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ABSTRACT Detection of high-speed maneuvering targets has attracted a great deal of attention recently.
There are two main problems to be solved: improving detection ability under the condition of complicated
range migration and Doppler frequency migration effects, and reducing computational load. Different from
most existing fast algorithms which are at the cost of detection ability, this paper devises a computationally
attractive method with excellent detection performance. First, the keystone transform is carried out to
remove linear range migration. Thereafter, a fast discrete chirp-Fourier transform (FDCFT) based on radix-
4 decomposition is proposed to compensate the undersampled linear Doppler frequency migration and
quadratic Doppler frequency migration. Because of exploiting inherent symmetry and periodicity as in
the fast Fourier transform (FFT), the FDCFT can largely reduce the computational complexity without
performance loss. The novelty of the proposed algorithm lies in combining linear transform with the concept
of decimation-in-time FFT, which avoids the demanding multi-dimensional search and severe performance
loss via introducing nonlinear transforms. It is shown that the proposedmethod has an approximately optimal
detection performance but with relatively low computational cost.

INDEX TERMS Fast discrete chirp-Fourier transform, Doppler frequency migration, high-speed maneuver-
ing target, coherent integration.

I. INTRODUCTION
With the development of stealth and supersonic technology,
modern aerial targets have presented the characteristics of
high speed, strong maneuverability, long range, and low radar
cross section (RCS). The traditional moving target detec-
tion algorithm has no enough capacity to detect these high
speed maneuvering targets, and new detection algorithms
are receiving significant research efforts [1]–[3]. The long-
time integration technique is considered effective to improve
the ultimate target detection performance [4], [5]. Generally,
the long-time integration can be divided into coherent integra-
tion and incoherent integration [6]. Because of compensating
phase fluctuation among different pulses, the coherent inte-
gration method could obtain better integration performance
than that of the incoherent integration one. However, the high
speed will result in range migration (RM) and velocity ambi-
guity for low pulse repetition frequency radar. Moreover,

the strong maneuverability will lead to complex Doppler
frequency migration (DFM) during the coherent integration
time [7]–[10]. The detection performance would suffer from
great loss if the RM and DFM cannot be compensated in a
proper way.

Typical detection algorithms, such as Keystone trans-
form (KT) [11]–[13], Radon Fourier transform (RFT) [4],
[14], [15], and frequency-domain deramp-keystone transform
(FDDKT) [16] have been proposed to compensate linear
RM and realize coherent integration for high-speed target.
However, they suffer from integration performance loss with-
out considering the effects of DFM induced by the target’s
complex motions. The KT-Dechirp method [17], scaling
processing and fractional Fourier transform (SPFRFT) [18],
improved axis rotation (IAR) based methods [19], [20],
RFT-KT [21], Radon-FRFT (RFRFT) [22] and Radon-Lv’s
distribution (RLVD) [23] have been presented to eliminate
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RM and DFM, and can achieve coherent accumulation
for maneuvering targets in the uniform acceleration scene.
Recently, Sun et al. [24] have presented a fast detection
method based on KT and matched filtering process (MFP)
to obtain an excellent integration and detection performance.
Nevertheless, these methods only consider the compensation
of DFM induced by the target’s radial acceleration. As for the
target with strong maneuverability, the radial jerk cannot be
ignored, especially when the coherent integration time is long
enough to bring about serious DFM [5], [25].

In order to detect the maneuvering target with a jerk,
Chen et al. [26] have proposed the Radon-linear canonical
ambiguity function (RLCAF) and Radon-fractional ambi-
guity function (RFRAF) [27], which combines dimension-
ality reduction and motion parameter search to realize the
simultaneous compensation of complex RM and DFM. How-
ever, these methods have weak detection ability in low
signal-to-noise ratio (SNR), and huge computational load
due to multi-dimensional parameter search. In order to fur-
ther improve detection ability, improved axis rotation and
discrete chirp Fourier transform (DCFT) (IAR-DCFT) [28]
is utilized to correct the RM via IAR and compensate the
complex DFM effects by DCFT. However, the search step
length of axis rotation angle changes nonlinearly with that
of velocity, which may result in serious parameter estima-
tion errors and limit its applicability in high speed scene.
In [29], the generalized Radon Fourier transform (GRFT)
is presented to realize long time coherent integration for
the arbitrary parameterized motion model under low SNR
condition. In [30], we have proposed a method based on
Radon-advanced discrete chirp Fourier transform (RADCFT)
to detect low-observable maneuvering target. Nevertheless,
these two methods are both computationally prohibitive
because of 4-D search of range, velocity, acceleration, and
jerk. To reduce the computational load, fast methods based
on time-frequency analysis algorithms are proposed, such
as KT and cubic phase function (KT-CPF) [31], second-
order KT andmodified integrated cubic phase function (SKT-
MICPF) [32], KT and coherently integrated cubic phase
function (KT-CICPF) [33], and SKT and generalized Hough-
HAF transform (SKT-GHHAF) [10]. Since the CPF, Hough,
and HAF are all nonlinear transforms, these fast methods
suffer from severe performance loss compared with linear
transforms, and thus may be limited in the extremely low
SNR condition. There are also fast detection methods based
on reduced-order principle, such as adjacent cross corre-
lation function (ACCF) [25] and time reversing transform
(TRT) [34], [35]. These could remove complex RM and
DFM by correlation function of echo signal, and achieve
coherent integration with low computational load. However,
high computational efficiency of these methods is at the cost
of detection ability. Moreover, their detection performance is
poor at low SNR level.

It is interesting and important to develop high speed
maneuvering target detection algorithms with low computa-
tional complexity and high detection performance. Compared

with the nonlinear transform, the linear transform will not
bring about coherent integration performance loss and can
be applied in low SNR environment as well [5]. Therefore,
as the typical linear transform, the DCFT and its modi-
fied forms have been employed for target detection [28],
[30]. In addition, the detector based on DCFT is proved to
be a likelihood ratio test (LRT) detector which is optimal
for rectilinearly moving targets in the presence of Gaussian
noise [15], [28]. However, these methods are computationally
prohibitive for highly maneuvering motion model since the
DCFT involves amulti-dimensional parameter searching pro-
cedure. It is well known that fast Fourier transform (FFT) can
largely reduce the computational complexity of the discrete
Fourier transform (DFT). In essence, the high efficiency of
FFT lies in utilizing the inherent symmetry and periodicity
of the frequency terms. Based on the concept of decimation-
in-time FFT, the fast quadratic phase transform (FQPT) has
been proposed to reduce the computational complexity of the
QPT [36], [37].

A novel high speedmaneuvering target detection algorithm
based on fast discrete chirp-Fourier transform (FDCFT) is
proposed in this paper. First, the problems faced with ground
radar detection are analyzed in detail based on the third-
order motion model with jerk. It is shown the linear RM
(LRM), undersampled linear DFM (ULDFM) and quadratic
DFM (QDFM) must be compensated in order to improve the
detection performance. Meanwhile, the velocity ambiguity
phenomenon should also be taken into consideration. Second,
to solve the migration problems in a fast manner, the KT
is first applied to correct RM in range frequency and slow
time domain rather than directly perform 4-D search in range
time and slow time domain [26], [30]. Noting that the echo
signal can be regarded as a cubic phase signal with respect
to the slow time at a certain range cell, the FDCFT is pro-
posed to compensate ULDFM and QDFM, and realize the
coherent integration for high speedmaneuvering target. Since
the ADCFT has similar structures with the DFT, we exploit
the inherent symmetry and periodicity of searching chirp
rate and derivative of chirp rate to present the FDCFT based
on the concept of decimation-in-time FFT. Considering that
radix-4 decomposition costs fewer complex multiplications
than those of radix-2 decomposition [38], we adopt radix-
4 decomposition to implement the FDCFT. It is worth not-
ing that the FDCFT does not damage the properties of the
ADCFT, and can reduce the computational load. Thereafter,
the velocity ambiguity phenomenon is analyzed and well
dealt with through constructing corresponding compensation
functions. Furthermore, superiority of the proposed method
in terms of coherent integration performance, computational
complexity and multi-target detection performance, are ana-
lyzed in detail. As for higher-order motion model, we analyze
the applicability of the proposed method and extend the
FDCFT to arbitrary higher-order DFM. Theoretical analy-
sis indicates that the computational savings of the proposed
fast method is more significant as the motion model order
increases. Compared with the fast detection methods, such
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FIGURE 1. Motion model of high-speed maneuvering target.

as KT-CPF [31] and TRT-SKT-LVD [34], the proposed algo-
rithm can effectively improve the detection performance at
very low SNR.Moreover, the proposed method could achieve
a close detection performance but effectively reduce compu-
tational cost when compared with GRFT [29].

To easily remember the expressions in this paper, the main
abbreviations and symbols are listed as follows:
t̂ is the fast time.
tm is the slow time.
T is the observation time.
ta is the new slow-time variable after KT.
fc is the carrier frequency.
λ is the wavelength.
0amb is the velocity ambiguity degree.
PRF is the pulse repetition frequency.
KT denotes the keystone transform.
RM denotes the range migration.
DFM denotes the Doppler frequency migration.
LRM, SRM, and TRM denote linear, second-order, and

third-order range migration, respectively.
LDFM, and QDFM denote the linear and quadratic

Doppler frequency migration, respectively.
ULDFM and UQDFM denote the undersampled linear and

quadratic Doppler frequency migration, respectively.
DCFT denotes the discrete chirp-Fourier transform.
ADCFT denotes the advanced discrete chirp-Fourier trans-

form.
FDCFT denotes the fast discrete chirp-Fourier transform.

II. SIGNAL MODEL AND PROBLEM FORMULATION
A. SIGNAL MODEL
Assume that the linear frequency modulated (LFM) signal is
transmitted with narrowband pulse Doppler radar, then the
transmitted pulse trains can be expressed as

s(t̂, tm) = rect(t̂/Tp) exp
(
jπγ t̂2

)
exp

[
j2π fc

(
t̂ + tm

)]
(1)

where rect(u) =

{
1, |u| ≤ 1

2
0, |u| > 1

2

, Tp is the pulse width, fc is

the carrier frequency, γ is the chirp rate of LFM signal, t̂ is
the fast time, tm ∈ [−T/2,T/2] denotes the slow time, and
T is the observation time.
The motion model of high-speed maneuvering target is

shown as Fig. 1, where a constant jerk is taken into consid-
eration due to the target’s strong maneuverability. The x-axis
denotes the radar line of sight (RLOS). θ is the yaw angle.

R0, Ve, Ac and Aj denote the initial slant range, velocity,
acceleration, and jerk, respectively. Thus, the instantaneous
slant range of the target with respect to the slow time is
expressed as

R(tm) = R0 − Ve cos(θ)tm −
1
2
Ac cos(θ)t2m −

1
6
Aj cos(θ)t3m

(2)

Because of the relatively short observation time, θ can be
assumed constant [2]. Then, define v = Ve cos(θ ), a1 =
Ac cos(θ ), and a2 = Aj cos(θ), where v, a1, and a2 are,
respectively, the radial components of the target’s initial
velocity, acceleration, and jerk. Therefore, the instantaneous
slant range in (2) can be rewritten as

R(tm) = R0 − vtm −
1
2
a1t2m −

1
6
a2t3m (3)

The received signal of a fast moving target after down
conversion can be stated as [32]

sr (t̂, tm) = σ0rect
[
t̂ − R (tm) /c

Tp

]
exp

[
−j4π

R (tm)
λ

]
× exp

{
jπγ

[
t̂ −

2R (tm)
c

]2}
(4)

where σ0 is the target reflectivity and adopted as Swerling V
model, λ = c/fc is the wavelength, and c is the light speed.

Performing pulse compression (PC) on the received signal
sr (t̂, tm), we obtain the compressed signal as

sp(t̂, tm)=σ1sinc
{
B
[
t̂ −

2R (tm)
c

]}
×exp

[
−j4π

R (tm)
λ

]
(5)

where sinc(x) = sin(πx)/(πx), and B is the bandwidth.

B. PROBLEM FORMULATION
From (5), we see both the compressed signal envelope and
phase terms change with the slow time, which will induce
complex RM and DFM for high-speed maneuvering target
detection. In the following, the generatingmechanisms of RM
and DFM are analyzed in detail to formulate the problems for
ground-based radar detection.

1) GENERATING MECHANISMS OF RM
Fig. 2 depicts the RM forms according to (5). The RM will
occur when the envelope change value1R(tm) exceeds half a
range resolution during the observation time (shown as Fig. 2
(a)), that is,

1R(tm) = |max [R (tm)]−min [R (tm)]| > ρr/2 (6)

where ρr = c/(2B) is the range resolution,max(x) andmin(x)
denote the maximum and minimum values of x, respectively.
Considering the slant range form in (3), the RM may

present three forms in theory including linear RM (LRM),
second-order RM (SRM) and third-order RM (TRM), which
are illustrated in Fig. 2 (a), (b), and (c), respectively. From (6),
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FIGURE 2. RM. (a) Definition of RM. (b) LRM. (c) SRM (d) TRM.

FIGURE 3. DFM. (a) LDFM. (b) QDFM. (c) ULDFM (d) UQDFM.

LRM, SRM, and TRM corresponds to the range change
value induced by velocity, acceleration, and jerk, respectively,
which should satisfy

1RLRM = |vT | > ρr/2
1RSRM =

∣∣a1T 2/8
∣∣ > ρr/2

1RTRM =
∣∣a2T 3/24

∣∣ > ρr/2

(7)

where 1RLRM, 1RSRM, and 1RTRM denote the envelope
change value of LRM, SRM and TRM, respectively.

2) GENERATING MECHANISMS OF DFM
The Doppler frequency fD can be expressed as

fD =
2
λ

dR(tm)
dtm

(8)

When the change in Doppler frequency is over half of
the Doppler resolution during the observation, the DFM will
occur, that is,

1fD = |max (fD)−min (fD)| > ρd/2 (9)

where ρd = 1/T is the Doppler resolution.
Theoretically, there may exist two forms of DFM with

respect to (5), namely linear DFM (LDFM), and QDFM [39],
which are respectively depicted in Fig. 3 (a) and (b). LDFM
and QDFM are resulted from the variation of acceleration and
jerk, respectively, which should satisfy

1fLDFM =
∣∣∣ 4a1Tλ ∣∣∣ > ρd

1fSDFM =
∣∣∣ a2T 2

2λ

∣∣∣ > ρd

(10)

where 1fLDFM and 1fSDFM denote the change value of
LDFM and QDFM, respectively.

It should be noted that undersampled LDFM (ULDFM)
and QDFM (UQDFM) will occur when the sampling
frequency in slow domain is less than twofold Doppler fre-
quency change, which are shown in Fig. 3 (c) and (d). Not-
ing that the sampling frequency in slow domain is equal to
pulse repetition frequency (PRF), the occurred conditions of
ULDFM and UQDFM could be stated as{

1fLDFM > PRF/2
1fSDFM > PRF/2

(11)

In order to realize the long-range detection with ground-
based radar, three typical characteristics should be noted:
1) the observation time should be prolonged to improve
integration gain, which extends as long as second level [22].
2) high range resolution is not required, and hundreds of
meters are enough [31]. 3) the PRF is usually low to guar-
antee no range ambiguity, which is usually selected as a
few hundred Hz [2], [23]. Based on the above charac-
teristics, the practical RM and DFM with ground-based
radar are analyzed in detail, which are shown in Fig. 4.
Since the velocity of high-speed target is usually as high
as kilometers per second, especially for hypersonic aircrafts
in near space, the LRM must be considered according to
constrained velocity as shown in Fig. 4 (a). Considering the
strong maneuverability is around ten times the force of grav-
ity, the SRM and TRM are slight, and could be ignored
as analyzed in Fig. 4 (b) and (c). Similarly, the LDFM and
QDFM should be taken into consideration because the needed
acceleration and jerk shown in Fig. 4 (d) and (e) are within
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FIGURE 4. RM and DFM analysis with the ground-based detection radar. (a) Parameters constraint for LRM. (b) Parameters constraint for SRM.
(c) Parameters constraint for TRM. (d) Parameters constraint for LDFM. (e) Parameters constraint for QDFM. (f) Parameters constraint of ULDFM
when T=1 s. (g) Parameters constraint for UQDFM when T=1 s.

the scope of strong maneuverability. Moreover, Fig. 4 (f) and
(g) give the constraint parameters of ULDFM and UQDFM,
respectively, from which we conclude that the ULDFM
should be considered, and UQDFM could be ignored in most
cases.

III. RADAR HIGH-SPEED MANEUVERING TARGET
DETECTION ALGORITHM
A. LRM COMPENSATION VIA KT
First, perform FFT on (5) along fast time axis, and change
the compressed signal into range frequency-slow time
domain,

sp(f , tm) = σ2rect
(
f
B

)
exp

[
−j

4π (f + fc)
c

(R0 − vtm)
]

× exp
[
j
4π (f + fc)

c

(
1
2
a1t2m +

1
6
a2t3m

)]
(12)

In (12), the essence of RM effect lies in the cou-
ple term between slow time and range frequency. Since
KT could effectively decouple the first-order term regard-
less of the target’s velocity in the low SNR condi-
tion [5], [12], we first apply KT to remove the LRM
effect. The KT is a resampling process and expressed
as

tm =
fc

f + fc
ta (13)

where ta denotes the new slow-time variable.
Substituting (13) into (12) yields

sk (f , ta) = σ2rect
(
f
B

)
exp

[
−j

4π
c
(f + fc)R0

]

× exp
(
j
4π
λ
vta

)
exp

[
j

2πa1t2a
λ (1+ f /fc)

]
× exp

[
j

2πa2t3a
3λ (1+ f /fc)2

]
(14)

With respect to a narrowband signal, f � fc is satisfied.
Then performing the Taylor series expansion on (14), and we
can obtain

sk (f , ta) ≈ σ2rect
(
f
B

)
exp

[
−j

4π
c
(f + fc)R0

]
× exp

(
j
4π
λ
vta

)
exp

[
j
2πa1t2a
λ

(
1−

f
fc

)]
× exp

[
j
2πa2t3a
3λ

(
1−

2f
fc

)]
(15)

After performing the range inverse Fourier transform (IFT)
on (15), one has

sk (t̂, ta)

= σ3sinc
[
B
(
t̂ −

2R0
c
−
a1t2a
c
−

2a2t3a
3c

)]
× exp

[
−j

4π
λ

(
R0 − vta −

1
2
a1t2a −

1
6
a2t3a

)]
(16)

It is noted from (16) that the LRM is effectively compen-
sated by KT whereas the SRM and TRM still exist. Mean-
while, the second-order and third-order slow time forms in the
exponential term of (16) may result in the LDFM and QDFM.
Based on the analysis in Section II-B, the residual SRM and
TRM could be ignored while the ULDFM and QDFM must
be considered for the long-range detection with ground-based
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radar. Then (16) could be rewritten as

sk (t̂, ta)

≈ σ3sinc
[
B
(
t̂ −

2R0
c

)]
× exp

[
−j

4π
λ

(
R0 − vta −

1
2
a1t2a −

1
6
a2t3a

)]
(17)

With the fast time sampling interval Ts and slow time
sampling interval Ta, the discrete form of (17) is stated as

sk (n,m)=σ3sinc
[
B
(
nTs−

2R0
c

)]
×exp

(
−j

4π
λ
R0

)
s(m)

(18)

where

s(m) = exp
{
j2π

[
fdmTa +

1
2
b1 (mTa)2 +

1
6
b2 (mTa)3

]}
(19)

fd , b1, and b2 respectively denote center frequency, chirp rate,
and derivative of chirp rate, which are determined by

fd = 2v/λ
b1 = 2a1/λ
b2 = 2a2/λ

(20)

B. ULDFM AND QDFM COMPENSATION BASED ON FDCFT
1) INTRODUCTION OF ADCFT
In fact, the ULDFM and QDFM effect can be regarded as
a cubic phase signal with respect to the slow time. In [10],
[32], and [40], the CPF, MICPF, and GHHAF are proposed to
compensate the complex DFM effect. The main principle of
these methods is to utilize the time delay to obtain a reduced-
order signal model, and further realize the DFM compensa-
tion based on fast parameter estimation of the cubic signal.
However, these methods involve nonlinear transforms, which
have a high requirement for input SNR, and lead to great
performance loss. In order to improve the ultimate detection
performance in low SNR circumstance, we have proposed a
compensation method based on ADCFT [30], which can be
expressed as

SADCFT(k, l, p) =
1
√
M

M−1∑
m=0

s(m)W
km+ lM

2f 2a
m2
+

pM
6f 3a

m3

m (21)

where fa = 1/Ta is sample frequency of s(m), k , l, and p
denote respectively the searching digital center frequency,
chirp rate, derivative of chirp rate, andW k

M = e−j2πk/M .
By means of ADCFT, the ULDFM and QDFM can be

simultaneously compensated when the searching parameters
match with the corresponding parameters of the cubic phase
signal. Because of the linear transform,ADCFT does not have
the input SNR threshold and bring about performance loss.
Meanwhile, compared with the DCFT [41], it overcomes the
limit of the prime sampling number and suppresses the ‘picket
fence’ effect.

However, it should be noted that the ADCFT is computa-
tionally prohibitive due to 3-D search procedure. The required
complex multiplications (CM) of the direct searching compu-
tation of the ADCFT are

Ndirect = M2NlNp (22)

where Nl and Np denote the numbers of searching chirp rate
and derivative of chirp rate, respectively.

Considering the symmetry and periodicity of the searching
center frequency term in (21), the ADCFT is implemented as

SADCFT(k, l, p) =
1
√
M

FFTm

[
s (m)W

lM
2f 2a

m2
+

pM
6f 3a

m3

m

]
(23)

where FFTm denotes FFT along m.
Using the FFT, the CM of ADCFT are reduced to

NFFT =
1
2
MNlNp logM2 (24)

However, the symmetry and periodicity of the searching
chirp rate and derivative of chirp rate are not exploited in (21)
and (23). It has been proved that the redundancy along chirp
rate axis could be utilized to decimate the signal according to
the decimation-in-time FFT concept [36], [37], [42]. Mean-
while, the radix-2 and radix-4 decomposition are most com-
monly used algorithms with respect to FFT computation, and
radix-4 decomposition costs fewer complex multiplications
than those of radix-2 decomposition [38]. Motivated by the
radix-4 based FFT, we propose the FDCFT based on radix-
4 decomposition to further reduce the computational load of
ADCFT in the following section.

2) THE PRINCIPLE OF FDCFT
Assume M = 4q, where q is an integer. For presentation,
define a demodulated sequence

x(l,p)q (m) = s(m)W
lM
2f 2a

m2
+

pM
6f 3a

m3

m

= s(m)e−j2π
[
(l/Nl )m2

+(p/Np)m3]
(25)

where Nl = 2f 2a , Np = 6f 3a , l = 0, 1, ...,Nl , and p =
0, 1, ...,Np. For easy analysis, the intervals of searching chirp
rate and derivative of chirp rate are set to 1 here. Meanwhile,
it should be noted that Np > Nl > M can be generally
satisfied. Then, the ADCFT of s(m) can be expressed as

SADCFT(k, l, p) =
1
√
M

DFTm
[
x(l,p)q (m)

]
(26)

SinceM = 4q, the computation of ADCFT can be decom-
posed into q stages based on radix-4 decomposition. Without
considering the constant coefficient 1/

√
M , the computation

of demodulated sequence at the r th stage is described as

g(l,p)r (k) = DFTu
[
x(l,p)q (4ru+ s)

]
=

M/4r−1∑
u=0

x(l,p)q (4ru+ s)W uk
M/4r (27)
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where u = 0, 1, ...,M/4r , s = 0, 1, ..., 4r − 1, r =
0, 1, ..., q− 1.

Using the symmetry and periodicity of searching chirp rate
and derivative of chirp rate in the ADCFT, we obtain (28) (at
the bottom of this page), where al, ap = 0, 1, 2, 3, ψ(s) =
2als+ 3aps2, v is a nonnegative integer, and

g(l,p)r+1,i(k)=
M/4r+1−1∑

u=0

x(l,p)q [4r+1u+ (i− 1)4r + s]W uk
M/4r+1 ,

i = 1, 2, 3, 4. (29)

It is observed from (28) that a long demodulated sequence
with M/4r points at the r th stage can be decomposed
into four short sequences with M/4(r+1) points at the
r + 1th stage. Meanwhile, the computation of g(l,p)r (k) for
l = l0 + alNl/4(r+1) and p = p0 + apNp/4(r+1) can
be implemented by g(l,p)r (k) for l = l0 and p = p0.
Therefore, based on radix-4 decomposition, FDCFT is real-
ized via firstly computing g(l,p)r (k) for small values of l
and p at a high stage and thereafter computing g(l,p)r (k)
for larger values of l and p at a lower stage according
to (28).

When al = ap = 0, (28) can be simplified as

g(l,p)r (k) = g(l,p)r+1,1(k)+W
k
M/4r g

(l,p)
r+1,2(k)

+W 2k
M/4r g

(l,p)
r+1,3(k)+W

3k
M/4r g

(l,p)
r+1,4(k) (30)

By further utilizing the symmetry and periodicity of k ,
we obtain (31) (at the bottom of this page), where k =
0, 1, ...,M/4r+1 − 1. It should be noted that (31) is a basic
computing unit of radix-4 decomposition and further com-
putation can be performed on demodulated sequences until
4-points DFTs are obtained. Moreover, with respect to other
values of al and ap (i.e. al, ap = 0, 1, 2, 3), themodified basic
computing unit can be easily obtained by multiplying (31)
with phase factors e−j2π (als

2
+aps3)/4r+1 .

3) COMPUTATIONAL COMPLEXITY OF FDCFT
The main computational steps of the FDCFT are first given
and then the corresponding complex multiplications are ana-
lyzed in each step, which can be described as follows:
Step 1) Compute the demodulated sequence x(l,p)q (m) for

l = 0, 1, ...,Nl/M − 1 and p = 0, 1, ...,Np/M − 1. It should
be noted that no CM are needed when l = 0 and p = 0.
Therefore, the required CM involved in Step 1 are

Nstep1 = M (Nl/M − 1)(Np/M − 1)

= NlNp/M − Nl − Np +M (32)

Step 2) For al = ap = 0, compute the g(l,p)r (k) at each
stage according to (31). Since the multiplier factor of basic
computing unit only contains ±1 and ±j, no CM are needed
at q−1th stage. Thus, the required CM involved in Step 2 are

Nstep2 =
3
4
M

q−2∑
r=0

NlNp
(4r+1)2

=
1
20

[
1−

(
1
16

)q−2]
MNlNp (33)

Step 3) Compute the complex multiplications needed for
the phase factors e−j2π (als

2
+aps3)/4r+1 in (28) with other values

of al and ap. Because of no multiplications are required when
r = 0, the computational load in this step is

Nstep3 =
3
4
M

q−1∑
r=1

15NlNp
(4r+1)2

=
3
64

[
1−

(
1
16

)q−1]
MNlNp (34)

Based on the above analysis, the total CM needed in the
FDCFT are

NFDCFT = Nstep1 + Nstep2 + Nstep3

= NlNp/M − Nl − Np +M

g
(l+alNl/4r+1,p+apNp/4r+1)
r (k)

=



e−j2π (als
2
+aps3)/4r+1

[
g(l,p)r+1,1(k)+W

k
M/4r g

(l,p)
r+1,2(k)+W

2k
M/4r g

(l,p)
r+1,3(k)+W

3k
M/4r g

(l,p)
r+1,4(k)

]
, if ψ(s) = 4v;

e−j2π (als
2
+aps3)/4r+1

[
g(l,p)r+1,1(k)− jW

k
M/4r g

(l,p)
r+1,2(k)−W

2k
M/4r g

(l,p)
r+1,3(k)+ jW

3k
M/4r g

(l,p)
r+1,4(k)

]
, if ψ(s) = 4v+ 1;

e−j2π (als
2
+aps3)/4r+1

[
g(l,p)r+1,1(k)−W

k
M/4r g

(l,p)
r+1,2(k)+W

2k
M/4r g

(l,p)
r+1,3(k)−W

3k
M/4r g

(l,p)
r+1,4(k)

]
, if ψ(s) = 4v+ 2;

e−j2π(als
2
+aps3)/4r+1

[
g(l,p)r+1,1(k)+ jW

k
M/4r g

(l,p)
r+1,2(k)−W

2k
M/4r g

(l,p)
r+1,3(k)− jW

3k
M/4r g

(l,p)
r+1,4(k)

]
, if ψ(s) = 4v+ 3.

(28)


g(l,p)r (k)

g(l,p)r (k +M/4r+1)
g(l,p)r (k + 2M/4r+1)
g(l,p)r (k + 3M/4r+1)

 =

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j




g(l,p)r+1,1(k)

g(l,p)r+1,2(k)W
k
M/4r

g(l,p)r+1,3(k)W
2k
M/4r

g(l,p)r+1,4(k)W
3k
M/4r

 (31)
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+

[
31
320
−

271
5120

(
1
16

)q−2]
MNlNp

≈
31
320

MNlNp (35)

The ratio of the computational complexity of the ADCFT
using FFT to that of FDCFT is

NFFT

NFDCFT
=

MNlNp logM2 /2
31MNlNp/320

≈ 5.2 logM2 (36)

The ratio of the computational complexity of the direct
computation of the ADCFT to that of FDCFT is

Ndirect

NFDCFT
=

M2NlNp
31MNlNp/320

≈ 10.3M (37)

From (36) and (37), we know that the FDCFT could reduce
the computational load largely compared to the ADCFT by
direct computation and using FFT.

4) COHERENT INTEGRATION VIA FDCFT
Performing FDCFT on (18), the high speed maneuvering
target energy will be well integrated in ADCFT domain when
the searching parameters are accurately matched, i.e.,

Gn(fdM/fa, b1, b2) = σ3
√
Msinc

[
B
(
nTs −

2R0
c

)]
× exp

(
−j

4π
λ
R0

)
(38)

where Gn(k, l, p) denotes the coherent integration result.
Therefore, the estimated number of range cell n̂, digital

center frequency k̂ , chirp rate l̂, and derivative of chirp rate p̂
can be obtained by the following expression

(n̂, k̂, l̂, p̂) = arg max
n,k,l,p

|Gn(k, l, p)| (39)

Then the motion parameters R0, v, a1, and a2 are estimated
as 

R̂0 = n̂c/(2B)
v̂ = k̂ faλ/(2M )
â1 = l̂λ/2
â2 = p̂λ/2

(40)

C. PROCESSING STRATEGY OF VELOCITY AMBIGUITY
PHENOMENON
Because of the high speed and low PRF, velocity ambiguity
phenomenon may occur [2], [17]. Then, the target velocity is
rewritten as

v = 0ambva + v0 (41)

where va = λPRF/2 is the blind velocity, 0amb is the velocity
ambiguity degree, and v0 is the unambiguous velocity which
satisfies |v0| < va/2.
Since the KT is a resampling and interpolation pro-

cess, the velocity ambiguity will result in the occurrence of

half blind velocity effect [43] and invalid correction of the
LRM [5], which would bring about great performance loss,
and thus should be well dealt with.

1) ELIMINATION OF HALF BLIND VELOCITY EFFECT
The sinc-interpolation processing is used to realize the
implementation of KT in this paper because of its robust-
ness and little performance loss [7]. However, the sinc-
interplotion will suffer a great performance loss near the
odd times of half blind velocity when velocity ambiguity
occurs, which is called half blind velocity effect [43], [44].
As for the proposed algorithm, the half blind velocity effect
will make detection performance degraded when the velocity
satisfies

c(0amb + 0.5)PRF
2(fc + B/2)

< v <
c(0amb + 0.5)PRF

2(fc − B/2)
(42)

In this case, the velocity ambiguity degree at the frequency
component −B/2 is different from that at the frequency
component B/2, which may also bring about estimation error
of the velocity. To eliminate the half blind velocity effect,
the inter-pulse compensation function is constructed as

h1(tm) = exp [−j2π (−PRF/2) tm] (43)

The new form of radar echoes can be obtained by multi-
plying (4) with (43), i.e.,

s′r (t̂, tm) = sr (t̂, tm)h1(tm) (44)

2) COMPENSATION OF LRM INDUCED BY VELOCITY
AMBIGUITY
Substituting (41) into (12) yields

sp(f , tm) = σ2rect
(
f
B

)
h2(f , tm)

× exp
[
−j

4π (f + fc)
c

(R0 − vtm)
]

× exp
[
j
4π (f + fc)

c

(
1
2
a1t2m +

1
6
a2t3m

)]
(45)

where

h2(f , tm) = exp
[
j
4π (f + fc)

c
vatm0amb

]
= exp

(
j
4π f
c
vatm0amb

)
exp (j2πPRF0ambtm)

= exp
(
j
4π f
c
vatm0amb

)
(46)

Performing KT on (45) and then expanding the transform
result according to Taylor series expansion, one can obtain

sk (f , ta) = σ2rect
(
f
B

)
exp

[
−j

4π
c
(f + fc)R0

]
× exp

(
j
4π
λ
v0ta

)
exp

[
j
2πa1t2a
λ

(
1−

f
fc

)]
× exp

[
j
2πa2t3a
3λ

(
1−

2f
fc

)]
h2(f , ta) (47)
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FIGURE 5. The main processing flow of solving the velocity ambiguity
phenomenon.

where

h2(f , ta) = exp
(
j
4π
λ

1
1+ f /fc

vata0amb

)
≈ exp (−j2π f PRF0ambta/fc)

× exp (j2π f PRF0ambta)

≈ exp (−j2π f PRF0ambta/fc) (48)

It is observed from (48) that the LRM induced by the veloc-
ity ambiguity phenomenon could not be effectively removed
through KT. To solve this problem, a velocity ambiguity
degree compensation function is constructed as

h2(f , ta;0) = exp (j2π f PRF0ta/fc) (49)

where 0 is the searching velocity ambiguity.
Multiplying (47) with (49), one has

sk (f , ta) = σ2rect
(
f
B

)
exp

[
−j

4π
c
(f + fc)R0

]
× exp

(
j
4π
λ
v0ta

)
exp

[
j
2πa1t2a
λ

(
1−

f
fc

)]
× exp

[
j
2πa2t3a
3λ

(
1−

2f
fc

)]
× exp [−j2π f PRF(0amb − 0)ta/fc] (50)

From (50), we see that the LRM induced by the velocity
ambiguity phenomenon will be removed when 0 = 0amb.
Then, (39) and (40) can be rewritten as

(n̂, 0̂, k̂, l̂, p̂) = arg max
n,0,k,l,p

∣∣Gn,0(k, l, p)∣∣ (51)
R̂0 = n̂c/(2B)
v̂ = k̂ faλ/(2M )+ 0̂va
â1 = l̂λ/2
â2 = p̂λ/2

(52)

where Gn,0(k, l, p) denotes the coherent integration result
when velocity ambiguity phenomenon occurs.
In summary, the main steps to solve the velocity ambiguity

phenomenon include constructing the inter-pulse compensa-
tion function h1(tm) and the velocity ambiguity degree com-
pensation function h2(f , ta;0), which are shown in Fig. 5.
It should be noted that the coherent integration result
Gn,0(k, l, p) differ from true center frequency by PRF/2, and
thus the result should be corrected by shifting PRF/2 along
center frequency direction.

D. PROCEDURE OF PROPOSED DETECTION ALGORITHM
The procedure of proposed detection algorithm can be sum-
marized as follows:
Step 1: Perform demodulation and pulse compression on

the received raw echoes, and the signal sp(f , tm) in range
frequency and slow time domain is obtained.
Step 2: Apply the KT in (13) to sp(f , tm), and the signal is

transformed to sk (f , ta).
Step 3: Determine the searching scope of the velocity

ambiguity degree [01, 02], chirp rate [l1, l2], and derivative
of chirp rate [p1, p2] based on relative prior information such
as moving status of the targets to be detected. The interval
1l and interval 1p can be determined by Doppler resolu-
tion [27], that is, 1l = 1/T 2 and 1p = 4/T 3.
Step 4: Construct the velocity ambiguity degree compen-

sation function to remove the residual RM and perform IFFT
in range-frequency domain.
Step 5: Carry out the FDCFT in all range bins to achieve

the coherent integration.
Step 6: Repeat Steps 4 and 5 until all the velocity ambiguity

degrees in Step 3 are searched, and obtain the maximum peak
value of coherent integration result Gn0,00 (k0, l0, p0). Set l =
l0, p = p0, and 0 = 00, and construct the detection map
Gn,00 (k, l0, p0) in the range-Doppler domain.
Step 7: Take |Gn0,00 (k0, l0, p0)| as the test statistic and

employ the biparametric constant false alarm ratio (CFAR)
detector to obtain the adaptive threshold η based on the detec-
tion map [22]. Compare the test statistic with the adaptive
threshold to confirm a target, which can be expressed as∣∣Gn0,00 (k0, l0, p0)∣∣ H1

≷
H0

η (53)

Therefore, the flowchart of the proposed detection algo-
rithm is shown in Fig. 6.
In order to eliminate the half blind velocity effect, the oper-

ating steps marked with dashed box in Fig. 6 should make
some changes. First, the radar echoes after demodulation
should be changed according to (44) in Step 1. Second,
when constructing the detection map in Step 6, the result
based on the new form of radar echoes should be shifted
PRF/2 along center frequency direction, which is denoted
as
∣∣∣G′n,00 (k, l0, p0)∣∣∣. Finally, choose the larger value between∣∣Gn,00 (k, l0, p0)∣∣ and ∣∣∣G′n,00 (k, l0, p0)∣∣∣ as the element of the

detection map.

IV. PERFORMANCE ANALYSIS OF PROPOSED
ALGORITHM
In this part, the performance of the proposed algorithm is
analyzed in detail, which would reflect the superiority of the
proposed method in the aspects of coherent integration gain,
computational complexity, and multi-target detection.

A. COHERENT INTEGRATION GAIN ANALYSIS
Here, the output SNR is adopted to illustrate the coherent inte-
gration gain since it is generally utilized as the performance
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FIGURE 6. Flowchart of proposed detection algorithm.

FIGURE 7. Relation between integrated pulse number and SNRout of
proposed method and RFRAF. (PRF = 500 Hz, B = 1 MHz, v = 3000 m/s,
a1 = 30 m/s2, and a2 = 20 m/s3 ).

indicator in radar system [22]. Suppose the performance loss
induced by the interpolation of the KT is not considered at
first. The output SNR of the proposed method at the peak
location (k0, l0, p0) |n0,00 is defined as follows [22], [27]

SNRproposed
out =

|Zs (k0, l0, p0)|2

var [Zx (k0, l0, p0)]
(54)

where Zs (k0, l0, p0) = |Gs (k0, l0, p0)|2 is the output power
of target, Zx (k0, l0, p0) = |Gs+n (k0, l0, p0)|2 denotes the
output power of target plus noise, and var[·] represents the
variance calculation.

According to Appendix, one can obtain

SNRproposed
out =

M3SNR2
in

2M2SNRin −M + 2
(55)

where SNRin is the input SNR of the proposed method.
Compared with the output SNR of RFRAF SNRRFRAF

out ,
which is defined in [27], then we obtain

SNRproposed
out > SNRRFRAF

out (56)

The relation between integrated pulse number and SNRout
of the proposed method and RFRAF, respectively, is shown
in Fig. 7 for different SNRin (SNRin = −5 dB and
0 dB). Clearly, the SNRout of both methods increase with
the integrated pulse number, and larger SNRin acquires a bet-
ter SNRout. Moreover, the proposed method obtains a higher

SNRout than that of the RFRAF under the same conditions of
integrated pulse number and input SNR. In addition, as the
input SNR decreases, the SNRout gap between the proposed
method and RFRAF increase. Thus, the coherent integration
performance of the proposed method is superior than that
of RFRAF. Compared with the GRFT, the proposed method
suffers a slight integration performance loss, which is caused
by the interpolation of the KT [7]. It is worth noting that the
integration gain analysis of the proposed method is on the
basis of no RM caused by acceleration and jerk occurring.
Fortunately, this condition can usually be satisfied for long-
range surveillance radar [17], [31].

B. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of the proposed method,
GRFT, RFRAF, and KT-CPF is analyzed in terms of CM.
Denote the numbers of echo pulses, searching range cells,
searching velocity, searching acceleration, searching jerk,
searching velocity ambiguity degree, and searching rotation
angle byM , Nr , Nv, Na1 , Na2 , N0 , and Np, respectively. Since
the interpolation operation is applied to realize the KT, NrM2

CM are needed.N0(MNr log
Nr
2 /2+31MNrNa1Na2/320) CM

are needed for FFT along fast time and the FDCFT. On the
other hand, NrMNvNa1Na2 CM are needed for the GRFT
algorithm [5], [40]. According to [45], we get Nv = MN0 .
Thereafter, the computational cost of the proposed method
is O(N0NrNa1Na2M ) whereas the computational burden of
GRFT is O(N0NrNa1Na2M

2), which suggests that the com-
putational complexity of the proposed method is largely
reduced compared with the GRFT. Meanwhile, the RFRAF
needs O[NrN0Na1Na2M (M + Np(8M + 6M log2M2 ))] CM.
Only O[NrM2

+ N0MNr (log
Nr
2 /2 + 2) + 6Na1Nr (M + 1)]

CM are needed with respect to KT-CPF [40]. The detailed
computational complexities of the above algorithms are listed
in Table 1. It is worth noting that the KT-CPF algorithm
is more computationally efficient than that of the above
algorithms since the motion parameters of the target could
be estimated step by step. However, the KT-CPF algorithm
will suffer performance loss and the error propagation effect
because of its nonlinearity, and cannot work in low SNR
environment.
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FIGURE 8. High-order DFM analysis. (a) Parameters constraint for fourth-order DFM. (b) Parameters constraint for fifth-order
DFM. (c) Parameters constraint for sixth-order DFM. (d) Parameters constraint for seventh-order DFM.

TABLE 1. Comparison of computational complexity.

C. MULTI-TARGET DETECTION PERFORMANCE ANALYSIS
In above analysis, the presented method shows superiority in
detecting a high speed maneuvering target. However, there
may exist multiple targets in a real scenario, which could
be divided into three kinds: multiple targets with different
motion parameters, multiple targets with some same motion
parameters, and multiple targets with significantly different
intensities [28]. The presented method could have a multi-
target detection performance since the KT and FDCFT are
both linear transforms. When multiple targets have different
motion parameters, they are located in different range cells,
and could be detected and distinguished by searching range
cells. As for multiple targets with some same motion param-
eters, they can be detected and distinguished by residual dif-
ferent motion parameters. For example, there are two targets
with same range cell and acceleration in the scenario. They
can be distinguished in different searching velocity ambigu-
ity degrees, center frequencies or derivative of chirp rates.
In addition, the side-lobes of strong targets may submerge
the weak ones when multiple targets have remarkably differ-
ent intensities, which will make the detection performance
degraded. In this condition, the CLEAN technique [46] could
be first applied to eliminate the influences of strong targets,
and then the coherent integration of different targets can be
achieved iteratively. It is worth noting that the blind-speed
side lobe (BSSL) may be produced in the GRFT method
and may lead to false alarm and loss detections in a real
multi-target scenario [7]. Moreover, the RFRAF and KT-CPF
methods may suffer from cross-term interference due to their
nonlinearities, and thus the detection performance will be
influenced to some extent.

V. APPLICATION TO HIGHER-ORDER MOTION MODEL
Many literatures indicate that the higher-order motion model
is more accurate to describe the strong maneuverability of
target [29], [35]. For the motion model with J -th order,

the instantaneous slant range is expressed as

R(tm) = R0 −
J∑
j=1

1
j!
ajt jm (57)

where aj denotes the target motion parameter with j-th order.
Based on (6) and (9), the critical values of j-th order

motion parameter causing RM and DFM, i.e., ajR and ajF ,
are respectively denoted as

ajR =


j!2j−2ρr
T j

, j is odd;

j!2j−1ρr
T j

, j is even.
(58)

ajF =


λ(j− 1)!2j−3

T j
, j is odd;

λ(j− 1)!2j−4

T j
, j is even.

(59)

Comparing (58) with (59), we find that DFM is more easy
to generate than that of RM for j-th order motion parameter.
Meanwhile, we also obtain

aj+2R
ajR
=

4(j+ 2)(j+ 1)
T 2

aj+2F
ajF
=

4j(j+ 1)
T 2

(60)

It is seen from (60) that {ajR} and {ajF } are incremental
when j > T/2. For high-order motion model, j > T/2 is
generally satisfied. Thus, the occurrence of j-th order RM and
DFM becomemore difficult as the order j increases. Based on
the analysis of Section II-B, we conclude that the j-th order
RM can be ignored but the j-th order DFM may occur for
j > 3. Fig. 8 illustrates the high-order DFM analysis with
j = 4, 5, 6, 7, where the fourth- and fifth-order DFM will
easily occur for short wavelength and long observation time.
The proposed detection algorithm is based on the third-order
motion model, which can achieve general precision require-
ment. However, for higher-order motion model, the proposed
method will suffer from detection performance loss due to
higher-order DFMs. In order to improve the applicability to
the higher-motion model, we can extend the FDCFT to arbi-
trary higher order. Define a J -th order demodulated sequence
as

x(l2,...,lJ )q (m) = s(m)e−j2π
∑J

j=2(lj/Nj)m
j

(61)

where lj = 0, 1, 2, ...,Nj − 1.
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TABLE 2. Computational procedures and complexities of extended FDCFT.

FIGURE 9. Comparison of computational complexity.

According to (27), the computation of demodulated
sequence at the r-th stage is modified as

g(l2,...,lJ )r (k) =
M/4r−1∑
u=0

x(l2,...,lJ )q [4ru+ s]W uk
M/4r (62)

Exploiting the symmetry and periodicity of motion param-
eters of different orders, we can obtain (63) (at the bottom of
this page), where φJ (s) = e−j2π

∑J
j=2 ajs

j/4r+1 , aj = 0, 1, 2, 3,
ψJ (s) =

∑J
j=2 jajs

j−1, and

g(l2,...,lJ )r+1,i (k)

=

M/4r+1−1∑
u=0

x(l2,...,lJ )q [4r+1u+ (i− 1)4r + s]W uk
M/4r+1 ,

i = 1, 2, 3, 4. (64)

From (63), we can see the computation of g(l2,...,lJ )r (k) for
lj = l0j + ajNj/4r+1(j = 2, 3, ..., J ) can be implemented

TABLE 3. Simulation parameters of radar system.

by g(l2,...,lJ )r (k) for lj = l0j. Based on radix-4 decomposi-
tion, extended FDCFT for J -th order motion model can be
obtained by first computing g(l2,...,lJ )r (k) for small values of
lj at a high stage and then computing g(l2,...,lJ )r (k) for larger
values of lj at a lower stage according to (63). Assuming
aj = 0 and exploiting the symmetry and periodicity of k ,
we can further get (65) (at the bottom of next page), where
k = 0, 1, ...,M/4r+1 − 1.
The computational procedures and complexities of the

extended FDCFT are shown in Table 2.
Fig. 9 illustrates the ratio between the computational

complexities needed by using FFT and the proposed fast
method for compensating the fourth to seventh-order DFM.
Since more redundancy along different dimensions of motion
parameters is exploited, the savings achieved through the
proposed fast method are more significant as the order of
DFM or pulse numberM increases.

VI. NUMERICAL RESULTS
In this section, numerical simulations are presented to
verify the effectiveness of the proposed algorithm for
high-speed maneuvering target detection with jerk motion,
where the parameters of the radar system are listed
in Table 3.

g(l2+a2Nl/4
r+1,...,lJ+aJNJ /4r+1)

r (k)

=



φJ (s)
[
g(l2,...,lJ )r+1,1 (k)+W k

M/4r g
(l2,...,lJ )
r+1,2 (k)+W 2k

M/4r g
(l2,...,lJ )
r+1,3 (k)+W 3k

M/4r g
(l2,...,lJ )
r+1,4 (k)

]
, if ψJ (s) = 4v;

φJ (s)
[
g(l2,...,lJ )r+1,1 (k)− jW k

M/4r g
(l2,...,lJ )
r+1,2 (k)−W 2k

M/4r g
(l2,...,lJ )
r+1,3 (k)+ jW 3k

M/4r g
(l2,...,lJ )
r+1,4 (k)

]
, if ψJ (s) = 4v+ 1;

φJ (s)
[
g(l2,...,lJ )r+1,1 (k)−W k

M/4r g
(l2,...,lJ )
r+1,2 (k)+W 2k

M/4r g
(l2,...,lJ )
r+1,3 (k)−W 3k

M/4r g
(l2,...,lJ )
r+1,4 (k)

]
, if ψJ (s) = 4v+ 2;

φJ (s)
[
g(l2,...,lJ )r+1,1 (k)+ jW k

M/4r g
(l2,...,lJ )
r+1,2 (k)−W 2k

M/4r g
(l2,...,lJ )
r+1,3 (k)− jW 3k

M/4r g
(l2,...,lJ )
r+1,4 (k)

]
, if ψJ (s) = 4v+ 3.

(63)
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FIGURE 10. Detection result for a high-speed maneuvering target. (a) Result after PC. (b) Projection of detection result in fold factor-range domain.
(c) Projection of detection result in range-Doppler frequency domain. (d) Projection of detection result in Doppler frequency rate-derivative Doppler
frequency rate domain.

FIGURE 11. Detection result for a high-speed maneuvering target with half blind velocity effect. (a) Detection result for
the target with v = 2025 m/s by the proposed method directly. (b) Detection result for the target with v = 2020 m/s by
the proposed method. (c) Detection result for the target with v = 2025 m/s after eliminating half blind velocity effect.

A. DETECTION ABILITY OF PROPOSED METHOD
The first simulation is carried out to verify the single target
detection ability, where the motion parameters of the target
are set as R0 = 600 km, v = 2020 m/s, a1 = 50 m/s2, a2 =
30 m/s3, and the intput SNR is−25 dB. The results are shown
in Fig. 10.

It can be seen from Fig. 10 (a) that the signal after PC
is submerged in the noise. By processing with the proposed
method, peaks are clearly formed in Figs. 10 (b), (c), and (d),
which represent respective projections of detection result in
different ADCFT domains. As seen in Section III, the target
energy can be well accumulated when the searching motion
parameters are respectively matched with real ones. From
Figs. 10 (b), (c), and (d), the matched motion parameters
are obtained as R̂0 = 600 km, 0̂amb = 202, k̂ = 1, l̂ =
1000, and p̂ = 600. According to (52), the corresponding
motion parameters can be calculated as v̂ = 2020.8 m/s,
â1 = 50 m/s2, and â2 = 30 m/s3. We can obtain that the
estimated results align with the true values.

In the following simulation, a target with half blind velocity
effect is considered without noise for clarity of presentation.
The target motion parameters are set as R0 = 500 km,
v = 2025 m/s, a1 = 30 m/s2, and a2 = 15 m/s3. It should be
noted that (42) is satisfied with simulated parameters and half
blind velocity effect would occur. In order to better illustrate
the half blind velocity effect, another target without half blind
velocity (v = 2020 m/s) is also simulated for comparison.

Fig. 11 (a) shows the coherent integration results of a target
with half blind velocity effect. It is seen that the energy
of the target is dispersed into two Doppler frequency cells
and two peaks are formed in range-Doppler domain. When
the CFAR detection technology is utilized in successive pro-
cessing, the number of the targets could not be accurately
determined, and the detection performance will degrade.
A detection result of a target without half blind velocity
effect is shown in Fig. 11 (b). Compared with the peak
values in Fig. 11 (a) and (b), the peak value loss of target with
the half blind velocity effect is about 2 dB, which has an


g(l2,...,lJ )r (k)

g(l2,...,lJ )r (k +M/4r+1)
g(l2,...,lJ )r (k + 2M/4r+1)
g(l2,...,lJ )r (k + 3M/4r+1)

 =

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j




g(l2,...,lJ )r+1,1 (k)

g(l2,...,lJ )r+1,2 (k)W k
M/4r

g(l2,...,lJ )r+1,3 (k)W 2k
M/4r

g(l2,...,lJ )r+1,4 (k)W 3k
M/4r

 (65)
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FIGURE 12. Detection results for multiple high-speed maneuvering targets. (a) Result after PC. (b) Detection result for T2 with searching slant range
R0 = 600 km and velocity ambiguity degree 0 = 200. (c) Detection result for T3, T4, T5 with searching slant range R0 = 600 km and velocity ambiguity
degree 0 = 300. (d) Detection result for T1 with searching slant range R0 = 601.5 km and velocity ambiguity degree 0 = 200.

obvious effect on detection performance. Fig. 11 (c) shows
the detection result after eliminating half blind velocity effect.
Clearly, the energy of the target can be well accumulated and
the peak value is close to that without the half blind velocity
effect.

The subsequent test is performed to evaluate the multiple
target detection ability. The motion parameters of targets are
listed in Table 4. The simulation results are shown in Fig. 12.

The result after PC is shown in Fig. 12 (a), where only two
bright lines are formed. The motion trajectories of targets T1
and T5 cannot emerge due to their low SNRs. Meanwhile,
because of the same initial slant range and radial velocity,
the motion trajectories of targets T3 and T4 are overlapped.
The detection result for T2 is shown in Fig. 12 (b). Although
T2, T3, T4, and T5 are located at the same range cell (i.e.,
600 km) at the start, T2 could be detected and distinguished
by searching velocity ambiguity degree 0 = 200. Because
of the same initial slant range and radial velocity, T3, T4,
and T5 cannot be differentiated via searching range cell and
velocity ambiguity degree. Fortunately, they are different in
radial acceleration and jerk, which are distinguishable by dif-
ferent chirp rates and derivative of chirp rates. The detection
result of T3, T4, and T5 is shown in Fig. 12 (c), where three
peaks are formed in the chirp rate-derivative of chirp rate
domain. Thereafter, T3, T4, and T5 can be detected using peak
detection andCFAR technique, and the correspondingmotion
parameters of the targets could be obtained according to (52).
Fig. 12 (d) shows the detection result for T1 with searching
slant range R0 = 601.5 km and velocity ambiguity degree
0 = 200. An obvious peak is generated in the chirp rate-
derivative of chirp rate domain. Thus, the proposed method
has a good ability of detecting multiple targets.

B. COMPARISON WITH OTHER EXISTING METHODS
In this simulation, the computational complexity of the pro-
posed method is evaluated in comparison with that of the
GRFT, RFRAF, and KT-CPF. In order to cover the range of
common high speed maneuvering target motion parameters,
the searching scope of initial slant range, radial velocity,
radial acceleration, and radial jerk are set as [200, 600] km,
[−6000, 6000] m/s, [−200, 200] m/s2, and [−200, 200] m/s3,

TABLE 4. Motion parameters of multiple targets.

FIGURE 13. Computational complexity of proposed method, GRFT, RFRAF
and KT-CPF versus pulse number.

respectively. Fig. 13 shows the computational complexity of
the proposed method, GRFT, RFRAF, and KT-CPF versus
pulse number. It can be seen the proposed method has a rel-
atively lower computational burden than that of the RFRAF
and GRFTmethods, and the computational complexity of the
proposed method changes more slowly with integrated pulse
number. Although the KT-CPF has the lowest computational
complexity, it cannot work well in low SNR environment
because of nonlinearity.

The last simulation is performed to demonstrate the detec-
tion performance of the proposed method in different SNR
levels, where the RFT, RFRFT, RFRAF, KT-CPF, and GRFT
are used for comparison. The initial slant range, radial
velocity, acceleration, and jerk of the target are 600 km,
3600 m/s, 100 m/s2, and 90 m/s3, respectively. Additionally,
the CFAR detector is combined with the above six methods as
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FIGURE 14. Detection probability of RFT, RFRFT, RFRAF, KT-CPF, proposed
method and GRFT when Pfa = 10−4.

corresponding detectors, and the constant false alarm prob-
ability Pfa is set as 10−4. The added SNRs after pulse
compression are SNR = [−15:1:15] dB, and in each case,
500 times of Monte Carlo simulations are done. Fig. 14
shows the detection probability of the six methods versus
different SNR level. It can be seen the presented method
can obtain close detection performance as that of the GRFT
and the performance loss is less than 1 dB. The KT-CPF
and RFRAF have a lower antinoise performance in compar-
ison with the presented method and the performance loss is
approximately 8 dB because of their nonlinearities and prop-
agation errors. Moreover, although the RFRFT and RFT are
the optimal detectors for constant acceleration and uniform
motion model, respectively, they suffer from great perfor-
mance loss since the QDFM is not considered. Combined
with the analysis of Fig. 13, we conclude that the proposed
method can make a good balance between detection perfor-
mance and computational cost.

VII. CONCLUSION
This paper has presented a novel method for high speed
maneuvering target based on FDCFT, which could com-
pensate the RM, ULDFM and QDFM simultaneously, and
realize the coherent integration for the targets with ground-
based radar. The characteristics of the proposed method are
summarized as follows: 1) It makes full use of the motion
characteristic and can achieve a coherent integration without
the RM and DFM effects. 2) It can eliminate the half blind
velocity effect and correct the LRM induced by the interpo-
lation of KT and the velocity ambiguity phenomenon. 3) It
could be applied to multi-target scenario because of its linear
property. 4) It has a better detection performance than some
typical coherent integration methods such as RFT, RFRFT,
RFRAF, and KT-CPF in low SNR case. 5) It can acquire high
estimation performance in low SNR case with a relatively
lower computational cost in comparison with the GRFT. 6)
It can be extended to an arbitrary higher-order motion model
with great computational advantage. Theoretical analysis and
simulated results have demonstrated the effectiveness of the
presented method.

APPENDIX
Suppose n(t) is the zero-mean, stationary, white complex
Gaussian noise with auto-correlation function

Rn(τ ) = E
[
n(t)n∗ (t + τ)

]
= σ 2

n δ (τ ) (66)

According to (21), the peak value of Zs(k0, l0, p0) can be
expressed as

Zs(k0, l0, p0) = |Gs(k0, l0, p0)|2 = Mσ 2
3 (67)

Then, the input SNR is defined as SNRin = σ
2
3 /σ

2
n .

The expected value of Zx(k0, l0, p0) can be calculated as
follows

E [Zx(k0, l0, p0)]

= E
[
|Gs(k0, l0, p0)+ Gn(k0, l0, p0)|2

]
= E

[
|Gs(k0, l0, p0)|2

]
+ E

[
|Gn(k0, l0, p0)|2

]
+ 2Re

[
Gs(k0, l0, p0)G∗n(k0, l0, p0)

]
= |Gs(k0, l0, p0)|2 + E

[
|Gn(k0, l0, p0)|2

]
= Mσ 2

3 + σ
2
n (68)

The variance in (54) is

var [Zx(k0, l0, p0)]

= E
{
{Zx (k0, l0, p0)− E [Zx (k0, l0, p0)]}2

}
= E

[
|Gs(k0, l0, p0)|4

]
−

{
E
[
|Gs(k0, l0, p0)|2

]}2
+ 2|Gs(k0, l0, p0)|2E

[
|Gs(k0, l0, p0)|2

]
= 2Mσ 2

3 σ
2
n +

2
M
σ 4
n − σ

4
n (69)

Then rewriting (54) with the use of (67) and (69), and the
output SNR of proposedmethod can be obtained, that is, (55).
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