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ABSTRACT The subject of probability and statistics is easily dismissed by students as assemblages of
formulae to be rote-memorized. We propose here an integration of simulation-based activities with certain
mathematical paradoxes using patchwork assessment to first-year undergraduates, such that they can better
appreciate the real-world context of probability and statistics. The proposed examples alongside various
facilitation skills for the instructor are discussed.We also provide an original spreadsheet simulation program
in Excel and Visual Basic for Applications to reproduce the numerical experiments. This program is capable
of running Monte Carlo simulations for all three seminal Parrondo’s paradox variants, and can be easily
used by students and instructors; moreover, the computed datasets and code are fully-transparent, thereby
allowing interactive discussions, modifications and extensions, and further analyses. Our findings suggest
that the proposed teaching strategy is useful, and we hope that this work will initiate the significant adoption
of paradoxical simulations in teaching practice. The interactive program is freely available on open science
framework.

INDEX TERMS Mathematics, interdisciplinary, education, paradoxical simulations, smart classroom,
Parrondo’s paradox, game design.

I. INTRODUCTION
The subject of probability and statistics is deeply entwined
with a great plethora of real-life applications. Despite their
ubiquity, probability and statistics are easily perceived by
students as an assemblage of formulae to be rote-memorized,
rather than a conceptual undertaking with wide-ranging
applications [1]. More often than not, instructors do not equip
students with the means to handle non-routine problems [2];
it is important to discuss general probabilistic principles and
introduce more sophisticated strategies specific to practical
problem solving [3], [4].

Many studies have investigated the use of mathemati-
cal paradoxes to motivate students in learning probabil-
ity and statistics [2], [5]–[10]. Commonly used examples
include the Monty Hall problem [11]–[13], which inves-
tigates the utility of re-selecting choices, and Simp-
son’s paradox [14], [15], which elucidates ambiguity in the

statistics of amalgamated groups. The introduction of para-
doxes in the classroom encourages active learning, and forces
students to confront conflicts between intuition and theory;
when appropriately integrated into the curriculum, it is an
effective tool to promote deeper conceptual learning and
statistical literacy [9]. The advantages of using simulations
as a pedagogical device [16] have also been discussed in
literature [17]–[24], with recent success in the design of
advanced virtual laboratories [25], [26] and the use of snake
puzzles for learning structural bioinformatics [27]. Educators
have found simulation-based approaches effective at enhanc-
ing the understanding of entwined concepts in complex
problems [20]; and students have found such activities more
interesting, intrinsically motivating, and closer to real-world
experiences than other learning modes [28].

In this paper, we propose the integration of a simulation-
based approach with certain mathematical paradoxes to

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 17941

https://orcid.org/0000-0002-4475-5451


K. H. Cheong et al.: Paradoxical Simulations to Enhance Education in Mathematics

enhance first-year undergraduate education in mathematics.
The objective is to promote appreciation of the real-world
applications of probability and statistics, so that students
understand why they are learning the particular subjects.
In modern times, computer simulations allow users to repli-
cate results and extend established analyses with ease.
While the theoretical frameworks may be too advanced
to be discussed in their entirety, qualitative mathematical
intuitions can still be gained through observing the sim-
ulation results. For instance, the Parrondo’s paradox [29],
MontyHall problem [11]–[13], Simpson’s paradox [14], [15],
St. Petersburg paradox [30], and the birthday problem [31]
can all be simulated, thereby allowing students to
interactively explore and extend these problems. These
paradox-based activities are not to replace the teaching of
fundamental probability and statistics concepts, but rather to
reinforce the base curriculum as a supplementary component.

Our key contribution is on showcasing the educational con-
text of Parrondo’s paradox [29] and how it can be introduced
to students through simulations—starting from the necessary
theoretical and technical scaffolds, to the final analysis of
the simulation results. In addition to this novel educational
perspective, we provide a comprehensive Microsoft Excel
simulation suite, capable of running simulations for all three
seminal variants of the Parrondo’s paradox. Single-trial sim-
ulations are implemented entirely in native Excel formulae
in a fully transparent fashion, so that students can pick up
and extend the basic concepts easily. Multi-trial Monte Carlo
simulations are implemented both in native formulae and in
Visual Basic for Applications (VBA) macros, hence cater-
ing to students who are proficient in programming. This
simulation-based approach brings students into close contact
with key statistical concepts, such as the notions of random-
ness and determinism, and the law of large numbers, serving
as an effective review platform outside of the classroom.

As a pilot programme, we have implemented the pro-
posed paradoxical simulations in a first-year mathematics
course for undergraduates enrolled in a Game Design degree
(Spring 2017). A study was conducted to assess students’
perception and receptiveness of the paradoxical simulations.
The findings are generally positive, giving us the confidence
to scale up such paradox-motivated simulation projects to
larger class sizes.

II. THEORETICAL REVIEW & SIMULATION SUITE
An overview of the fundamentals of the Parrondo’s
paradox [29], [32], [33] is first presented, alongside the rec-
ommended conceptual scaffolding and possible teaching
pointers. The proposed simulation suite is also demonstrated
in a pedagogical context.

Two games, termed Games A and B, are considered,
each producing a losing outcome when individually played.
Playing these losing games in a random or periodic
order may counter-intuitively produce winning outcomes.
The Parrondo’s paradox is a mathematical abstraction of
the flashing Brownian ratchet, a phenomenon in which a

Brownian particle undergoes systematic drift in the pres-
ence of a switching potential [34]–[36]. The paradox has
wide-ranging implications across engineering [32], [33],
life science [37]–[44], medicine [45], [46], and the physi-
cal sciences [47]–[49], including applications to quantum-
physical systems [50]–[55], computational optimization
techniques [56], and control theory [57]–[59]. This wide
range of connections to real-world physical and biological
phenomena enables meaningful engagement with students
across diverse disciplines.

There exist three seminal variants of Parrondo’s paradox—
the capital-dependent variant [29], the history-dependent
variant [60], and the cooperative variant [61]. In all variants,
the dynamics of the capital of an autonomous player or
ensemble of players is analyzed. These three variants are
discussed in Sections II-A, II-B and II-C.

Our provided spreadsheet simulation suite encompasses
all three variants. The approach of introducing Parrondo’s
paradox via spreadsheets is not new [62], albeit for the
capital-dependent variant only; and existing programs writ-
ten outside of Excel, likewise, typically supports only the
capital-dependent variant only. As such, our presented simu-
lation suite is a significant extension to these existing works,
whilst preserving the transparency and readability not typi-
cally available on non-spreadsheet platforms. Instructors may
adopt this simulation suite for their classes or use it to design
customized teaching materials.

A. CAPITAL-DEPENDENT PARRONDO’S PARADOX
In the capital-dependent formulation [29], Games A and B
are played by a player P in either a deterministic fashion
(fixed sequence) or a random fashion. In the latter, a mixing
parameter γ is defined, such that Games A and B are played
with probabilities γ and (1− γ ) respectively at each round.

FIGURE 1. Game structure of the capital-dependent variant. Game A is a
simplistic coin-flipping game, but Game B presents branching dependent
on the divisibility of the player’s capital by a constant M. A total of three
coins are used for the games, with winning probabilities p1, p2, and p3.
The capital of the player is incremented by a unit if the round is a win,
and decremented by a unit if the round is a loss; the player starts with
zero capital.

The game rules of the capital-dependent variant are illus-
trated in Figure 1, with pseudocode available in Section C
of the Supplementary Information. A constant ε introduces
stochastic bias, such that ε > 0 reflects a tendency
towards losing. We take p1 = 1/2 − ε, p2 = 1/10 − ε,
p3 = 3/4 − ε and M = 3 for purposes of illustration [29].
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FIGURE 2. (a) A screenshot of the parameter input interface for the capital-dependent paradox variant, where the user may freely modify the
game parameters; (b) single-trial simulation results obtained from the spreadsheet simulation suite; (c) multi-trial averaged simulation results
with N = 20; and (d) multi-trial averaged simulation results with N = 200000. Simulations shown were run with random game sequence for
mixed games.

With ε > 0, both games are losing when played individually.
The mathematics and educational value of the paradox are
explored further in Sections II-A.1 to II-A.3.

The Excel simulation suite is fully capable of simulating
the capital-dependent paradox variant, with all parameters
freely modifiable by the user. The default parameters are set
at the aforementioned values, with ε = 0.005, γ = 0.5, and
number of game rounds n = 200; these values are freely
modifiable by the user (Figure 2a). Single-trial simulations
will produce highly variable results (Figure 2b), indicative of
the stochastic nature of the games; but averaged Monte Carlo
simulation sets with large number of trials N (Figure 2d)
will produce consistent results. Instructors may introduce
the Monte Carlo simulation technique by highlighting the
improving consistency of the results asN is increased, a natu-
ral consequence of the law of large numbers. The single-trial
and multi-trial simulations up to N = 20 are implemented
with native Excel formulae, allowing excellent code readabil-
ity by students; multi-trial sets extendable to arbitrarily large
n and N are implemented in VBA, and may be of interest to
students proficient in programming, or instructors seeking to
extend the framework.

It is notable that the capital-dependent paradox variant,
while originating as a mathematical abstraction of flash-
ing Brownian ratchets [34]–[36], has also been linked to
the financial dynamics of stock markets [63]; and plausi-
ble connections to gene transcription and DNA replication
dynamics [64] have also been established. The mechanism of
the paradox has also been applied to improve computational
optimization techniques, at present applied to electron-optical
instruments [56], and to the control of chaotic systems [59].

Instructors may discuss these applications to provide relevant
interdisciplinary context and to engage students of different
disciplines.

1) GAME A
Game A is winning, fair, and losing when ε < 0, ε = 0, and
ε > 0 respectively. In particular, the expected capital of the
player is C(u) = (2p1 − 1)u = −2εu at game round u.

2) GAME B
Game B provides an excellent opportunity to review potential
statistical fallacies with students. When asked to evaluate
the fairness of Game B, students may very likely make the
following calculation [32]:

PB(win) =
1
3
· p2 +

2
3
· p3 =

8
15
− ε (1)

This suggests that Game B can be winning for ε < 1/30.
This is, however, a flawed result. The assumption that Game
B will enter the p2 branch 1/3 of the time, and the p3 branch
the remaining 2/3 of the time, is incorrect. One-third of all
integers are divisible by M = 3, seemingly supporting the
naïve assumption; the crucial observation is that consecutive
rounds of Game B are not independent of each other, and
therefore the ratio of p2 and p3 coin flips cannot be deduced
from this divisibility condition alone. A proper analysis of
the winning probability necessitates the use of discrete-time
Markov chains, the detailedmathematical derivation of which
is presented in Section B of the Supplementary Information.
The correct winning probability of Game B as derived
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FIGURE 3. (a) A plot of winning probabilities PB(win) and PR (win) against ε, as obtained from the discrete-time Markov chain analysis in
Eq. (2) and (3), and (b) a zoomed-in version of the same graph for 0 ≤ ε ≤ 0.02. Default values of game parameters are used. It is clear
that Game B is losing for 0 < ε ≤ 0.5, but random mixed games can be winning for ε below a threshold.

FIGURE 4. Capital distribution histograms for the capital-dependent variant, for (a) pure Game A, (b) pure Game B, and (c) mixed games with random
game sequence. Capital at the final game round (n = 200) is plotted, collected over a total of N = 200000 trials using the automated functionality of
the spreadsheet simulation suite.

through this method is

PB(win) =
p2 + 2p3 − 2p2p3 − p23 + 3p2p23
3− p2 − 2p3 + 2p2p3 + p23

. (2)

A fair game is achieved at ε = 0, and a losing game
(PB(win) < 1/2) results whenever 0 < ε ≤ 1/2, as shown
in Figure 3.

3) MIXED GAMES
Games A and B can be mixed in either a deterministic or
random order to produce paradoxical winning outcomes.
It is crucial that students understand the difference between
a deterministic process and a random process. The former
involves no probabilistic quantities, and hence will always
give the same result with the same initial conditions; the
latter is stochastic in nature, but this does not imply unpre-
dictability. The average outcome of a stochastic process can
be statistically predicted, and it is this averaged behaviour that
is described in our mathematical analyses.

The simulation suite offers flexibility in specifying the
order of the games (Figure 2a). With the stochastic sequence
selected, the user may freely choose the value of mixing
parameter γ . Numerous periodic deterministic sequences are
also available, for instance ABAB, ABAAB, and ABABB,
the last of which produces especially prominent paradoxical
winning outcomes. These game sequences are implemented
via a record sheet, which can be freely modified by students
and instructors. Instructors may engage students to find the
optimal deterministic sequence for maximum capital gain,
a task that demands an excellent mathematical understanding
of the paradox.

Why does the paradox occur? An explanation can be
given in terms of the localization tendency of the player’s
capital [32]. In Game B, the capital of a player tends to drift
towards theMk−1 andMk states (k ∈ Z), since p2 < 1/2 and
p3 > 1/2. AtMk−1, there is a high probability p3 of winning
into Mk; and at Mk , there is a high probability (1 − p2)
of losing into Mk − 1. The capital, thus, localizes between
these two states, and a winning outcome is unachievable.
By introducing Game A into the game sequence, however,
perturbations are provided. When the capital declines to the
Mk − 1 state, recovery back to Mk is likely; and when
the capital reaches Mk + 1, there is a high probability p3
of inflating onto Mk + 2. In other words, the presence of
GameA enables the exploitation of the inherent asymmetry in
Game B [32], [33]. This is known as the agitation-ratcheting
mechanism. This localization phenomenon can be observed
directly in the sawtooth-like capital distributions of Game B
and mixed games (Figure 4), readily generated and visualized
in the simulation suite.

A rigorous analysis of mixed games can be performed via
discrete-time Markov chains—this is detailed in Section B
of the Supplementary Information. Defining ri = γ p1 +
(1−γ )pi, i ∈ {2, 3}, the winning probability of stochastically
mixed games is

PR(win) =
r2 + 2r3 − 2r2r3 − r23 + 3r2r23
3− r2 − 2r3 + 2r2r3 + r23

. (3)

The above is analogous to Eq. (2) under the transformation
pi → ri. This analytical result indeed reflects a winning
outcome (Figure 3), so long as ε do not exceed a threshold.
Instructors may wish to discuss such an analysis for advanced
classes; a further challenge can be to determine the threshold
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of ε beyond which paradoxical outcomes are no longer pos-
sible. Specific solutions have already been found [32], with
the bounding condition being 320ε3 − 16ε2 + 299ε − 3 < 0
for M = 3 and γ = 1/2.

B. HISTORY-DEPENDENT PARRONDO’S PARADOX
The history-dependent Parrondo’s paradox [60] replaces the
former memory-less Game B with one of behaviour depen-
dent on the past participatory outcomes of the player—the
game history of the player hence becomes relevant. The game
rules are illustrated in Figure 5. Dependence upon the previ-
ous two rounds is considered; there are therefore four possible
outcome combinations, namely {L,L}, {L,W}, {W,L} and
{W,W}, where W and L denote a win and a loss respectively.

FIGURE 5. Game structure of the history-dependent variant. Branching in
Game B at round u is dependent on the past two game outcomes of the
player, at rounds u− 2 and u− 1. W and L denote a winning and losing
outcome respectively. The past outcomes determine which coin is used to
play Game B, all four of which may in general have different winning
probabilities.

The simulation suite provides full flexibility in the speci-
fication of parameters and game sequences (Figure 6a), in an
identical fashion to the capital-dependent variant. There are
four possible initial conditions for the game, each selectable
by the user; an option to average results across all ini-
tial conditions is also offered. Consistent with the original
formulation [60], defaults of p = 1/2 − ε, p1 = 9/10 − ε,
p2 = p3 = 1/4 − ε, p4 = 7/10 − ε, and ε = 0.003 are
adopted. The suite includes a worksheet preprogrammed to
run single-trial simulations of n = 200, freely extendable by
the user (Figure 6b). A second worksheet executes averaged
Monte Carlo simulation sets up to N = 20 with native
Excel formulae, or to arbitrarily large n and N with VBA
implementation (Figure 6c and Figure 6d).

Games A and B are both individually losing, but determin-
istic and stochastic mixed games can be winning. A similar
agitation-ratcheting mechanism explains the occurrence of
this history-dependent paradox variant. In particular, there is
a high probability p1 > 1/2 of winning from the {L,L} to
{L,W} state. There is then a high probability 1−p2 > 1/2 to
lose into {W,L}, followed by a second loss with probability
1− p3 > 1/2 back to {L,L}. These three states form a local-
ization cycle, in a similar fashion as the capital-dependent
variant. The player loses twice whilst winning only once in
each cycle, hence suggesting a losing tendency. The introduc-
tion of Game A, however, induces perturbations that enable
the {W,W} state to be accessed more frequently. There is
then a high chance p4 > 1/2 of winning from {W,W},
effectively creating a second competing localization cycle

that leads to sustained capital gain. Instructors may find a
transition diagram (Figure 7) helpful for lecture delivery.

Likewise, a rigorous analysis can be performed via
discrete-time Markov chains, detailed in Section B of the
Supplementary Information. With ri = γ p + (1 − γ )pi,
the winning probabilities of GameB and stochastically mixed
games can be derived as

PB(win) =
p1(1+ p2 − p4)

p1p2 + (1+ 2p1 − p3)(1− p4)
=

9
9+ 10ε

−
1
2
,

PR(win) =
r1(1+ r2 − r4)

r1r2 + (1+ 2r1 − r3)(1− r4)
=

217− 310ε
429+ 220ε

.

(4)

Game B and stochastically mixed games hence are losing
and winning respectively, as long as ε is small; with con-
ditions PB(win) < 1/2 and PR(win) > 1/2, paradoxical
outcomes are achievable for 0 < ε < 1/168. Instructors
may extend similar analyses to deterministic game sequences,
or for general γ . This history-dependent paradox variant is
applicable in population genetics, evolution, and economics,
in which the time dynamics are oftentimes coupled to some
combination of past parameter values [60].

C. COOPERATIVE PARRONDO’S PARADOX
In addition to the capital-dependent and history-dependent
paradox variants, the Excel simulation suite also supports the
cooperative Parrondo’s paradox [61]. Details on this variant
and the related capabilities of the simulation suite can be
found in Section A of the Supplementary Information. The
multi-agent, graph-theoretic nature of this variant makes it
suitable as a higher-order thinking question for students, and
had also enabled close connections with the analysis and
control of networked systems, encompassing spatio-temporal
noise suppression and topological effects on information
propagation [65]–[70].

III. CASE-STUDY
To investigate the effectiveness of paradox-motivated simu-
lation class activities, a Parrondo’s paradox simulation-based
assignmentwas introduced to a pilot class after theirmid-term
examinations. In this section, we describe the teaching strate-
gies and observed learning outcomes for the sample class
as a case study, alongside facilitation recommendations for
instructors.

In the assignment given to the pilot class, three progressive
milestones were stipulated in a patchwork assessment model.
Students had to submit an initial group report reviewing the
paradox in their own words after the background reading
(first milestone), after which feedback was given by the
instructor. They then implemented simulations of their own
design to investigate the paradoxical effects (second mile-
stone). Queries pertaining to the simulations were addressed
as a class. At the end of the course, students were required
to submit their simulation work and a final report that docu-
ments their analysis and learning process (third milestone).
They were also required to write individual reflections on
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FIGURE 6. (a) A screenshot of the parameter input interface for the history-dependent paradox variant, where the user may freely modify the
game parameters; (b) single-trial simulation results obtained from the spreadsheet simulation suite; (c) multi-trial averaged simulation results
with N = 500000 and periodic ABAB deterministic game sequence; and (d) multi-trial averaged simulation results with N = 500000 and random
game sequence. Simulations in (c) and (d) were averaged across all four possible initial conditions, using the built-in option within the simulation
suite.

FIGURE 7. State transition flow charts for the history-dependent paradox
variant, (a) Game A and (b) Game B.

their learning journey. The simulation task was intention-
ally designed as a group project, to encourage collaboration
between students with different backgrounds and expertise.

While there were no restrictions on the platform for the
simulations, the adoption ofMicrosoft Excelwas encouraged,
as it is readily accessible by students of all backgrounds.
In the present study, a majority of students expressed skep-
ticism on the feasibility of implementing numerical simula-
tions in Excel, and a preliminary spreadsheet program was
therefore demonstrated by the instructor to serve as a starting
point. Guidance on the programming specifics of the simu-
lation were intentionally relaxed, because the class had prior
programming experience on the C# language. Nonetheless,
comprehensive initial guidance, possibly with the dissemi-
nation of reference works, is recommended when teaching
classes of limited programming exposure.

The provided simulation suite is sufficiently comprehen-
sive to facilitate the conduct of lectures and assignments span-
ning all three seminal Parrondo’s paradox variants; indeed,

all numerical simulation results presented in this paper was
obtained using the in-house suite. This suite has been made
publicly available, and is written in Excel with VBA macros
for extended functionality, therefore catering both to students
of low and high programming exposure. Instructors may
adopt the suite as-is for their classes, or modify the framework
for customized teaching materials; alternatively students may
be tasked to perform their own simulations and investigations,
as was done in the present study. The presented flowcharts
(Figures 1 and 5) may be useful in helping students under-
stand the game implementations, and the relevant pseudocode
as provided in the Supplementary Information may also be
discussed for a finer-grained analysis. The key is to maintain
an active learning environment by giving students space for
independent hands-on exploration.

It was observed in this study that students tend to carry out
single-trial simulations using a large number of games rounds
(n ≥ 100) in an attempt to obtain satisfactory results; but
neglect the need to repeat the simulations over a large number
of trials. There is a crucial need to distinguish between
the number of game rounds n and the number of trials N .
This is an excellent opportunity to discuss the law of large
numbers, a fundamental topic in introductory probability and
statistics courses, for students can interactively observe the
concept manifest when running their simulations. The key
learning point is that the averaged repetition of a stochas-
tic process provides an increasing good indication of its
expected behaviour as the number of trials increases. When
the number of trials is too low, highly variable results will
be observed. Heavily utilized in the stochastic simulations
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TABLE 1. Survey questions and results as evaluated by the pilot cohort. The voluntary anonymous survey implements a 5-point Likert scale rating across
6 questions, where a score of 5 represents a stance of ‘‘strongly agree’’, and a score of 1 represents ‘‘strongly disagree’’. Response rate was 32/37 ≈ 86.5%.

is pseudo-random number generation—instructors may
optionally discuss their mechanisms and statistical
limitations [71]–[73].

The scaffolding for the pilot class in our study was con-
ducted over 3 sessions of 30 minutes each, covering much
of the theoretical content presented in Section II, with the
Markov-chain analyses briefly mentioned for independent
reading by interested students. The conceptual resolution
of the paradox was expected to appeal to the curiosity of
students; and the associated opportunities to review key sta-
tistical enabled the assignment to serve as an interactive
end-of-course review. A voluntary anonymous evaluation
survey implementing a five-point Likert scale rating and a
free-response section was carried out at the end of the project
to evaluate the students’ perceptions of these activities.

As a pilot programme, we have implemented the proposed
paradoxical simulation in a first-year mathematics course
for undergraduates enrolled in a Game Design degree in
Spring 2017. A study was conducted to assess students’
perception of the effectiveness of the activities, as well as their
overall reception response. The cohort comprised students of
diverse mathematical aptitude, therefore making this a good
preliminary study on the utilization of paradox-motivated
activities in probability and statistics courses. The survey
results of the students are presented in Table 1.

IV. DISCUSSION
The evaluation survey results (Table 1) indicate that the
student cohort is in general supportive of the inclusion of
the Parrondo’s paradox simulation assignment as part of
coursework. Student responses to all six survey questions are
positive, with average scores and 95% confidence intervals
approximately > 3.0 throughout. In particular, survey ques-
tion Q4 stands out with a Likert rating of 3.78, alongside
Q2 with a rating of 3.50; this reflects that students had per-
ceived the hands-on simulation-based activity to be beneficial
to their understanding of statistical concepts. The assignment
also appears to have stimulated interest in the subject of
probability and statistics (Likert rating 3.38). The narrow
confidence intervals indicate that the the student population
perceives this activity relatively consistently, despite their
diverse backgrounds and experiences. Based on the limited
student number, our analysis also reveals that the survey
results are internally consistent.

Unique to hands-on activities of this type is the opportunity
for students to apply their knowledge in problems closely
resembling those of the real-world. Because restrictions on
the allowed tools and resources were largely removed, stu-
dents are able to leverage their full potential in their work. The
survey results affirms these positive pedagogical traits, as stu-
dent’s perceptions reflect that they are now more confident
in applying their knowledge to real-world problems (Likert
rating 3.47), and that they assess themselves to have gained
proficiency in practical simulation skills (Likert rating 3.47).
In direct support of the ratings, the free-response section of
the survey reflects that the paradox simulation activity was
well-received. As a way of illustration, we quote from a few
students:
• ‘‘Most importantly. . . I have learnt to better apply theo-
ries to real-life problems’’;

• ‘‘. . . it surprises me what Excel can do. The functionali-
ties possible are unexpected’’;

• ‘‘. . . the most striking take-away from this project
is. . . this contradicting theory that makes sense upon
looking deeper into its reasoning and mathematics’’;

• ‘‘. . .we often fail to see the applications of the concepts
we are taught, especially for mathematics. I felt that this
assignment has shed light on the underlying concepts,
and has allowed us to apply our knowledge outside of
the typical context of practice questions’’;

• ‘‘. . . has provided me with a different take on mathemat-
ics, which often a times is an individual and mundane
activity, by providing a group-work setting. It has guided
me to understand the module better’’;

• ‘‘As mentioned in class, evolution may be a case of
Parrondo’s paradox. This opens up the possibility for
discussion as to what other matters in nature that can be
explained by such concepts. . . ’’;

• ‘‘I have learnt that mathematics is much closer to us in
our daily lives than we have thought’’.

A student had also wrote that ‘‘the Parrondo’s paradox
has changed our ideology of mathematics, from a theoret-
ical textbook-only perspective into practical science’’—the
appreciation of the practical application of statistics is pre-
cisely the goal of the proposed simulation-based activities.

More importantly, the study had also revealed numer-
ous pedagogical considerations that have to be intri-
cately balanced, thus paving a route for improved future
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implementations. Firstly, the assessment mode of the course
ought to be fundamentally compatible with open-ended
project work. The pilot class in our study had raised concerns
that their performance for the end-of-course written exam-
inations would be affected by the time and effort required
for the simulation-based activities. While mathematical edu-
cation ought to be sufficiently holistic and applicable in a
wide range of real-world problems, and exposure to practical
problem-solving and hands-on statistical analyses of the type
proposed will prepare students better in this respect than a
traditional pen-and-paper approach, the time constraints that
students inexorably face have to be kept in mind; instructors
are therefore advised to adapt course assessment policies to
maintain a balance of weightage between traditional exam-
inations and such types of project work. In our pilot pro-
gramme, the implemented simulation assignment was kept at
10% of the final class grade; but this may not be truly reflec-
tive of the effort required. An alternative to modifying assess-
ment components is to collaborate with other mathematical or
computing courses to implement a separate simulation-based
‘practical’ course, though the scope of the activities will have
to be vastly expanded.

It was also observed that the learning experience of stu-
dents can be significantly impaired if constructive guidance
is not provided at times of extended difficulties, especially if
the cohort is inexperienced in programming; indeed, the free-
response results suggest that students are hugely appreciative
of timely interventions by instructors to clear misconceptions
and technical difficulties. While the sample size in this pilot
study is limited, planned future scaling-up of the proposed
pedagogical approach will yield more comprehensive statis-
tical assessments.

V. CONCLUSION
By integrating simulation-based activities with mathemati-
cal paradoxes in courses covering probability and statistics,
the interest of students in exploring and internalizing concepts
can be stimulated. It is our hope that instructors can make use
of our exposition in introducing paradox-motivated, hands-on
activities in their courses, thereby reinforcing taught concepts
and enabling students to appreciate the real-world applicabil-
ity of the subject. To this end, we have demonstrated in close
detail how the necessary theoretical and technical scaffolding
can be carried out in the classroom, focusing on the educa-
tional context of Parrondo’s paradox as a way of example;
we also provide, in addition, an original simulation suite
written in Microsoft Excel with VBA implementations for
extended functionality, capable of executing simulations for
all three seminal paradox variants. The plethora of applica-
tions of the Parrondo’s paradox, including quantum physics,
information thermodynamics, eco-evolutionary modelling,
computational optimization, and network analysis, enables
it to be an interesting topic for students across engineering
and non-engineering disciplines; furthermore, a benefit of
a simulation-based pedagogical approach is the possibility
of remote laboratories where students may enjoy effective

learning at home or at venues of convenience, as had been
proposed in several other educational contexts [74]–[76].
The Excel simulation suite is available on Open Science
Framework at: https://goo.gl/5fXpgS.
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