a novel frame-
work for VHR multispectral image LCCD; Du et al. [47]
developed a radiometric normalization method for improv-
ing the quality of LCCD for VHR remote sensing satellite
images; Bynn et al. [48] extracted a flood area using the
bitemporal VHR remote sensing images. In addition to the
aforementioned pixel-based LCCDmethods for VHR remote
sensing images, object-based LCCD approaches are popu-
lar for LCCD using VHR remote sensing images [49]–[51].
Although these approaches have been promoted and applied
in practice, the following limitations must be noted: (1) given
that the variance is relatively higher in intra-class for VHR
image than in themedian-low spatial resolution images, a fine
resolution does not mean higher detection accuracies; (2) typ-
ically, the performance of object-based methods depends

considerably on the performance of segmentation; however,
parameters of multiscale segmentation depend on data and
experience; and (3) few methods are general for median-low
spatial resolution and VHR remote sensing images; this sit-
uation may result in difficulty in selecting a method for a
practitioner with inadequate experience.

In recent years, numerous methods have been proposed
for LCCD using very high spatial resolution remote sensing
images. For example, Zhang et al. [52] proposed a level set
evolution with local uncertainty constraints (LSELUC) unsu-
pervised LCCD method and applied the technique for Land-
sat and SPOT-5 remote images with resolutions of 30 and
2.5 m/pixel, respectively; Bazi et al. [53] suggested unsuper-
vised LCCD methods on the basis of multispectral remote
sensing image with a level set method (MLS), and Celik [25]
provided an unsupervised LCCD method using principal
component analysis and K-means clustering (PCA_Kmeans).
In addition, K-means has been used successfully in image
segmentation [56]. An observational superiority of this unsu-
pervised LCCD approach exists because it is unsupervised
and has no requirement of the binary threshold. However,
detection accuracies, performance, and usability must still be
improved.

In this study, a simple yet effective change detection
method with high generality is proposed by integrating
K-means clustering with a majority voting approach using
an adaptive region. An adaptive region around a pixel in the
CMI is initially generated on the basis of two pre-defined
constraints [20]. Then, the label of each pixel within the
extended region is determined by the K-means clustering
algorithm. Finally, the label of the central pixel is refined by
an adaptive majority voting (AMV) strategy [54]. When each
pixel of the entire CMI is scanned and refined in this manner,
a BCDM depicts the size, and the spatial distribution of land
cover change will be acquired.

The remainder of this paper is organized as follows.
In Section II, the proposed K-means_AMV is introduced.
In Section III, experiments based on three bitemporal images
are compared. In Sections IV and V, discussion and conclu-
sion are presented, correspondingly.

II. PROPOSED k-MEANS CLUSTERING INTEGRATING
AMV TECHNIQUE (K-MEANS_AMV)
The proposed K-means_AMV approach has the following
principal steps, as illustrated in Fig. 1. First, for the bitem-
poral images, the CMI is generated using the image differ-
ence approach. Furthermore, the specific training samples
for changed and unchanged are prepared manually on the
basis of the CMI. In addition, a pixel is used as the ‘‘central-
pixel,’’ and an adaptive region is extended gradually around
the central pixel using two pre-defined parameters. Second,
the pixels within the extended region is labeled through
the K-means approach on the basis of the training samples.
Finally, the label of the central pixel is refined by the AMV
approach. The entire CMI is processed and refined pixel-
by-pixel, whereas the BCDM based on bitemporal remote
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FIGURE 1. Flowchart of the proposed approach.

sensing images are available. Further details will be presented
in the subsequent sections.

A. GENERATING AN ADAPTIVE REGION
AROUND A CENTRAL PIXEL
Certain literature has demonstrated that utilizing the spatial
information of remote sensing images in an adaptive manner
gains an advantage in smoothing noise and preserving the
details of ground targets [55], [57], [58] because, according
to Tobler’s first law of geography, everything is related to
everything else, and things that are close are more related
than the things that are distant [59]. Remote sensing image
depicts the earth surface of a geographical area; thus, pixels
with a significant proximity tend to belong to the same object,
and the arrangement of pixels in a spatial domain typically
relates to the shape and size of a ground object in the remote
sensing image. However, the shape and size of various ground
objects are different. Therefore, in our proposed approach,
an adaptive region is used to describe the spatial feature
accurately and obtain a high detection accuracy.

In the proposed K-means_AMV approach, constructing an
adaptive region plays a pivotal role. Here, we briefly review
the adaptive extension techniques as follows: For a given CMI
image, 1 < i < W , 1 < j < H , whereW andH are the width
and height of the CMI, respectively. Under this context, one
pixel C (i, j) is taken as the ‘‘central-pixel’’ for an extension.
The extension around the pixelC (i, j) is a recursive progress,
and the extension will be performed while the following
conditions are satisfied: (1) the spectral similarity between
the pixel C (i, j) and its eight-connected neighboring pixels
is less than the predefined parameter T1, and (2) the total
number of the pixels within the extended adaptive region is
not greater than another predefined parameter T2. An adap-
tive region around a pixel will be gradually extended pixel-
by-pixel; the recursive extension will be terminated when
either of the two conditions is unsatisfied. Here, the extended
adaptive region around the pixel C (i, j) is assigned as Rij.

Additional details on the adaptive extension technique can be
tracked [55].

B. LABELING EACH PIXEL THROUGH k-MEANS
CLUSTERING ALGORITHM
K-means is adopted here for acquiring the label of each pixel
within an adaptive regionRij. Therefore, we briefly review the
K-means algorithm in this section. The K-means algorithm is
a conventional clustering algorithm for unsupervised learn-
ing; this algorithm aims to divide observations into K-clusters
in which each observation belongs to the cluster with the
nearest mean, thus serving as a prototype of the cluster. This
algorithm has been applied to the LCCD and classification on
the basis of remote sensing images; for example, Celik [25]
proposed an unsupervised change detection method using
PCA and K-means; Lv et al. [60] used a density-based
K-means clustering algorithm to select a training sample for
remote sensing classification.

For the binary change detection problem, a set of observa-
tional pixels that are within the adaptive region Rij is classi-
fied through the K-means clustering algorithm. Therefore, k
is equal to 2; that is, the pixels will be classified in the CMI
into two categories, namely, changed and unchanged. In addi-
tion, for the K-means algorithm, another important issue is to
select cluster centers for the changed and unchanged areas.
To solve this problem, the training samples for the changed
and unchanged areas are manually selected from the CMI.
Here, the set of training sample for the changed area is defined
as S1, and the unchanged area sample set is defined as S0.
Under this context, the clustering center can be expressed
using Formulas 1 and 2. Where Lij is the label of the pixel pij,
and ‘‘0’’ and ‘‘1’’ indicate the ‘‘unchanged’’ and ‘‘changed’’
categories, respectively. The label of the pixel within an
extended region is determined by the distance between the
pixel and the clustering center; a high probability of the pixel
belongs to the clustering center when the distance is near a
clustering center. The pixels within the Rij are scanned and
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labeled pixel-by-pixel to obtain the label of all pixels in Rij.

C1 =
1
N
·

n=N∑
n=1

pcn, (1)

C0 =
1
M
·

n=M∑
n=1

pucn , (2)

where C1 and C0 are the changed and unchanged clustering
centers, correspondingly; pcn and pucn are the spectral values
of a pixel within the S1 and S0, respectively; and N and M
denote the total number of the pixels within S1 and S0, corre-
spondingly. Then, the distance between each pixel pij, which
is within the Rij and the two clustering centers, is measured
using Formulas 3 and 4, respectively.

dC1
ij =

∥∥pij − C1
∥∥ , (3)

dC0
ij =

∥∥pij − C0
∥∥ , (4)

where dC1
ij and dC0

ij denote the distance between the pixel pij
and the clustering center C1 and C0, correspondingly. There-
fore, the label of pij is determined by Formula 5.

Lij =


1, dC1

ij < dC0
ij

Lij, d
C1
ij = dC0

ij

0, dC1
ij ≥ d

C0
ij ,

(5)

C. REFINING THE LABEL OF THE CENTRAL-PIXEL
FOR AN ADAPTIVE EXTENDED REGION
Although each label of the pixels within an adaptive region is
defined relatively in the previous section, refining the label of
the central pixel accurately is necessary. Therefore, an AMV
algorithm, which has been investigated in [55], is used here.
The AMV algorithm has been applied to refine and enhance
the performance of LCCD and classification, similar to the
works of Lv et al. [61], who proposed an object-based major-
ity voting method to refine the raw LCCD, and Cui et al. [54],
who used a dual-AMV strategy to refine classification maps.

In Section II-A, the pixel C (i, j) is used as the ‘‘central-
pixel’’ for an extension region, and the extended adaptive
region around the pixel C (i, j) is assigned as Rij. To further
improve the performance of the central-pixel C (i, j) that is
labeled by the K-means clustering algorithm, the label of the
central pixel is refined using the AMV algorithm. On the
basis of the AMV algorithm, the final label of the seed-pixel
C (i, j) can be determined by Formula 6. Where LC(i,j) is the
final label of the central-pixel C (i, j) that is refined by the
AMV algorithm, and ‘‘1’’ and ‘‘0’’ express the ‘‘changed’’
and ‘‘unchanged,’’ correspondingly;Pcij

(
Rij
)
andPucij

(
Rij
)
are

the total number of changed and unchanged pixels within an
adaptive extended region for the CMI, respectively. The final
label of the central-pixel is determined by comparing the total
number of changed and unchanged pixels within an adaptive
extended region. Each pixel in the CMI will be scanned and

calculated in this manner to generate the final BCDM.

LC(i,j) =


1,Pcij

(
Rij
)

> Pucij
(
Rij
)

Li,j,Pcij
(
Rij
)
= Pucij

(
Rij
)

0,Pcij
(
Rij
)

< Pucij
(
Rij
)
,

(6)

III. EXPERIMENT
In this section, three land cover change events depicted
by bitemporal remote sensing images are used to eval-
uate the effectiveness of the proposed K-means_AMV
approach. First, the image data for each event are described
in detail. Second, the optimal parameter of each approach is
estimated. Finally, the visual performance and quantitative
evaluation of the LCCD maps are shown for comparisons
with other extensively used methods [25], [52], [53].

A. DATASET DESCRIPTION
In Fig. 2, the first image datasets depict a landslide in Lantau
Island, Hong Kong, China. These image datasets are captured
using Zeiss RMK Top-1 aerial survey camera from the flying
height of approximately 2400 m in April 2007 and July 2014.
The size of These pair images is 923 × 593 pixels with a
spatial resolution of 0.5 m/pixel. This area is covered with
different land-use types, including trees, shrubs, gravel, and
bare soil, as demonstrated in the bitemporal images in Fig. 2.
In addition, the radiation in the bitemporal images varies
in spectra because they are acquired at different times. The
difference in land cover types and spectral radiation has
become a challenge in detecting the landslide inventory map.
Fig. 2-c exhibits a ground reference map, which is interpreted
manually.
To further verify the efficiency of the proposed approach,

other VHR remote sensing images are adopted in the second
experiment. In Fig. 3, these images are captured byQuickBird
satellite in June 2007 and November 2009, and the paired
images cover an area of 950 × 1250 pixels with a spatial
resolution of 0.61 m/pixel. Based on the scene of the bitem-
poral remote sensing images, the two image scenes vary in
land cover types; the pre-event image is covered by most
part of vegetation, and the post-event image is covered by
buildings, roads, and farmlands. Variation in spectral value is
observed because the pair images vary with season, although
no changes occur. The detection of land cover change through
the VHR remote sensing images remains a challenging task.
The third dataset is an open-access data, which are

freely available for LCCD. The pair images are composed
of two 8-bit images captured by Landsat-5 satellite on
September 1995 and July 1996. The size of the image is
412× 300 pixels with a spatial resolution of 30 m/pixel. This
dataset depicts the water level change in a lake in Sardinia
Island (Italy) using two remote sensing images captured at
different times. The ground reference map is interpreted man-
ually for experimental quantitative evaluation, as presented
in Fig. 4-c.
As mentioned previously, three image datasets selected in

our experiments vary in spatial resolution, data-sourcing, and
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FIGURE 2. Landslide event in Lantau Island, Hong Kong, China: (a) pre-event image acquired April 2007; (b) post-event image
acquired at July 2014; (c) ground reference map.

FIGURE 3. Land use change event in Ji Nan City, Shan Dong Province, China: (a) pre-event image acquired at June 2007; (b) post-event
image acquired at November 2009; (c) ground reference map.

land cover change event. This data selection aims to verify
the generality and robustness of the proposed approach. The
details of the evaluation based on the three datasets are dis-
cussed as follows.

B. EXPERIMENTAL SETUP AND PARAMETER SETTING
To test the effectiveness of the proposed K-means_AMV
approach for detecting land cover change using bitemporal
remote sensing images, three widely used methods, namely,
PCA-Kmeans [25], LSELUC [52], and MLS [53], are

compared with the proposed K-means_AMV approach. For
each dataset and method, the optimal parameters of each
experiment are obtained through a trial-and-error approach;
details of the parameter setting for each approach are summa-
rized in Table 1. For the proposed K-means_AMV approach,
to test the usability of the proposed approach, image differ-
ence and adaptive region mean distance (ARMD) [62], which
has been used for LCCD, are adopted to generate the CMI of
each image dataset. The proposed approaches coupled with
the different generations of CMI, namely, the proposed-Diff
and proposed-ARMD, are displayed in Table 1. In addition,
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FIGURE 4. Sardinia Island area in Italy: (a) pre-event image acquired at September 1995; (b) post-event image acquired at July 1996;
(c) ground reference map.

TABLE 1. Parameter settings of the different LCCD methods for each dataset.

the details of ground reference maps for each dataset are
summarized in Table 2.

TABLE 2. Details of the ground reference map for each dataset.

C. VISUAL IDENTIFICATION AND
QUANTITATIVE EVALUATION
On the basis of the aforementioned parameter setting, the land
cover detection map for each dataset can be obtained
through the different existing methods and the proposed
K-means_AMV separately. To further evaluate the effective-
ness of the proposed approach quantitatively, three mea-
surements, namely, false alarm (FA), missed alarm (MA),
and total error (TE), are used for experimental comparisons;
these measurements have been extensively used in many
types of literatures [22], [23], [52], [63], [64]. To clarify the
meaning of each measurement, we defined UC as the number
of changed pixels that are actually unchanged pixels in the
BCDM when compared with the ground reference; TRU is
the number of pixels that are unchanged in the ground refer-
ence; CU is the number of unchanged pixels in the BCDMbut
is changed in the ground reference; TRC is the total number
of changed pixels in the ground reference truth. Based on
these definitions, FA, MA, and TE can be defined as UC

TRU ×

100%, CU
TRC × 100% and UC+CU

TRC+TRU × 100%, correspondingly.
In terms of visual identification and quantitative compar-
isons, the details of the experimental results are presented as
follows.

TABLE 3. Comparison between the other methods and the proposed
approach for the Lantau Island dataset.

For the landslide dataset of Hong Kong, China, visual
comparison is illustrated in Fig. 5. From these comparisons,
the proposed K-means_AMV with an image difference or
-ARMD, CMI generation methods clearly performs bet-
ter than the existing PCA_Kmeans [25], LSELUC [52], and
MLS [53] LCCD methods. The proposed approach performs
better with less noise than the ground reference map. Further-
more, the shape and size of the landslide area are obtained
more accurately than that of other methods in terms of visual
identification. The quantitative comparison in Table 3 further
strengthens the conclusion of visual identification, in which
‘‘the proposed-Diff’’ and ‘‘the proposed-ARMD’’ presented
the proposed approach coupled with the image difference
and ARMD CMI generation, respectively. The proposed
approaches achieve the optimal detection accuracies in terms
of FA and TE in comparison with the PCA_Kmeans [25],
LSELUC [52], and MLS [53], as summarized in Table 3.
In the second experiment, two QuickBird satellite images

that depict the land use event in the urban Ji Nan City
were adopted for experimental comparisons, as demon-
strated in Fig. 3. The results of the different methods are
exhibited in Fig. 6. From these comparisons, the proposed
approaches achieve a better performance with less noise
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FIGURE 5. Landslide inventory map obtained through the different methods: (a) LSELUC; (b) MLS;
(c) PCA-Kmeans; (d) the proposed-Diff; (e) the proposed-ARMD; (f) ground reference map.

TABLE 4. Comparison between the other methods and the proposed
approach for the Ji Nan dataset.

than the PCA_Kmeans [25], LSELUC [52], and MLS [53].
The quantitative comparisons presented in Table 4 further
strengthens the conclusion of the visual comparison and
clearly demonstrates that the results obtained through the
proposed approaches provide the optimal accuracies in terms
of FA, MA, and TE.

To further investigate the generality and performance of the
proposed approach, we also apply the proposed approaches
to detect a land cover change in an area called Lake Mulargia
on Sardinia Island using a remote sensing image. For visual

TABLE 5. Comparison between the other methods and the proposed
approach for the Sardinia.

observation, the results obtained through different methods
are displayed in Fig. 7. Quantitative comparisons showed that
the proposed approaches achieve the optimal accuracies for
the Sardinia dataset when compared with the other methods,
as listed in Table 5. In addition, the same conclusion can be
drawn by the visual performance comparison, as illustrated
in Fig. 7. The proposed approach provides the BCDM with a
minimal noise and has a close approximation to the ground
reference map.
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FIGURE 6. Binary LCCD map obtained by the different methods: (a) LSELUC; (b) MLS; (c) PCA-Kmeans; (d) the
proposed-Diff; (e) the proposed-ARMD; (f) ground reference map.

FIGURE 7. Binary LCCD maps obtained through the different methods: (a) LSELUC; (b) MLS; (c) PCA-Kmeans; (d) the proposed-Diff;
(e) the proposed-ARMD; (f) ground reference map.

From the visual identifications and quantitative compar-
isons, the experimental results based on different similar

methods, namely, PCA_Kmeans [25], LSELUC [52], and
MLS [53], and the proposed approaches, clearly demonstrate
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FIGURE 8. Relationship between detection accuracy and parameter setting (S, T1, and T2) for the proposed approach with an image difference change
magnitude generation in each experiment: (a, b, c) present the relationship between detection accuracies and S, T1, and T2 for the Landslide dataset;
(d, e, f) display the relationship between detection accuracies and S, T1, and T2 for the Ji Nan dataset; (g, h, i) provide the relationship between detection
accuracies and S, T1, and T2 for the Sardinia dataset.

that the proposed approaches can provide the accurate land
cover change map for each land cover change case. Fur-
thermore, the proposed approaches achieve robustness and
generality to the remote sensing images from different sourc-
ing platforms with median-low and VHR spatial resolution,
including the Landsat-5 satellite images, QuickBird satellite,
and aerial photography.

IV. DISCUSSION
From the aforementioned comparisons based on remote sens-
ing images, the proposed approach is more competitive
than the PCA_Kmeans [25], LSELUC [52], and MLS [53]
in terms of detection accuracies and performance. To pro-
mote the application of the proposed approach in practice,
the parameter sensitivity of the proposed approach is dis-
cussed as follows.

The proposed approach relates to three parameters, namely,
sample number (S), T1, and T2. Thus, in the discussion,

TABLE 6. Parameter setting to test the parameter sensitivity for each
dataset.

the sensitivity between a parameter and the detection accura-
cies is analyzed by fixing the value of the two other parame-
ters of the proposed approach, as summarized in Table 6. The
relationship between the parameters and detection accuracies
for each dataset is depicted in Fig. 8, and the details of the
discussion are presented as follows.

First, we discuss the sensitivity between S and the detec-
tion accuracies. In Figs. 8(a), 8(d), and 8(g), the detection
accuracies are fluctuating up and down with the increase
in S, whereas the other parameters (T1 and T2) are fixed.
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Furthermore, the fluctuating degree becomes apparent with
the increase in spatial resolution of the remote sensing image
because the standard deviation is typically larger in ‘‘intra-
class’’ for high spatial resolution remote sensing images
than in low spatial resolution remote sensing images [65].
A large standard deviation of intra-class indicates a signifi-
cant uncertainty of pixels, which consist of a ground target in
a remote sensing image. Therefore, the fluctuating degree is
varied with the spatial resolution of remote sensing images.
In addition, despite the detection accuracies being affected by
the sample number, the accuracies will neither increase nor
decrease constantly with the increment in S for the three real
land cover change cases.

Second, when the value of S and T2 is fixed, the sensitiv-
ity between T1 and detection accuracies for each dataset is
exhibited in Figs. 8(b), 8(e), and 8(h). From this observation,
FA and TE initially decrease with the increase in T1, and they
pose gradually to the horizontal level because an increasing
spatial information can be utilized with the increment in T1.
However, a very large T1 may result in additional heteroge-
neous pixels embraced in an adaptive region, which is detri-
mental to identifying the label of each pixel using K-means.
In addition, in terms of MA, the sensitivity trend varies in
different datasets. For example, the MA decreases with the
increase in T1 for the landslide dataset in Hong Kong, theMA
nearly maintains a horizontal level with the increase in T1 for
the Ji Nan dataset, and the MA decreases initially and then
increases gradually with T1 for the Sardinian dataset, as dis-
played in Figs. 8(b), 8(e), and 8(h), correspondingly. When
the value of T1 and S are fixed, the relationship between T2
and the change detection accuracies is illustrated in Fig. 8.
A similar conclusion can be drawn from the relationship
between T1 and the detection accuracies.

From the previous discussion, the following conclusion
can be drawn: (1) the first parameter S affects the detection
accuracies; however, a large S does not mean a high detec-
tion accuracy, especially for the medial-low spatial resolution
remote sensing images; (2) T1 presents the spectral difference
between the central pixel and its neighboring pixels, and T2
constrains the size of an extension; the effect between the
parameters and the detection accuracy is different considering
the various remote sensing images. Overall, T1 and T2 are
complementary to each other and must be determined and
adjusted in accordance with the different datasets in practical
application.

V. CONCLUSION
In this study, a simple but effective LCCD approach has been
developed. First, a CMI is prepared on the basis of bitemporal
images, and contextual information around a pixel of CMI is
utilized through an adaptive region; the pixel is defined as the
central pixel of the adaptive region. Then, the pixels within
the extended adaptive region are labeled through the clas-
sical K-means algorithm pixel-by-pixel. Finally, to further
improve the performance of LCCD, the label of the central
pixel is refined by the majority voting strategy considering

each label of the pixel within the adaptive extended region.
Each pixel of the CMI will become the central pixel once,
and the final BCDM is generated in this manner. The main
contribution of the proposed approach can be summarized
briefly as providing a comprehensive fusion of K-means and
the majority voting approach for an accurate LCCD using
bitemporal remote sensing images. Furthermore, the pro-
posed approach achieves its superiority and robustness over
several extensively used methods for the high, median-low
spatial resolution remote sensing images.

The proposed approach has been tested using three real
land cover change cases using bitemporal remote sensing
images. The detection results have been compared quantita-
tively with PCA_Kmeans [25], LSELUC [52], andMLS [53]
on the basis of the same ground reference map. The pro-
posed approach is the most competitive, thereby achiev-
ing the highest accuracies in terms of FA, MA, and TE.
From the perspective of methodology and practical applica-
tion, in comparison with PCA_Kmeans [25], LSELUC [52],
and MLS [53], the proposed approach has the following
advantages:
1) The proposed approach provides competitive change

detection results. For the three image scenes that are
related to three real land cover change events, the detec-
tion results clearly demonstrate the effectiveness and
superiority of the proposed approach in terms of visual
performance and quantitative accuracies when com-
pared with the similar and widely usedmethods, namely,
PCA_Kmeans [25], LSELUC [52], and MLS [53].

2) To the best of our knowledge, this study is the first to
integrate the K-means and the majority voting strategy
for LCCD through an adaptive region. The experimen-
tal results verify that this comprehensive integration is
helpful in improving the detection accuracies and per-
formance because the spatial information utilized in an
adaptive manner is more intuitive and objective than that
of a regular block for different detection targets with
various shapes and sizes.

3) The proposed approach has a high generality. From
the experiments, the proposed approach can be applied
to different land cover change events, such as land-
slide inventory mapping and land-use change. Further-
more, the proposed approach achieves robustness to the
bitemporal images, which vary in spatial resolution and
acquiring platform. Therefore, the proposed approach
is relative more than that of PCA_Kmeans [25],
LSELUC [52], and MLS [53] general, for practical
applications.

In summary, the proposed approach still has limita-
tions despite its advantages and superiority over the exten-
sively used LCCD methods, such as PCA_Kmeans [25],
LSELUC [52], and MLS [53], for the real land cover change
events based on the bitemporal images with varying spa-
tial resolution. For example, although a binary threshold for
obtaining BCDM can be avoided in the proposed approach,
the training sample for the changed and unchanged areasmust
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be initially selected manually before applying our proposed
approach. Furthermore, determining the T1 and T2 in the pro-
posed approach requires parameter tuning for optimization.
Therefore, in the future study, the automation parameters of
the proposed approach will be considered.
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