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ABSTRACT The classification of networked data is an interesting and challenging problem.Most traditional
relational classifiers that are based on the principle of homophily have an unsatisfactory classification
performance in networks with heterophily. This is because these methods treat inhomogeneous networks
homogeneously. A progression of a network-only Bayes-classifier-based second-order Markov assumption
is proposed for heterophilous networks in this paper to address this problem. First, we estimate the class
distribution of an unlabeled node according to the class distribution of its neighbors’ neighbors. In this
process, we perform this computation on the known and unknown neighbors separately. Second, we combine
the two parts using multinomial naïve Bayesian classification. Meanwhile, we pair a relaxation labeling
collective inference method (which imports simulated annealing) with this new method to update the class
distributions at each iteration. Comparisons of the experimental results demonstrate that the proposedmethod
performs better when the networks are heterophilous.

INDEX TERMS Artificial intelligence, data mining, heterophilous networks, machine learning, networked
data classification, relational classifier.

I. INTRODUCTION
Networked data are exploited to model entities that are
interconnected such that nodes represent entities with local
attributes, labels represent topics or classes of nodes, and
edges represent the connections between them. They are
different from conventional data which are independent and
identically distributed. Networked data present complications
and the potential relationships between entities can be used
to help with the classification. The main task and major chal-
lenge in analyzing networked data is the classification prob-
lem, which is to find the best matching labels of unlabeled
nodes according to the network and the categories of labeled
nodes [1]. The effectiveness of classification depends on the
distinct datasets and classifiers. Many network classifiers
are based on the principle of homophily [2]–[4], [15]–[18].
Homophily assumes that similar nodes (nodes with the same
labels) tend to be connected or that interconnected nodes are
more likely to possess the same labels [5], [6]. This phe-
nomenon has been revealed in many social networks [7], [8].
Homophily-based methods predict the class of an unlabeled

node using the classes of its direct neighbor nodes. Direct
neighbor is also called immediate neighbor which directly
links with the unlabeled node through an edge. Therefore,
they can achieve high accuracy when the homophily degree
of the networked data is high. However, when the labels
of most interconnected nodes are diverse, in other words,
the homophily degree of the networked data is low, and most
of the previous methods face a decline in performance. In this
case, the networked data are heterophilous [9].

A. RELATED WORK
A large set of relational approaches for network classifica-
tion [22]–[26] has been developed in recent years. There
are some typical relational classifiers take advantage of the
direct neighbors of unlabeled nodes to classify. Macskassy
and Provost [10] proposed a simple classifier, they termed
a weighted-vote relational neighbor classifier (WVRN) that
computes the class probabilities of unlabeled nodes as the
weighted mean of the class probabilities of the direct neigh-
bor nodes. WVRN performs relational classification in an
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iterative manner without a training process. Their experimen-
tal results demonstrated that WVRN performed quite well
on homophilous networks, and the structure of the network
itself contained much more information, which is helpful for
network classification; WVRN should be regarded as a base-
line for networked data classifiers [1]. Following Perlich and
Provost [11], [12], and based on Rocchio’s method [13],Mac-
skassy and Provost [1] defined a class-distribution relational
neighbor classifier (CDRN) which estimates the probable
label probabilities according to the normalized vector similar-
ity between an unlabeled node’s class vector and correspond-
ing label’s reference vector . CDRN is more flexible and may
get better discrimination on the homophilous networks than
WVRN but it is more complex. Chakrabarti et al. [14] applied
a naïve Bayes model to deal with local attributes and the
neighbor nodes of the unlabeled node. Based on this algo-
rithm, Macskassy and Provost [1] ignored the node’s local
attributes and the direction of links. Therefore, they called
it a network-only Bayes classifier (NBC). The experimental
results showed that NBC was almost always worse than
WVRN and CDRN. Lu and Getoor [15] used logistic regres-
sion on the aggregations of local attributes and the neighbor
labels respectively, from which Macskassy and Provost [1]
derived their network-only link-based classification (NLB).
NLB did not consider the local attributes. NLB’s count aggre-
gation got best performance among all the aggregations and
it is the same as the computation of CDRN’s class vector.

These methods classify an unlabeled node by relying on
the immediate neighbors’ labels of this node in the network.
We can also state that these methods are homophily-based
and make the first-order Markov assumption [2]–[4], [15].
That means the neighbor nodes set comprises only the direct
neighbors of the unlabeled node in the network. They can
achieve an accurate classification when the networked data
are highly homogeneous. However, heterophily is ubiquitous,
occurring in such situations as web pages that are linked via
hyperlinks. In this situation, most interlinked nodes do not
have the same classes or topics and the above methods cannot
classify correctly.

To deal with the classification of networked data with
heterophily, Wang et al. [9] presented a classification algo-
rithm based on a class propagating distribution (CPD).
CPD utilizes an adjacency matrix to compute the influ-
ence of the neighbor nodes in an iterative manner like
MultiRankWalk (MRW) [16]. CPD performs better on het-
erophilous networks, but it needs more storage space and
time. Dong et al. [19] improved CDRN by computing the
propagating class vector and propagating reference vector
separately, and then comparing the similarities between the
two (PCDRN). PCDRN also shows better performance when
the networks are of heterophily and needs less storage space
than CPD. Dong et al. [20] also proposed a relational logis-
tic regression classifier (UNLB) based on the second-order
Markov assumption for heterophilous networked data clas-
sification. UNLB is a generalized linear regression which
is more efficient. Gupta et al. [21] proposed a novel

meta-path based framework, HeteClass, for transductive clas-
sification. HeteClass can incorporate the knowledge of a
domain expert and be applied to heterogeneous networks.
Experimental results show that these methods perform better
when networked data are heterophilous.

As previously discussed, networked data contain intercon-
nected nodes which obscure interdependencies among them.
This means that the estimate of the label of one node may
influence the estimate of another node which is connected to
it and vice versa. Therefore, the nodes in networks should
be simultaneously inferred. Collective inference is applied
under this circumstance, which infers the interrelated nodes
at the same time. Several research studies indicate that collec-
tive inference shows advantages for sparsely labeled network
classification [27]. Combining a relational classifier with the
collective inference method can achieve more reasonable
classification results. Collective inference methods update
the label estimations of unlabeled nodes continuously until
they satisfy the convergence condition or maximum iteration
number. Typical collective inference methods include Gibbs
sampling (GS) [28], relaxation labeling (RL) [14], and itera-
tive classification (IC) [15] etc.

B. CONTRIBUTIONS
Given that homophily-based classifiers can easily lead to
a complete misclassification of heterophilous networks, our
contribution is to propose an improved network-only Bayes
classifier which can achieve a better classification perfor-
mance of networked data with heterophily. It is based on the
second-order Markov assumption. Specifically, it estimates
the class distributions of unlabeled nodes using the label esti-
mations of the neighbors’ neighbors of this node which are
also called radius-two neighbors. In addition, we propose the
concept of radius-two heterophily degree, which describes
the heterophily level of networks. The experiments show that
the proposed network classifier performs better on networks
with heterophily.

C. ORGANIZATION
The rest of this paper is organized as follows. Section II
describes the proposed method in detail. Section III covers
the experimental setting and data used and subsequently dis-
cusses the results. Section IV summarizes the conclusions.

II. METHODS
Compared with the networked data of homophily, most of
the interlinked nodes in a heterophilous network have dif-
ferent labels. Therefore, the traditional relational classifiers
cannot work reliably in heterophilous networks. For instance,
homophily-based method WVRN assumes that neighbor
nodes’ labels might be the same. An elaborate adaption
of NBC is presented in this paper for the classification of
networked data with heterophily.

As mentioned earlier, links or edges between nodes
in the networked data pose new problems not addressed
in traditional classification. Links contain high-quality
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semantic clues; however, it is difficult to exploit infor-
mation among them, because of noise. It is impossible
to explore all the neighborhoods of unlabeled nodes through
links in a network. To enhance tractability, relational
learning often makes a Markov assumption. Most of the
relational classifiers are based on a first-order Markov
assumption [2]–[4], [15]. However, the classification infor-
mation in the direct neighbors of unlabeled nodes is limited
for heterophilous network classification. For the purposes of
obtaining more useful information and avoiding too much
noise or incorrect signals, we start with an obvious idea:
making a second-order Markov assumption. This means that
we use the neighbor nodes of unlabeled nodes’ neighbors also
called radius-two neighbors to perform the classification.

Chakrabarti et al. [14] demonstrate that simply using
neighbor node’s local attributes could degrade classification
accuracy; therefore, only the labels of neighboring nodes are
crucial for classification. Furthermore, if we use the local
attributes of nodes, the dimensionality of the feature may
be overly large compared to the training set sizes. In the
proposed method, we only use the edges in the network
and the class labels of the nodes to classify. Without local
attributes, this setting needs only a tiny amount of storage
space and is very fast. This type of simplification is practical
in data gathering, processing, and storage [1], [14].

Networked data can be described by a graph which is
defined by the nodes and links in network. Considering web-
sites as an example, web pages are nodes, topics are labels,
and hyperlinks among the web pages are edges of the graph.
Given a network G, vi is any node in the graph, xi denotes
some (estimated) label of node vi for m classes, where xi ∈
{c1, . . . , cm}, c is a non-specified label.We useNi to represent
the set of immediate neighbors of vi in the graph that nodes
immediate connect with vi using an edge. NK

i represents the
set of immediate neighbors of vi whose labels are known, and
NU
i represents the set of immediate neighbors of vi whose

labels are not known, NU
i and NK

i are two disjoint sets,
so Ni = {NU

i , NK
i }. wij denotes the edge weight between

node vi and vj, because we ignore the directionality of the
edge which is different from NBC, so wij = wji.

When we are training a classifier, we input not only the set
of nodes, but also the graph and the labels of known nodes.
When the classifier classifies a new node, it has as input not
only the node, but also some neighbor nodes of that node.
Given a single node vi in a graph, vj represents any immediate
neighbor of vi, and vk represents any immediate neighbor of vj
(i.e., vj ∈ Ni and vk ∈ Nj), so vk is the radius-two neigh-
bor of vi. For the second-order Markov assumption, we use
P(xi = c| Nj) to represent the class distribution of vi,
where vj ∈ Ni. The class distribution is used to describe
the probabilities that values of vi belong to each class.
When we estimate the class distribution of vi, the rela-
tional classifier and the collective inference method must
be able to use the class distribution of vk (i.e., P(xk =
c| Nl), vl ∈ Nk ). The proposed method, called UNBC,
uses a multinomial naïve Bayesian classification like NBC.

We chose c to maximize P(xi = c|Nj) based on the labels
of vj’s neighbors which is radius-two neighbors set of vi as
in (1).

P(xi = c|Nj) =
P(c) · P(Nj|c)

P(Nj)
(1)

where vj ∈ Ni, P(c) is the frequency of label c in the training
datasets. Given that P(Nj) is not a function of c, normally
we do not need to compute it explicitly. Obtaining a known
function for P(Nj|c) is extremely unlikely, so we need to esti-
mate it. In order to simplify the computation and estimation
we make independence assumptions like NBC. This kind of
approximation is not correct but practical, and the validity
can be judged by the classification accuracy [14]. Under the
naïve Bayes approximation, the neighbor nodes’ labels of any
node are independent. Since we use second-order Markov
assumption, we make use of the radius-two neighbor sets NK

j
andNU

j of vi. In the realistic setting, some neighbor nodes are
unknown, and we do not wish to ignore all these unknown
neighbors. In those cases, we first use neighbors’ priori to
classify the nodes. The known and unknown neighbors need
to be computed in different formulas, so we deal with them
separately. As illustrated above, Nj = {NK

j , NU
j }, and we

rewrite equation (1) as (2):

P(xi = c|Nj) = P(c) · P(NK
j |c) · P(N

U
j |c) (2)

For all the known labels of all the radius-two neighbor
nodes in Nj, we have the independence assumptions of all the
neighbor labels. That is:

P(NK
j |c) =

∏
vj∈Ni,vk∈NK

j

P(xk = x̃k |xi = c)wjk (3)

where x̃k is the label observed at node xk .
For the unknown labels of Nj, according to the total prob-

ability formula, P(NU
j |c) can be expressed as:

P(NU
j |c) =

∏
vj∈Ni,vk∈NU

j ,vl∈Nk

{

m∑
h=1

[P(xk = ch|Nl)

·P(xk = ch|xi = c)wjk ]} (4)

where P(xk = ch|Nl) represents the current probabil-
ity estimations for vk , and based on the labeled nodes,
P(xk = ch|xi = c) and P(xk = x̃k |xi = c) in equation (3)
can be computed during training. To summarize, equation (2)
can be obtained from equations (3) and (4).

As we discussed above, the collective inference method is
able to infer a set of labels for unlabeled nodes simultane-
ously. We use relaxation labeling with simulated annealing
for simultaneous inferring which is different from NBC’s
relaxation labeling. This technique has been applied to the
computer vision and image processing fields [29], [30].
Rather than assigning each unlabeled node a fixed label as
iterative classification does, relaxation labeling retains the
‘‘current’’ uncertainty of the nodes. The class distribution at
step t + 1 will be updated based on the label estimations
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TABLE 1. Pseudo-code for algorithm UNBC.

from step t . To guarantee convergence, we use the improved
relaxation labeling of Macskassy and Provost [1]:

P(xi = c|Nj)(t+1) = β(t+1) · P(xi = c|Nj)(t)

+ (1− β(t+1)) · P(xi = c|Nj)(t+1) (5)

where β0 = k , β(t+1) = β(t) · α, in which k is set to 1, and
α is a decay constant, which is set to 0.99. The algorithm is
given in TABLE 1.

III. EXPERIMENTS AND RESULTS
Experimental analysis is included in this section to present
the resulting improvements.

A. EXPERIMENT SETUP
We vary the percentage r of labeled nodes initially in
the network from 10% to 90%. Based on this percentage,
the training data set is selected by choosing a class-stratified
random sample of the nodes in the network. The rest of
the nodes are applied as the testing data set that needs to
be labeled according to classification methods. We follow
the standard class-stratified 10-fold cross-validation. That
is, for a given data set and label ratio r , each experiment
for the classification consists of 10 random train/test splits.
We keep the partitions of training and testing disjoint as much

TABLE 2. The information about the experimental data.

as possible, because there is dependence in network which is
different from the traditional data. Training and Testing are
also conducted 10 times at each r . In addition, the accuracy
is averaged 10 times. We remove any disconnected nodes in
the network. Moreover, we apply Laplace smoothing [1] to
avoid computing possible zeros for training.

During training, the nodes whose labels are not known
are ignored. The classifier develops classification models for
each label, and this process is also called learning. For testing,
the labeled nodes can serve as background information and
the unlabeled nodes are assigned class distributions, depend-
ing upon the classifier.

B. DATA
We experimented with 6 real networks from 3 domains to
examine the performance of the proposed UNBC methods.
The datasets are Cora [15], [31], [32], Imdb [10], [33], [34],
and four computer science departments’ web pages in the
WebKB project [15], [34]–[36]. TheWebKB datasets include
Texas, Cornell, Wisconsin, andWashington. Each page of the
four universities is labeled by one of the labels from ‘‘course,
department, faculty, project, staff and student’’; hyperlinks
are the edges between them. Cora is comprised of computer
science research papers and the citation relationships between
them. The labels in Cora are the paper’s topics. In Imdb,
the nodes are movies and the links are whether they share
a production company. We will predict whether the opening
weekend box-office receipts will exceed $2 million. The data
is listed in TABLE 2.

According to Sen et al. [36], the homophily degree of
a network can be expressed by the mean percentage of
the same labels in a node’s direct neighbors. We use the
following formula to calculate the radius-two heterophily
degree (HED):

HED =

∑
vj∈Ni

(
∣∣Dj∣∣ / ∣∣Nj∣∣)
n

(6)

where |Dj| denotes the number of nodes in radius-two neigh-
bors of vi and have labels different to vi, Dj ⊆ Nj, while
n denotes the number of nodes in the network. The
homophily degree and the radius-two heterophily degree
of the networks in TABLE 2 are calculated and listed
in TABLE 3.

TABLE 3 shows that the homophily degrees of Cora and
Imdb are very high. In contrast, the homophily degrees of
the four networks of WebKB are low, so Texas, Cornell,
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FIGURE 1. Classification accuracies of homophily-based methods on the six datasets. The horizontal axis plots the proportion of a
network’s nodes for which the label is known. Datasets are tagged above in each graph. The four methods are WVRN, CDRN,
NBC, and UNBC. The horizontal line is the most prevalent class rate.

TABLE 3. The homophily degree and radius-two heterophily degree of
the networks in TABLE 2.

Wisconsin, and Washington are heterophilous networks.
Meanwhile their radius-two heterophily degrees are relatively
higher than the above two sets.

C. EXPERIMENTAL RESULTS
The proposed method is not only compared to homophily-
based relational classifiers as shown in FIGURE 1 but also
compared to heterophily-based network classification meth-
ods, as shown in FIGURE 2; this systematic comparison has
not been made previously.

FIGURE 1 shows the classification accuracies of the four
network classification methods across the six datasets as the
proportion of labeled nodes increases from 0.1 to 0.9. Each
graph is for a particular data set. The three homophily-based
classifiers are WVRN, CDRN, and NBC.
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FIGURE 2. Comparison of heterophily-based methods on the six datasets. The four methods are PCDRN, CPD, UNLB, and UNBC.

As is clear from FIGURE 1, WVRN, CDRN and NBC
perform worse than UNBC on the last four datasets. It is
worthmentioning that, generally,WVRN is used as a baseline
classifier for relational classification. From the experimen-
tal results, we can discern that homophily-based methods
perform better on networks of homophily (Cora and Imdb),
but worse on heterophilous networks (Cornel, Texas, Wash-
ington, and Wisconsin). The experimental results can be
explained by the homophily degree in TABLE 3. Notably,
the radius-two heterophily degree declines in Washington,
so UNBC and NBC are roughly comparable to Washington.

There must be some relationship among homophily degree,
heterophily degree and radius-two heterophily degree that
need further exploration.

FIGURE 1 also shows that NBC outperforms the other
two homophily-based methods on heterophilous networks.
However, UNBC is significantly better than NBC on the
four heterophilous datasets especially when the proportion
of labeled nodes is less than 0.6 because it abandons the
homophily assumption. NBC performs relatively poorly with
small numbers of labeled nodes owing to the lack of train-
ing data. Conversely, UNBC indicates an advantage at low
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TABLE 4. p-values for the wilcoxon signed-Rank test, comparing the
accuracies between pairs of four relational methods in figure 1 across
four heterophilous data sets.

TABLE 5. p-values for the wilcoxon signed-rank test, comparing the
accuracies between pairs of four heterophily-based methods
in Figure 2 across four heterophilous data sets.

sample ratios. Experiments show that UNBC performs better
than homophily-based methods on networked data with het-
erophily.

TABLE 4 shows the p-values for a Wilcoxon signed-rank
test of the four methods in FIGURE 1 assessing whether
UNBC is significantly better than the other three homophily-
based methods across four heterophilous data sets. Bold text
means that UNBC was better than the second method and
italics means it was worse. For each pair, averaging the
accuracies of the 10 splits gives one average accuracy score
for each heterophilous data sets. The results show clearly
that UNBC outperforms the other three homophily-based
methods across the board.

FIGURE 2 shows, for six of the datasets, the comparative
performance of four heterophily-based methods: PCDRN,
CPD, UNLB, and UNBC. UNBC performs relatively well
at low sample ratios. There is no significant difference on
performance between this new heterophily-based method and
the other three methods for a high proportion of labeled
nodes. The worst relative performance is on Cora and Imdb
which are the homophilous networks. The foregoing analysis
provides some evidence that UNBC performs better than
the homophily-based methods when the networks are het-
erophilous.

TABLE 5 shows statistical results of p-values for the
Wilcoxon signed-rank test across four heterophilous data
sets that is corresponding to the four heterophilous methods
in FIGURE 2. As discussed above, UNBC often substantially
worse than the other three methods.

PCDRN, UNLB, and UNBC compute only one node at a
time and get the neighbor nodes through edges. CPD uses

the adjacency matrix to compute the class distribution,
so CPD consumes much more storage space than other three
heterophily-based methods. According to the previous vari-
able definition, m represents the number of labels, while
n represents the total number of nodes. The time complexity
of PCDRN and UNBC is O(mn3) and O(m2n3) separately in
the worst case when the out degree of each unlabeled node
is n− 1. Although the time complexity of UNLB is O(mn2),
UNBC performs better than UNLB when the proportion of
labeled nodes is less than 0.5.

IV. CONCLUSION AND FUTURE WORKS
There is a large quantity of networked data with heterophily
in the real world. In these networks, most of the intercon-
nected nodes have distinct labels. In addition, the homophily
degrees of these types of networks are low. Many homophily-
based relational classifiers perform poorly on heterophilous
networks. In this paper, we proposed a novel probabilistic
network classifier based on a second-order Markov assump-
tion. The proposed method uses multinomial naïve Bayesian
classification. Based on the independence hypothesis, it com-
putes the class distribution of each unlabeled node sep-
arately according to the known and unknown radius-two
neighbors. Finally, it combines relaxation labeling with sim-
ulated annealing for simultaneous inferring. The experiments
demonstrate that this proposed method outperforms other
network classifiers on heterophilous network datasets. The
proposed method is applicable to the heterophilous networks
and the performance depends on the heterophily degree of
the network. In future, we plan to explore the relationship
between homophily degree or radius-two heterophily degree
and further link distance of the nodes in the network. We will
also attempt some improvements of other network classifiers
for heterophilous network data.
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