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ABSTRACT In the present contribution, a methodology to solve the tracking control problem of robot
manipulators through the use of a Proportional Retarded plus Gravity (PR+G) compensation scheme is
presented. The main advantage of the proposal is to avoid the necessity of velocity measurements or their
estimation, which is commonly used in most control schemes, such as the proportional derivative-type
controllers or the computed torque control. The design of the PR+G controller is addressed via σ -stability
analysis and its performance is tested in an experimental platform that consists of 2 degrees of the freedom
robot manipulator. The proposed controller is compared with a classic proportional derivative plus gravity
compensation scheme. The results are analyzed from a frequency perspective and measured by a quadratic
error index.

INDEX TERMS Manipulator robot, time-delay controller, trajectory tracking.

I. INTRODUCTION
Regulation and tracking control problems of flexible and
rigid robot manipulators have been presented in literature,
where the majority of those proposals used the proportional-
derivative feedback or the computed torque algorithm as
controllers, which are based on the assumption that the infor-
mation of the complete state is available, see [1]–[9], and
references therein. However, this assumption in practice is
partially fulfilled, mainly because the signal may not be
available for measurement and therefore it should be deter-
mined by a first-order numerical differentiation or some
other approach. Due to the interest of avoiding the use of
velocity measurements, different methods have been devel-
oped [10]–[15] that, in general, follow a two-step design
procedure:
a) Construct an observer for the velocity signal employing

the available inputs and outputs,
b) Design a state feedback controller where the velocity is

replaced by the one reconstructed from the observer.
However, these solutions only rely on local stability and

measurement noises can reduce the quality of the velocity
estimation, among other arising problems.

Time delay may appear inherently present in a wide class
of systems. The effects of time delay have been an active area

of a scientific research in a wide rank of sciences for example
biological, ecological, engineering systems, etc [16]–[20].
The analysis of this class of systems has come up with an
important amount of theoretical contributions in the area of
stability analysis.

In controlled dynamic systems, time delays can arise
due to communication effects, or natural phenomena,
[21]–[23], whose dynamic effects cannot be neglected. In one
hand, the presence of time delays may lead to poor per-
formance or in some cases instability. On the other hand,
the introduction of time delays for control proposes can
improve the system performance or even stabilize it [24]. This
approach has been used successfully solving the problem of
stabilizing chaotic and oscillatory second order systems [25].
The stabilizing effect of delays in feedback has been studied
in depth using the σ -stability [26] for Linear Matrix Inequal-
ities (LMI) [27].

The Proportional Retarded (PR) controller is a recently
introduced approach [28] that can be an alternative of classic
Proportional Derivative control laws. This scheme avoids the
use of state observers or numerical differentiation, which also
enhances the system response against noisy measurements.
However, the main disadvantage of this scheme is the fact
that it implies a careful stability analysis to compensate the
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introduction of the resulting infinite dimensional closed loop
system. To overcome this fact, it has been studied detailed
in frequency domain analysis of the σ -stability for a sec-
ond order linear system [29], [30]. As main result of this
study, a tuningmethodology of PR controllers was developed,
also experimental results were achieved using a PR control
law solving the problem of trajectory tracking position of
a second order linear system, PR controller performance has
showed advantages respect a Proportional Derivative (PD)
controller, for example: easy implementation in a real-time
process, and reduction of noise of control signal.

Some applications of the PR control deal with lin-
ear or approximately linearized systems which work mainly
on an equilibrium zone [31]. In other applications like robot
control in trajectory tracking tasks, the operation conditions
demand a larger operation zone of the controllers, and it has
been shown that PD controllers can stabilize robotic systems
of open kinematic chain structure [2]. For this instance, it is
motivating the use of PR controllers as a practical alternative
of robotic control designs.

In the present manuscript, a proportional retarded con-
troller is proposed to perform trajectory tracking tasks of
robotic systems of nonlinear nature. Furthermore, to deal with
the larger operation zone demanded by the control of robotic
manipulators a gravity compensation scheme is included in
the proportional retarded controller. Even when the main
proposal deals with general systems, for implementation
purposes, a two degrees of freedom robotic manipulator is
considered. To the best of the authors’ knowledge, this is the
first instance this scheme has been applied to a nonlinear
system without explicitly linearizing it. The natural prop-
erties of this class of systems allow to establish operation
bounds, leading to a linear dominant dynamics affected by
a set of bounded lumped disturbances. Thus, an ultimate
bound tracking can be shown by means of the dominant roots
of the linear dominant delayed dynamics. For comparison
purposes, a PD plus gravity compensator controller is also
considered. The rest of the article is organized as follows:
Section II presents the mathematical model of the robotic
system, the problem formulation and the hypotheses for the
control design. Section III describes the PR control design
and establishes the error dynamics stability in terms of a
disturbed delayed linear dominant dynamics. Section IV-A
describe the dynamic models of the 2-DOF robot manipu-
lator. Section IV-C is devoted to the design of the proposed
controls schemes (PR+G and PD+G), while the details of
the laboratory prototype, as well as the corresponding exper-
imental results are given in Section V. Finally, a brief analysis
of the results and the conclusions are given in Section VI.
Notation: Given a vector x ∈ Rn, xᵀ denotes its transpose

and the euclidean norm of vector x is defined as ‖x‖ =√
xT x. Let A ∈n×n, then the induced matrix norm is given by
‖A‖ =

√
λM

{
ATA

}
where λM {·} represents the maximum

eigenvalue of the matrix.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PRELIMINARIES
The general dynamic model of a fully actuated manip-
ulator robot can be obtained by using either, the Euler-
Lagrange or Newton-Euler formalism [2]. This class of
systems is commonly expressed as follows:

M(q)q̈+ C(q, q̇)q̇+G(q) = τ − τd − Dq̇, (1)

where q ∈ Rn is the joint variable vector, τ ∈ Rn is the
control torque vector and τd ∈ Rn is the disturbance vector
that contains the unmodeled dynamics and external distur-
bance inputs.M(q) ∈ Rn×n represents themanipulator inertia
matrix, C(q, q̇) ∈ Rn×n corresponds to the Coriolis and
centripetal forces matrix and G(q) ∈ Rn is the gravitational
forces vector. The viscous friction is denoted by a diagonal
matrix D ∈ Rn×n.

Under the assumption that matrices M(q), C(q, q̇) and
G(q) are perfectly known, then, there exist positive constants
κm, κM , κC , κG, γ , d ∈ R+ that satisfy the following relations
[2], [32]–[34]:

κm ≤ ‖M(q)‖ ≤ κM , (2)

‖C(q, q̇)q̇‖ ≤ κC ‖q̇‖2 , (3)

‖G(q)‖ ≤ κG, (4)

‖τd‖ ≤ γ, (5)

‖D‖ ≤ d . (6)

By defining the reference trajectory as q∗, then the tracking
error is defined as:

eq = q∗ − q. (7)

Since the inertia matrix is invertible, the open loop tracking
error dynamics due to the robot dynamics can be expressed as:

ëq = q̈∗+M(q)−1 [C(q, q̇)q̇+G(q)+Dq̇+τd − τ ] . (8)

Now, if we assume that all states can be measured, the fol-
lowing control (computed torque τ CT), can be proposed:

τ CT =M(q)(q̈∗ − u CT)+ [C(q, q̇)+ D]q̇+G(q). (9)

Here u CT ∈ Rn is a control input for the closed loop
system. Thus, substituting (9) into (8), the error dynamics,
are reduced to:

ëq = u CT +Wp, (10)

where the term Wp ∈ Rn, defined as Wp = M(q)−1τd
represents the unmodeled dynamics.

B. CONTROL PROBLEM FORMULATION
Given the dynamics (1), it is desired to track the reference
trajectory q∗. To solve this problem using the control law (9),
both the joint variable vector q and its time-derivative q̇must
be available for measurement. The problem is that, in many
practical implementations, the velocity vector q̇ cannot be
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measured directly. Some common strategies for the estima-
tion of the derivative of vector q are the use of state observers,
numerical approximations, filter processing, implementation
of analog tachometer sensors, among others (see, [10], [11],
[15], [35]–[37]). The disadvantage of using those techniques
is the addition of noise to the computed torque control law
(see, [38]–[41]) and, as a consequence, the proposed control
law (9) is not recommended in real-time applications. Hence,
under these considerations the control problem formulation,
relies on the design of an output-feedback control law, that
minimizes or even avoids, the use of the time derivative q̇.
In the present proposal, avoiding the use of velocity mea-

surements, it is desired to cancel out the gravity vector G(q),
thus, the computed torque control in (9) becomes in the form:

τ =M(q)
(
q̈∗ − u

)
+G(q), (11)

then, substituting (11) into (8) yields the new closed loop
error dynamics as:

ëq = u+Wcd, (12)

where:

Wcd =M(q)−1 [(C(q, q̇)+ D)q̇+ τd] , (13)

includes the viscous friction forces and the Coriolis and
centripetal terms. Here, the following assumption is consid-
ered [42], [43]:
Assumption 1: The term Wcd can be approximated by a

time-dependent Taylor polynomial of the form:

Wcd =


α10 + α11t + · · · + α1mtm + H .O.T .
α20 + α21t + · · · + α2mtm + H .O.T .

...

αn0 + αn1t + · · · + αnmtm + H .O.T .

. (14)

III. PROPORTIONAL RETARDED PLUS GRAVITY
COMPENSATOR CONTROLLER
In the present section, in order to avoid using the veloc-
ity joint vector q̇, a Proportional Retarded control scheme
(see, [29], [30]) and is denoted by:

u = uPR = −KPeq +KReq(t − Ti). (15)

Here

eq(t − Ti)=


eq1(t − T1)
eq2(t − T2)

...

eqn(t − Tn)

=

q∗1(t − T1)− q1(t − T1)
q∗2(t − T2)− q2(t − T2)

...

q∗n(t − Tn)− qn(t − Tn)

,
Ti > 0 are the delays. KP and KR ∈ Rn×n are diagonal
matrices whose entries are given by kPi , kRi ∈ R+ for i =
1, 2, ..., n respectively.
Then, the control input torque (11) is now of the form:

τ PR =M (q)
[
q̈∗(t)+KPeq −KReq(t − Ti)

]
+G(q),

(16)

while the closed loop error dynamics looks as:

ëq +KPeq −KReq(t − Ti) =Wcd, (17)

where Wcd was assumed in (14). In the frequency domain,
(17) is given by:

(s2In +KP −KRe−sT)eq(s) =Wcd(s). (18)

Here, T is a diagonal matrix with entries ti,i = Ti ∈ R+
for i = 1, 2, ..., n. For the sake of convenience, the following
matrix polynomial is proposed:

PPR(s) = s2In + 21s+ V+ K̃−KRe−sT (19)

where the term 21s is associated to the viscous friction
and it is considered unknown. The term V + K̃ represents
the gain matrix KP with V, K̃ ∈ Rn×n diagonal matrices,
whose coefficients are of the form vi,i = ν2i , k̃i,i = κ̃i
and 1i,i = δiνi for νi, κ̃i, δi ∈ R+ and i = 1, 2, ..., n.
Where, due to conditions (2)-(6), matrix Wcd is bounded,
and according [44], the effects of Wcd can be mitigated by
an appropriate selection of the gain matrices KP and KR.

In [29] and [30], tuning rules for the design of proportional-
retarded controllers via σ -stabilization are provided. To fol-
low this methodology, let us study the i−th quasi-polynomial
of (19):

PPRi(s) = s2 + 2δiνis+ ν2i + κ̃i − kRie
−sTi = 0, (20)

and, in order to analyze the σ -stability of the former quasi-
polynomial, the change of variable s→ (s− σi) (for σi > 0)
must be applied, then (20) is of the form:

PPR,i(s− σi) = s2 − 2(σi − δiνi)s+ (σi − δiνi)2

+ ν2i (1− δ
2
i )+ κ̃i − kRie

−(s−σi)Ti . (21)

The analysis presented in [30], is intended to obtain the
maximal reachable decay rate (denoted by σ ∗i ) of the system
response, and it is shown that the maximal decay rate is
reached when a triple root of the closed loop system is placed
at σi = σ ∗i . Then, according [29] and [30] this phenomenon
occurs when the following conditions holds:

0 = PPR,i(s− σi)
∣∣
s=0

0 =
∂PPR,i(s− σi)

∂s

∣∣∣∣
s=0

0 =
∂2 PPR,i(s− σi)

∂s2

∣∣∣∣
s=0

.

Then, according [30, Lemma 1], three dominant real roots are
placed at σi = σ ∗i and the maximal exponential decay rate σ ∗

is reached, if the control parameters are selected as follows:

σ ∗i = δiνi +

√
ν2i (1− δ

2
i )+ κ̃i, (22)

and, the gain values kPi, kRi and delay Ti of the input torque
(16) are:

kPi = ν2i + κ̃i, (23)
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Ti =
1√

ν2i (1− δ
2
i )+ κ̃i

, (24)

kRi =
2(σ ∗i − δiνi)

Tieσ
∗
i Ti

. (25)

IV. DYNAMIC MODEL AND CONTROLLER DESIGN
This section is devoted to provide the dynamic equations of
a 2-DOF planar robot manipulator. Also the proposed design
methodology for the PD+G and PR+G control schemes to
perform tracking trajectories tasks is presented.

A. DYNAMIC MODEL OF 2-DOF MANIPULATOR ROBOT
In Figure 1 a schematic of the planar robot under study is
presented. Here, L1 and L2 represent the length of each link,
l1 and l2 stand for the length of each center of mass, while
m1 and m2 are the masses of the links, and their inertias
are denoted as I1 and I2. The gravitational constant is g and
finally τ1 and τ2 symbolize the control inputs.

FIGURE 1. 2-DOF robot manipulator scheme.

The generalized coordinates are given by the angular posi-
tions q = [q1 q2]T and the dynamic model of the robot
manipulator is given as follows:

M(q)q̈+ C(q, q̇)q̇+G(q) = τ − Dq̇ (26)

where τ = [τ1 τ2]T represents the generalized input torque
vector and:

M(q) =
[
m11 m12
m21 m22

]
,

where

m11 = m1l21+m2L21+m2l22+2m2L1l2 cos(q2)+I1 + I2
m12 = m21 = m2l22 + m2L1l2 cos(q2)+ I2
m22 = m2l22 + I2,

C(q, q̇) =
[
−2m2L1l2q̇2 sin(q2) −m2L1l2q̇2 sin(q2)
m2L1l2q̇1 sin(q2) 0

]
,

G(q) =
[
(m1l1 + m2L1)g sin(q1)+ m2l2g sin(q1 + q2)

m2l2g sin(q1 + q2)

]
,

and D is the unknown matrix of the viscous friction and is of
the form:

D =
[
d1 0
0 d2

]
.

B. THE 2-DOF MANIPULATOR ROBOT TRACKING
TRAJECTORY PROBLEM
It is desired that the end effector of the planar robot manipu-
lator located at the position:

x(t) = L1 sin(q1)+ L2 sin(q1 + q2),

y(t) = −L1 cos(q1)− L2 cos(q1 + q2),

follows a predefined trajectory given by the position reference
(x∗(t), y∗(t)). With the inverse kinematics of the planar robot
manipulator, the Cartesian trajectories can be projected as the
desired joint trajectories

(
q∗1(t), q

∗

2(t)
)
, (see [2]). The set of

equations that describes the inverse kinematics is:

cos(q∗2) =

[
x∗(t)

]2
+
[
y∗(t)

]2
− L21 − L

2
2

2L1L2
,

sin(q∗2) =
√
1− (cos(q∗2))

2,

cos(q∗1) =
L2 sin(q∗2)x

∗(t)− (L1 + L2 cos(q∗2))y
∗(t)

[x∗(t)]2 + [y∗(t)]2
,

sin(q∗1) =
(L1 + L2 cos(q∗2))x

∗(t)+ L2 sin(q∗2)y
∗(t)

[x∗(t)]2 + [y∗(t)]2
,

q∗1(t) = arctan
(
sin(q∗1)

cos(q∗1)

)
,

q∗2(t) = arctan
(
sin(q∗2)

cos(q∗2)

)
. (27)

C. PD+G CONTROL DESIGN
In (11), a Proportional Derivative control scheme [32] is
proposed and denoted by:

u = uPD = −KPeq −KDėq, (28)

where, KP, KD ∈ Rn×n are diagonal matrices whose entries
are given by kPi, kDi ∈ R+ for i = 1, 2, ..., n, respectively.
In order to reduce the noise amplification problem, which
arises by the computation of the joint velocity vector q̇,
the error ėq is estimated using a numerical differentiation
algorithm plus a low pass filter. Thus, from equation (11),
the complete robot arm input torque is now of the form:

τ PD =M(q)
[
q̈∗ +KPeq +KDėq

]
+G(q), (29)

while the closed loop error dynamics, looks as:

ëq +KDėq +KPeq =Wcd. (30)

The effects of the dynamics ofWcd can be mitigated by an
appropriate selection of the gain matrices KP and KD. These
gains, are commonly selected using a representation of the
tracking error dynamics (30) in the frequency domain, that is:

(s2I+KDs+KP)eq(s) =Wcd(s). (31)
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Here, one can specify the closed loop characteristic function
as a diagonal matrix polynomial of the form:

PPD(s) = s2In +KDs+KP. (32)

In fact, each of the above polynomials can be proposed in such
a way, that its dynamics coincides with that of a stable second
order characteristic polynomial. To this aim, the polynomial

PPDi(s) = s2 + 2ζiω0is+ ω2
0i, (33)

is proposed, and to match their dynamics, the gains are
selected as follows:

kPi = ω2
0i, (34)

kDi = 2ζiω0i, for i = 1, 2, ..., n. (35)

where ζi > 0 and ω0i > 0.
Now, in order to compute the PD+G control law we use

equation (29) with i = 1, 2, then input torque is simplified as:[
τ1PD
τ2PD

]
= M(q)

×

[
q̈∗1+kD1(q̇

∗

1 − q̇1)+kP1(q
∗

1 − q1)
q̈∗2+kD2(q̇

∗

2 − q̇2)+kP2(q
∗

2 − q2)

]
+G(q),

(36)

where the proportional derivative gains are chosen according
(34)-(35) as:

kP1 = ω2
01, kD1 = 2ζ1ω01,

kP2 = ω2
02, kD2 = 2ζ2ω02. (37)

D. PR+G CONTROL DESIGN
In the same way, in order to compute the PR+G control law,
we use equation (16) with i = 1, 2 the PR+G input torque is
simplified as:[
τ1PR
τ2PR

]
= M(q)

[
q̈∗1 + kR1(q

∗

1(t − T1)− q1(t − T1))
q̈∗2 + kR2(q

∗

2(t − T2))− q2(t − T2))

+kP1(q∗1 − q1)
+kP2(q∗2 − q2)

]
+G(q), (38)

where the gains and the delay of the PR controller are chosen
using the set of equations (22)-(25) as:

σ ∗1 = δ1ν1 +

√
ν21 (1− δ

2
1)+ κ̃1, kP1 = ν21 + κ̃1,

T1 =
1√

ν21 (1− δ
2
1)+ κ̃1

, kR1 =
2(σ ∗1 − δ1ν1)

T1eσ
∗

1 T1
,

σ ∗2 = δ2ν2 +

√
ν22 (1− δ

2
2)+ κ̃2, kP2 = ν22 + κ̃2,

T2 =
1√

ν22 (1− δ
2
2)+ κ̃2

, kR2 =
2(σ ∗2 − δ2ν2)

T2eσ
∗

2 T2
. (39)

The controller gains νi and δi can be chosen in accordance
with a desired closed-loop second order stable polynomial of
the form (33). Then, the controller gains can be selected as
νi = ω0i and 0 < δi < 1. κ̃i must satisfy κ̃i > 0.

FIGURE 2. Experimental 2-DOF robot manipulator prototype.

V. EXPERIMENTAL RESULTS
Figure 2 shows the robot manipulator experimental platform.
The angular position of each link was obtained by means of
incremental encoders with resolution of 300 pulses/rotation.
While a 24 Volts PHIDGETS motor provides torque to the
first link by a gear box with a 1:18 ratio and output maximum
torque of 4.412 [N-m] . The second link torque is supplied by
a 12 Volts PHIDGETSmotor with a gear box with a 1:51 ratio
providing a maximum torque of 0.294 [N-m].

A data acquisition board Sensoray Model 626 is responsi-
ble of collecting the robot manipulator angular positions and
send them to the computer, it also supplies the PWM control
signals to a POLOLU H bridge model VNH5019 motor
driver. Each of the control schemes was implemented in
the Matlab/Simulink platform with a 0.001[s] sample time.
The 2-DOF planar robot manipulator parameters are depicted
in Table 1.

TABLE 1. Experimental prototype parameters.

The reference trajectory, in the Cartesian space (X ,Y ), was
proposed as: the initial conditions of the 2-DOF manipulator
robot end effector are t = 0[s], x(0) = 0[m], y(0) =
−0.38[m]. Then, when t = 1.5[s], the robot follows a smooth
trajectory from its initial position to the position, x∗(3) =
0.34[m], y∗(3) = 0[m], staying in that position for 1[s].
At t = 4[s], the reference trajectory is defined by a circumfer-
ence with center in (0.21, 0)[m] and radius equals to 0.13[m]
and it is described by x∗(t) = 0.21 + 0.13 sin(φ∗(t))[m]
and y∗(t) = 0.13 cos(φ∗(t))[m]. Here φ∗(t) represents a
smooth trajectory from φ∗(4) = 0[rad] to φ∗(20) = 2π [rad].
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FIGURE 3. σ -stable region for q1 (simulation).

Finally, the robot returns out to its initial position x∗(23) =
0[m], y∗(23) = −0.38[m]. The reference path is shown
in Figure 11.
The inverse kinematics presented in (27) is used to com-

pute the desired joint trajectories
(
q∗1(t), q

∗

2(t)
)
. The initial

conditions for the joint variables are (0, 0). According to
(37), the gains of the Proportional Derivative controller were
selected as: ω01 = 50, ζ1 = 0.7, ω02 = 45, ζ2 = 0.7. Then,
the Proportional Derivative matrices are simplified as:

KP =

[
2500 0
0 2025

]
, KD =

[
70 0
0 63

]
.

Since the velocity vector q̇ is not available, then, a low pass
filter with transfer function G(s) = 300s

s+300 , is used to estimate
it and to reduce the noise generated by the estimation of the
so-called ‘‘dirty derivative’’.

On the other hand, following (39), the gain parameters
of the Proportional Retarded controller uPRwere chosen as:
ν1 = ω01 = 50, δ1 = 0.7, κ̃1 = 196, ν2 = ω02 = 45,
δ2 = 0.7, κ̃2 = 196, thus, the matrix gains looks as:

KP =

[
2696 0
0 2221

]
, KR =

[
434.538 0

0 368.070

]
.

Figures 3 and 4 show, for q1 and q2 respectively, the
σ -stability boundaries in the parametric space (kRi,Ti), where
each contour curve corresponds to a value of σ . In each
figure, the red mark represents the maximal achievable decay
rate σ ∗ and it represents the place where all the σ -stable
boundaries collapse in a single point. For the first joint,
the maximum decay rate σ ∗1 = 73.353 is obtained when the
controller gains are set as kR1 = 434.538 and T1 = 0.026[s],
while for the second joint, the maximum decay rate is σ ∗2 =
66.553, and is reached with the controller gains established as
kR2 = 368.070 and T2 = 0.0285[s].
Figure 5 depicts the tracking results for the joint q1, when

the planar robot is controlled by the PD+G controller and
its behavior, when the PR+G controller is implemented,
appears in Figure 6. The tracking errors for both controllers
are detailed in the upper subplot of Figure 7. Nevertheless, no

FIGURE 4. σ -stable region for q2 (simulation).

FIGURE 5. PD+G trajectory tracking performance of q1 (experimental).

FIGURE 6. PR+G trajectory tracking performance of q1 (experimental).

conclusion related to the presence of noise can be stated, thus
a detailed view of a segment of the error dynamic is presented
in the lower subplot of Figure 7. Now, it can be verified that
the ripple of the PR controller is lower than the ripple that
present the PD controller.

Figures 8 and Figure 9 show the tracking results for the
PD+G and PR+G controllers for the second joint q2. The
error tracking performance appears in the upper subplot of
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FIGURE 7. q1 trajectory tracking errors (experimental).

FIGURE 8. PD+G trajectory tracking performance of q2 (experimental).

FIGURE 9. PR+G trajectory tracking performance of q2 (experimental).

Figure 10, while in the lower subplot a detailed view of a
segment of the error dynamics is presented.

The experimental results obtained for PR+G and PD+G in
robot joint space task and in the robot Cartesian space for tra-
jectory task (depicted in figures 11 and 12) were satisfactory
achieved by both controllers since the tracking errors in both

FIGURE 10. q2 tracking trajectory errors (experimental).

FIGURE 11. PD+G 2-DOF robot trajectory (experimental).

FIGURE 12. PR+G 2-DOF robot trajectory (experimental).

cases are bounded and, from this point of view, the PD+G
controller present better results for trajectory tracking tasks.
The main difference between PD+G and PR+G experimen-
tal results appear in the control effort. Figures 13 and 14,
exhibit the applied torque to each joint, where it can be seen
that the torque is in the bound of the maximum admissible
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FIGURE 13. q1 control input (experimental).

FIGURE 14. q2 control input (experimental).

torque provided by actuators, given by τ1max = 4.412 [N-m]
and τ2max = 0.294 [N-m]. The PD+G control torque signals
are noisier, mainly due to the estimation of the velocity vector
q̇ (even with the use of a low pass filter). Then, as a result
of this estimation, undesired vibrations appear in the PD+G
control law, which can damage the actuators of the robot
manipulator or the power electronics stage. In the other hand,
the PR+G control torque shows a clear decrease in noise
amplitude and frequency, which give us some advantages i.e.
easy experimental implementation, less power consumption
and vibrations, less wear on the actuators among others.

A frequency spectrum analysis between PR+G and PD+G
control is presented in order to explore how the cut-off fre-
quency of the low pass filter G(s) = ωcs

s+ωc
impact on the

frequency spectrum of the PD control, three cases are pro-
posed: the nominal case with a cut-off frequency ωc = 300,
the second one considering ωc = 100, and finally without
low pass filter. The first link frequency spectrum results
are shown in Figure 15. On the one hand, we can observe
that the nominal case τ1PD(f ) ωc = 300 (blue) exhibits
high frequency components with a peak approximately in
f = 80[Hz], frequencies that commonly are associated
with noise, in the same way τ1PD(f ) ωc = 100 (green)

FIGURE 15. τ1 Frequency spectrum (experimental).

FIGURE 16. τ2 Frequency spectrum (experimental).

exhibits a high frequency components this case with a peak
approximately in f = 50[Hz], we can notice if we select
the cut-off frequency smaller this peak is moved to the low
frequencies, the response of the τ1PD(f ) withoutfilter (black)
shows that high frequencies are affected the system given
as a result undesired oscillations and wear on the actuator.
On the other hand, the proposed control τ1PR(f ) shows all
its components are concentrated in low frequencies. Similar
results can be deduced from Figure 16, where the spectral
analysis for the second link is presented. In the nominal case
τ2PD(f ) ωc = 300 presents high frequency components with
a peak approximately in f = 80[Hz], τ2PD(f ) ωc = 100 the
peak is observed in f = 50[Hz], and τ2PD(f ) withoutfilter
presents high frequencies whereas in the lower figure τ2PR(f )
exhibits low frequency components.

Finally, in order to be able to compare quantitatively the
performance of the proposed controllers, a Quadratic Error
Index is computed as

ISIqi(t) =
∫ t

0
(qi − q∗i )

2dτ. (40)
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FIGURE 17. q1 performance index (experimental).

FIGURE 18. q2 performance index (experimental).

Figure 17 shows the performance index for first link,
we can notice that the nominal controller ISIq1PD(t) ωc =
300 exhibit similar results to ISIq1PD(t) ωc = 100.
where the ISIq1PD(t) withoutfilter . shows the worst results
and ISIq1PD(t) ωc = 100 show the best performance,
we can notice that the proposed controller ISIq1PR(t) exhibits
the performance closer to the nominal case ISIq1PD(t)
ωc = 300. In Figure 18 the second link performance indexes
are depicted, both controllers show similar behavior with
slightly variations between ISIq2PD(t) and ISIq2PR(t).

VI. CONCLUDING REMARKS
The present manuscript proposes the use of a Proportional
Retarded controller plus gravity compensation to overcome
the disadvantages that yield the velocity estimation in the Pro-
portional Derivative control in robot manipulators. Indeed,
despite of its basic structure, it has been shown (through
experimental implementation) that the PR controller is capa-
ble of controlling the nonlinear robot dynamics and com-
pensating the possible inherent uncertainties. Although the
experimental comparison shows that the PD+G controller
shows a better performance in trajectory tasks results (in the
sense of the magnitude of the tracking error, and validated

by a quadratic error index analysis comparison), the PR+G
highlights due it easy implementation, the less noisy torque
control signals (validated via an analysis of the frequency
spectrum) and its adequate performance in tracking trajectory
tasks without the use of signal filtering stages.
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