
Received December 8, 2018, accepted January 4, 2019, date of publication January 11, 2019, date of current version February 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2892082

Integrating UML With Service Refinement for
Requirements Modeling and Analysis
YILONG YANG 1, WEI KE2, JING YANG3, AND XIAOSHAN LI1
1Faculty of Science and Technology, University of Macau, Macau 999087, China
2Macau Polytechnic Institute, Macau 999087, China
3College of Computer Science and Technology, Guizhou University, Guiyang 550025, China

Corresponding authors: Jing Yang (yangjing6646@yahoo.com.hk) and Xiaoshan Li (xsl@umac.mo)

This work was supported in part by the projects of the Macau Science and Technology Development Fund under Grant 103/2015/A3,
in part by the University of Macau under Grant MYRG-2017-00141-FST, and in part by the National Natural Science Foundation
of China under Grant 61562011.

ABSTRACT The Unified Modeling Language (UML) is the de facto standard for requirements modeling
and analysis in the software industry. However, it lacks the ability of formal analysis and verification.
In this paper, we propose a synthetic approach UML-SR that integrates UML with service refinement (SR)
to support the formal requirements modeling and analysis as well as formal verification. The UML-SR
requirements model contains a use case diagram, the system sequence diagrams of use cases, a conceptual
class diagram, and the formal contracts of system interfaces. To make this integration viable, we extend
service refinement with the concepts of visibility in UML. With the visibility extension, we are able
to formally specify and verify both internal and external interactions of the system. To demonstrate the
effectiveness of our proposed approach, we investigate a case study of an Online Shopping System. The
results show that a consistent requirements model can be eventually derived through formal refinement and
verification. The proposed approach is useful and can be further applied for the requirements modeling and
formal verification in the software industry.

INDEX TERMS UML, requirements modeling, service refinement, formal verification.

I. INTRODUCTION
One of the major challenges in software development is to
conquer the high complexity of current large-scale software
system [1], [2]. To tackle this challenge, UML provides vari-
ous diagrams for developers to model software systems from
multiple viewpoints. Under such an approach, the require-
ments model of a system can be specified by a use case dia-
gram, a set of system sequence diagrams for the interactions
between the system interfaces and the environment in each
use case, and a conceptual class diagram for modeling the
concepts in the target domain. However, the potential issues
of the requirements model are hard to find only depend-
ing on these diagrams, because UML does not have any
technique to verify safety properties, such as deadlock-free
and livelock-free in requirements models. Moreover, when
the system derived from a requirements model is getting
refined, we cannot verify the correctness of the refinement
by UML alone. The objective of this paper is to discover the
correspondence between UML and service refinement, so as
to take the advantages of both UML and formal methods in

requirements modeling, with the capability of doing formal
safety checking and refinement verification by some popular
requirements modeling tool.

Service refinement [3] is a well-designed formal method
on the calculus of contract refinement. It has the capabil-
ity to reason important safety properties of system behav-
iors and the correctness of refinement. Service refinement
lays the foundation of guard design and design refinement
on the Unifying Theories of Programming (UTP) [4], and
the divergence and failures model of the Communicating
Sequential Processes (CSP) [5]. This puts it under our
main consideration as the underpinning formal method for
UML requirements models. On the other hand, service refine-
ment is also simple enough to let us focus only on require-
ments modeling and analysis, without going into the design
model constructs such as class diagrams, sequence diagrams,
collaboration diagrams and state machines. With the highly
similar concepts of interfaces in both service refinement
and UML, service refinement is much closer to bridge with
UML requirements modeling than other potential formal

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

11599

https://orcid.org/0000-0002-0099-344X

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

methods based on automata, such as Event-B [6] and
UPPAAL [7].

However, service refinement is not natively designed for
requirements modeling and analysis, at least not in a fully
object-oriented style. In particular, an interface in service
refinement consists of only ‘‘public’’ services. To han-
dle those private methods in a UML requirements model,
we must extend service requirement with the addition of
visibility specifications, i.e., a ‘‘public’’ or ‘‘private’’ prefix
can be added to a service. We summarize the adjustments
based on this visibility extension to service refinement as
follows.

Visibility The visibility prefixes are used to describe
whether an operation of an interface is public or private
in UML. Correspondingly, we extend service refinement
to allow both public and private services in an interface.
We further restrict that a use case must go through its
private services to invoke services in other use cases, so
that all interactions between use cases can be formulated
as invocations of the private services of the invoking use
cases.

Divergence The divergence state is defined as the unstable
state of livelocks, in which the system infinitely invokes
internal actions. With the above visibility extension of
service refinement, the divergence state is defined as
infinite invocations of private services.

Consistency Without the visibility extension, the consis-
tency in service refinement only considers if there are
deadlocks. Now, we extend the consistency of contract
to take livelocks into account as well. A contract is con-
sistent not only when there exist some services outside
the refusal set after a trace, i.e., deadlock-free, but also
there exists no trace containing infinite invocations of
private services, i.e., livelock-free.

Refinement A refined contract maintains the same behavior
to the environment, but is safer in terms of consistency.
For private services which are invisible to the environ-
ment, we need to hide them when considering the exter-
nal behavior of a contract so as to make justifications to
the refinement relation.

Contribution: The purpose of this work is to provide for-
mal support to UML through service refinement. In order
to conduct consistency checking and refinement verification
on the contracts derived from a requirements model, we
present the bridging from a UML requirements model to the
corresponding interfaces and contracts in service refinement
by the case study of an Online Shopping System. Our major
contribution in this work is summarized as follows.

1) We extend service refinement with visibility prefixes,
and formulate the needed adjustments to the theory.

2) We propose a synthetic approach UML-SR by integrat-
ing UML with service refinement.

3) We demonstrate the effectiveness of UML-SR for
requirements modeling and verification through the
case study.

The remainder of this paper is organized as follows.
Section II presents the preliminary of service refinement
with the extension of visibility prefixes in a formal style.
Section III presents UML-SR by integratingUML and service
refinement to develop the requirements model, and derives
the contracts through the case study of an Online Shopping
System. Section IV refines the contracts with the consistency
properties and presents the verification of the refinement.
Section V reviews the related work. Finally, section VI con-
cludes this paper and discusses the future work.

II. SERVICE REFINEMENT AND VISIBILITY EXTENSION
The theory of service refinement describes how to specify
the services of a system and the refinement relations between
various concepts in the specifications. The concepts include
interfaces to describe the signatures of services and the global
variables, specifications to describe the functionality and
behavior, and contracts to describe the interaction protocols,
in particular, the intended invocation sequences of the ser-
vices in a system. With the specifications of behaviors and
the protocols of interactions, the consistency of a system
can be defined and reasoned about, where deadlock-free and
livelock-free are the properties to deal with. Now, we give the
definitions of these concepts in detail with the adjustments
introduced by the visibility extension.

A. INTERFACES
Interfaces are the access points of a system. In service refine-
ment, an interface I is a pair consisting of a resource declara-
tion sector and a service declaration sector,

I = (RDec, SDec). (1)

RDec is a set of variable declarations {x : T }, with x the
variable and T the type. SDec is a set of service signatures

{m(in : U , out : V)},

with m the name of the service, in of type U the input
parameter, and out of type V the output parameter.

1) EXTENSION FOR INTERFACES
A visibility prefix can be added to a signature to indicate
whether the service is visible to the environment. We adopt
the same visibility notation of UML interfaces, where the
‘‘+’’ prefix indicates a public service, and the ‘‘−’’ prefix
indicates a private service. For example, the signature of a
private service m is written as

−m(in : U , out : V).

Private(SDec) is the set of private services, Public(SDec) is
the set of public services. By default, a service signature
without a prefix is regarded as public. Private services are
not visible to the environment, they can only be seen in the
contract containing the interface.

Note that service refinement follows the convention
of UTP to specify the requirements model:

11600 VOLUME 7, 2019

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

• The variable x stand for the initial value of a variable
updated by the program.

• The decorated version x ′ represents the final value of that
variable on termination.

• Boolean variable ok (and its decorated version ok ′) takes
the value true just when the program has reached a stable
and observable state.

• Boolean variable wait takes the value true just when
the program has reached a stable intermediate state, and
which is false if the program has terminated.

Like in regular expressions, an asterisk (A∗) superscript indi-
cates zero or more repetitions of event A and a question
mark (A?) superscript indicates zero or one occurrence of
event A. Sequentially invoking the services m1,m2,m3 actu-
ally results the trace set

{〈〉, 〈m1〉, 〈m1,m2〉, 〈m1,m2,m3〉}.

B. SPECIFICATIONS
The specification of a service m is a triple (α, g,P)m, where
• m is the name of the service,
• α comprises all the resources managed by the service,
• g is the firing condition of the service, characterizing the
circumstance under which the service can be activated,

• P is a reactive design H (p ` R), describing the behavior
of the service when being executed.

Obviously, a specification does not have any visibility issue.

C. CONTRACTS
A contract is the specification of an interface. A contract of an
interface specifies the functionality of each service declared
in the interface, and the protocol of the interactions between
the services.
A contract Ctr is a quadruple (I , Ini, Spec,Prot), where
• I is an interface,
• Ini specifies the initial design, i.e., for the set of variables
V in the resource of I

Ini = true ` ini(V ′) ∧ ¬wait ′,

• Spec is the set of specifications {(α, g,P)m} for each
service m(in : U , out : V) in I , and

• Prot is a set of valid event traces of service requests and
responses in the form of

〈?m1(x1), !m1(y1), . . . , ?mk (xk), !mk (yk)〉,

where ?m(x) represents a request of service m with
parameter x and !m(y) the response of service m with
result y. The protocol of a contract consists of all the
possible request prefixes of a normal response, i.e., if the
services are invoked following the traces in Prot , we can
expect a result, otherwise, the result is undefined.

1) SEMANTICS OF CONTRACTS
The dynamic behavior of a contract Ctr forms the semantics,
which is described as a triple

(Prot(Ctr),Failures(Ctr),Divergences(Ctr)),

where

• Prot(Ctr) retrieves the weakest protocol of the contract,
• Failures(Ctr) is the set of pairs {(s,X)}, where s is a trace
of interactions between Ctr and the environment, and
X denotes the set of requests and responses which the
contract may refuse to engage after the occurrence of
trace s, and

• Divergences(Ctr) is the set of traces each of which leads
the contract to a divergence.

2) EXTENSION FOR SEMANTICS OF CONTRACTS
In UML, private services of a interface are invisible from
the environments, they only can be invoked by the public
services co-located in the same interface, and the interme-
diate variables and boolean variables ok ′ and wait ′ cannot
be observed during the invoking process. Therefore, when a
public service m ∈ Public(SDec) invokes the private services
{−m ∈ Private(SDec)}, the traces and observations can be
denoted as:

{〈?m(xi), ?−m∗〉 |(gm & Pm)[xi/x][true/ok, true/wait ′]}

Note that the ok and wait are observed before invoking
the private services. At that moment, the system is in a
waiting state, i.e, the system waits for private services to be
executed. The new values can only be observed when the
system finishes invoking the private services. After success-
fully invoking the private services and returning the results,
the traces and observations can be denoted as:

{〈?m(xi), ?−m∗, !m(yi)〉 |

(gm & Pm)[xi/x, yi/y′][true/ok, true/ok ′]}

In the relation to UML, Divergences(Ctr) specifies the
interaction traces with a use-case that can lead to a diver-
gence of the system, which means the use case are busy in
executions without termination. In this case, the divergence
of a contract can be defined as the set of traces of infinite
sequences of invocations to the private services, denoted by
{〈?−m∗〉 | −m ∈ Private(SDec)}. Therefore, the extension is
defined as,

Divergences(Ctr)

=df



〈?m1(x1), !m1(y1), . . . , ?mk (xk), ?−m∗〉

| Ini; (g1 & P1)[x1/x, y1/y′]; . . . ;

(gk−1 & Pk−1)[xk−1/x, yk−1/y′]

[true/ok ′, false/wait ′];

(gk & Pk)[xk/x][true/ok, false/ok ′]


where (αi, gi,Pi)mi ∈ Spec(Ctr) for i = 1, 2, . . . , k .
As we have mentioned, private services can only be

invoked from the public services in the same inter-
face. Therefore, private services are in the refusal set X
of Failures(Ctr), except when the public service mk
invokes them, Failures(Ctr) thus have the extended

VOLUME 7, 2019 11601

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

definition,

Failures(Ctr) =df {. . .}

∪



(〈?m1(x1), !m1(y1), . . .

?mk−1(xk−1), !mk−1(yk−1)〉,X)

| ∃v′, y′ · (Ini; . . . ;

(gk−1 & Pk−1)[xk−1/x, yk−1/y′]

[true/ok ′, false/wait ′]

∧ ∀?m ∈ X · ¬g[v′/v]

∧ m ∈ Public(SDec)

∧ ?−m ∈ X ∧−m ∈ Private(SDec))



∪



(〈?m1(x1), !m1(y1), . . . , ?mk (xk)〉,X)

| ∃v′ · (Ini; . . . ;

(gmk & Pmk)[xk/x]

[true/ok ′, true/wait ′]

∀?m ∈ X ∧ m ∈ Public(SDec)

∧ ?−m 6∈ X ∧−m ∈ Private(SDec))


where

(α, g,P)m, (αi, gi,Pi)mi ∈ Spec(Ctr),

for i = 1, 2, . . . , k , and {. . .} denotes the Failures(Ctr) set
defined in the original service refinement.

D. CONTRACT CONSISTENCY
A contract Ctr is consistent, if it will never enter deadlock
states unless the environment violates the protocol. This can
be formally defined as,

∀tr ∈ Prot ·

 ∃s ∈ Traces(Ctr) · s↓{?} = tr ∧

∀(s,X) ∈ Failures(Ctr) · s↓{?} � tr

⇒ X 6= {?m, !m | m ∈ SDec}

 (2)

where Traces(Ctr) =df {s | ∃X · (s,X) ∈ Failures(Ctr)}, is
the set of all traces each with a refusal set defined, s↓{?} is the
filtered subsequence of s keeping only the requests, and the
t � s partial order means sequence t is a prefix of s.

EXTENSION OF CONTRACT CONSISTENCY
With the visibility extension and our enforced use of private
services in internal interactions between use cases, we are
able to well-define the semantics of divergence. Thus, we can
also extend the consistency to take livelock-free into account.
A contract is consistent when it is both deadlock-free and
livelock-free. The former means after any trace there are the
services to continue with, i.e., the refusal set X does not
contain all the private and public services. Since the extended
service declaration sector SDec includes both private and
publicmethods, the deadlock-free condition is covered by (2).
The latter means there should not be any infinite requests to
private services in any trace:

∀s ∈ Traces(Ctr) · s↓{?} 6∈ {t ˆ 〈?−m∗〉 |

−m ∈ Private(SDec), t � s↓{?}}

E. CONTRACT REFINEMENT
A refined contract provides the same set of services but with
more safer behaviors.

Let Ctr i = (Ii, Inii, Speci,Prot i), for i = 1, 2, be two
contracts with the same set of services. We sayCtr1 is refined
by Ctr2, denoted by Ctr1 v Ctr2, if

1) Divergences(Ctr1) ⊇ Divergences(Ctr2), and
2) Failures(Ctr1) ⊇ Failures(Ctr2).

EXTENSION FOR CONTRACT REFINEMENT
With the visibility extension, the traces of divergences and
failures contain invocations of private services. However,
from the viewpoint of the environment, these events of pri-
vate services are invisible. We follow the service hiding to
hide all the private services from the traces and refusal sets
before we check the above conditions of contract refinement.
This works for the traces that lead to divergence and failure,
in other words, these are the traces in the blacklist. If we
blacklist a trace tr with the private services concealed, we
will effectively blacklist all those traces with tr as the result
of the concealment.

Let Ctr i = (Ii, Inii, Speci,Prot i) for i = 1, 2, be two
contracts with the same public services, −M1 and −M2 the
respective private services in Ctr1 and Ctr2. Ctr1 is refined
by Ctr2, denoted by Ctr1 v Ctr2, if

Divergences(Ctr1 \ −M1) ⊇ Divergences(Ctr2 \ −M2)

Failures(Ctr1 \ −M1) ⊇ Failures(Ctr2 \ −M2)

where (\) is the hiding operator on traces and the set differ-
ence on sets of events, also the operation is distributed into
sets and pairs when needed without ambiguity. Formally, Let
Ctr be a contract, and −M is the private services of SDec,
Ctr \ −M removes the private services of −M from the
contract Ctr :

Divergences(Ctr \ −M) =df {s |

s ∈ Divergences(Ctr)

∧ s ∈ {?m(x), !m(y) | m ∈ SDec \ −M}∗

Failures(Ctr \ −M) =df {(s,X) |

(s,X) ∈ Failures(Ctr)

∧ s ∈ {?m(x), !m(y) | m ∈ SDec \ −M}∗

∧X ⊆ {?m | m ∈ SDec \ −M}

III. REQUIREMENTS MODELING IN UML-SR
In this section, we present how to integrate service refinement
with UML as UML-SR for requirements modeling and anal-
ysis shipped with a case study of an Online Shopping System.

A. OVERVIEW
The elements of UML and service refinement used in require-
ments modeling, together with their correlation, are shown
in Fig. 1. A requirements model of UML contains a use case
diagram, system interfaces, system sequence diagrams and
a conceptual class diagram. The corresponding constructs

11602 VOLUME 7, 2019

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

FIGURE 1. Comparison UML with service refinement for requirements
modeling.

FIGURE 2. The synthetic approach UML-SR for requirements modeling.

in service refinement include interfaces, specifications of
interfaces, protocols of interfaces, failures of interfaces and
divergences of interfaces.

The overall of UML-SR is shown in Fig. 2. In UML-SR,
1) we adopt a use case diagram to specify the actors, the use
cases, and the relations between them in the target system.
2) We use the system interfaces to specify the system opera-
tions in each use case and convert the UML interfaces to the
formal interfaces in service refinement. 3) We use a concep-
tual class diagram to specify the entities and their relations of
target system based on the specification of resources and ser-
vices in service refinement. 4) We specify the specifications
of interfaces based on step 1, 2 and 3. 5) We use protocols to
specify the interactions between the interfaces and the actors
for each use case, then convert the result to system sequence
diagrams. Finally, 6) we specify the failures and divergences
of the interfaces.

The Online Shopping System [8], [9] is an electronic com-
merce system that allows consumers to directly buy products
from sellers over the Internet. The Alibaba, Amazon, and
eBay are the largest companies providing online shopping
services for billions of people all over the world. Consumers
can search interested products through thewebsite, which dis-
plays all the related products with their prices from different
sellers. Moreover, customers can shop online at any time and
anywhere by using a wide range of devices, including desktop
computers, laptops, tablets and smart phones.

B. USE CASE DIAGRAM
UML provides use case diagrams to help customers specify
the requirements of a target system. The basic use cases of
the Online Shopping System are specified in Fig. 3. We list
the description of the use cases below.

FIGURE 3. Use case diagram of online shopping system.

Search Products The customer can search desired products
by keywords, and the system displays the candidate
products to the customer for further examinations.

Manage Shopping Cart When customers found the desired
products, they can add the products to the shopping cart
if the products are available, i.e., in the stock. The cus-
tomer can also check the state of the shopping cart at any
time. While checking the shopping cart, the customer
can quickly remove the disliked products from the cart,
and the customer can also change the number of items of
a product. For example, there is one pair of Nike shoes
in Jack’s shopping cart, and Jack likes to buy one more
pair for his daddy, he could quickly change the number
of pairs of the Nike shoes to two in the shopping cart.

Manage Order When the shopping cart is ready, the cus-
tomer can place the order under his account. This implies
the customer must have an account and log into the
system. Moreover, at least one address must be added to
each account for receiving products. If the customer has
more than one addresses, the system will ask to choose
one for the shipment. Once a customer has logged into
the system, the customer can check the state of the orders
at any time. In particular, the system shows whether an
order is paid or not. The customer can even track the
orders through the delivery system once the products
have been sent out.

Pay Order While placing the order, the customer must
choose the payment method. If the customer chooses
Cash on Delivery, the cash must be given to the deliv-
ery man when receiving the products. If the customer
chooses the online payment method, the system will
check the balance under the account, if the account has
not enough balance for the payment, the systemmust ask
the customer to pay with one of the credit cards through
a third party payment service.

Manage Account If a customer uses for the first time this
Online Shopping System, the customer must register
an account before checking orders out. A registered
customer can modify the information of the account at
any time. In particular, this includes delivery addresses
and credit card records. Moreover, a customer can make
deposits to the account at any time through third-party
payment services.

VOLUME 7, 2019 11603

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

FIGURE 4. Interfaces of online shopping system.

C. SYSTEM INTERFACES AND DOMAIN CONCEPTS
MODELING
The primary use cases are presented in the previous section.
We now use the interface of the class diagram in UML to
specify the services of the use cases in Fig. 4. For example,
the ManageAccountI interface contains the service signUp
for a new customer to register the membership, the services
logIn and logOut for a customer to log into and out from the
system, the service checkBalance for checking balance in the
customer’s account, and the service deposit for increasing the
account’s balance.

By the interface, we can identify the services of the target
system, and even with the input/output parameters and the
required resources. However, UML lacks the ability to define
the contract for each service to specify precisely how the
service should behave. The service refinement formal method
not only facilitates precise definitions of service specifica-
tions, interfaces and contracts, but also provides the theories
to check the consistency properties and verify the refinement
of contracts. For example, theManageAccountI interface can
be described by the interface of service refinement as follows,

ManageAccountI = (RDec, SDec)

SDec = {

signUp(inPersonalInfo : Customer, out : Boolean),
logIn(inUserName : String, inPasswd : String,

out : Boolean),
logOut(out : Boolean),

checkBalance(outBalance : Double),

deposit(inNewBalance : Double, out : Boolean)}

RDec = {

UserDB : Customer∗,

CurrentCustomer : Customer,

TempCustomer : Customer,

LoginState : Boolean}

The signatures of the services are defined in SDec. For
example, service logIn requires inUserName and inPasswd
of type String as input parameters, returns a result out of type
Boolean to indicate whether the customer has successfully
logged in. The required resources are defined in RDec. For
example, the login state of some customer is represented
in global variable LoginState of type Boolean. In particular,

FIGURE 5. Conceptual class diagram of online shopping system.

the current customer is represented in CurrentCustomer of
type Customer , which is not a basic type such as Double,
String, Boolean orDate, but a domain concept. This complex
type should contain at least the attributes of

(Name : String, Passwd : String,

Balance : Double, Address : String)

and can be represented as a domain conceptual class in UML.
Once we have defined all the interfaces of the system, just
like the above interface ManageAccountI , we can forge the
domain model in a UML conceptual class diagram, as shown
in Fig. 5.

The conceptual class diagram describes abstract and mean-
ingful concepts in the problem domain, and it decomposes
the problem regarding the individual concepts. This is an
important trophy in requirement analysis. Therefore, we can
tell that service refinement can help UML to get the more
precise model about the target system in at least requirement
election stage.

D. SERVICE SPECIFICATION BY SERVICE REFINEMENT
We have specified the use cases, the service interfaces, and
the domain model of the target system up to this moment.
For each service, besides the signature, we also need to
precisely define its semantics, such as when the service can
be activated, and what the service does (but not how to do)
by describing the system state changes carried out by the ser-
vice. UML diagrams of requirements model cannot describe
such semantics of a service, however, the specification triple
(α, g,P) in service refinement can be used to accomplish this
task. For example, the semantic of service deposit can be
defined as follows.

sig : deposit(inNewBalance : Double, out : Boolean)

spec : Spec(deposit) = (α, g, p ` R)deposit where

α : LoginState, inNewBalance,

CurrentCustomer,CurrentBalance, out

let c = CurrentCustomer,1 = inNewBalance,

cb = CurrentBalance in

11604 VOLUME 7, 2019

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

g : LoginState = true ∧ cb ≥ 0 ∧ cb ≤ 100
p : inNewBalance ≥ 10
R : c.Balance′ = c.Balance+1 ∧ out ′ = true ∧

cb′ = c.Balance′ ∧ wait ′ = false

The customer canmake a deposit into his account through ser-
vice deposit , which has one input parameter inNewBalance,
and one output parameter out . In the specification, g is a guard
condition stating that only when resource LoginState is true
and CurrentBalance is less than 100 dollars, the service can
be invoked. The design p ` R is a pair of precondition p and
postcondition R, where p describes that the state of the system
before the execution of the service, and R describes the state
of the system when the execution of the service completes.
For service deposit particularly, p specifies the minimum
deposit amount which is at least 10 dollars, R specifies after
the execution of the service, the balance of current customer
is equal to the original balance plus the new deposit amount,
and the value of parameter out is set to true. All the required
resources are listed inα including global variables and param-
eters LoginState, inNewBalance, out and CurrentCustomer .
Once we have defined the semantics of all the services in the
ManageAccountI interface, the specification of the interface
can be obtained as,

Spec(ManageAccountI)
= {Spec(signUp), Spec(logIn),

Spec(logOut), Spec(checkBalance), Spec(deposit)}

At this moment, the semantics of all services have been
specified. However, the interactions between the interfaces of
the system and the environment (actors) are still waiting to be
described. These interactions are formulated as the protocol.

E. THE PROTOCOL OF INTERFACE
Service refinement specifies the interactions among actors
and use cases in the protocol Prot of an interface. The pro-
tocol is a set of valid event traces of service requests and
responses in the form of

〈?m1(x1), !m1(y1), . . . , ?mk (xk), !mk (yk)〉,

where ?m(x) represents a request of servicemwith parameter
x and !m(y) the response of service m with result y. For
example, the protocol of the ManageAccountI interface is
defined as follow.

Prot(ManageAccountI) = { s∗ |
s = 〈〉
∨ s = 〈(?signUp(inPersonalInfo), !signUp(out))?〉
∨ s = 〈(?signUp(inPersonalInfo), !signUp(out))?

, ?logIn(inUserName, inPasswd), !logIn(out)〉
∨ s = 〈(?signUp(inPersonalInfo), !signUp(out))?

, ?logIn(inUserName, inPasswd), !logIn(true)

, ?checkBalance(), !checkBalance(outBalance)

, (?deposit(inNewBalance), !deposit(out))?

, ?logOut(), !logOut(out)〉}

FIGURE 6. The basic event flow of ManageAccountI .

The above protocol of ManageAccountI describes four
main stories of the interface: 1) In the initial state, no service
has been invoked yet, therefore, the trace of the interface is
empty. 2) A new customer must request for service signUp
to open an account in the system. 3) If a customer has suc-
cessfully opened the account or already has an account in the
system, the customer can call service logIn to log into the
system, then 4) check the balance of the account, deposit into
the account if the balance less than $100, and finally log out
of the system.

F. SYSTEM SEQUENCE DIAGRAMS FOR PROTOCOLS
The protocol of an interface can formally define the interac-
tions of use cases as above. However, this notation is not easy
to understand by nor intuitive to end-users and developers
who are not familiar with formal methods. UML provides
activity diagrams and system sequence diagrams that can
describe event flows more clearly. For example, the proto-
col of ManageAccountI can be represented by the system
sequence diagram show in Fig. 6.

The system sequence diagram illustrates the interface
and the actors, and the requests and responses between the
interface and the actors. The ‘‘loop’’ and ‘‘opt’’ operators
act exact like (A∗) and (A?) in the protocol to respectively
describe the optional and repeated events. With the

VOLUME 7, 2019 11605

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

UML system sequence diagram, it is straightforward to for-
mulate the protocol of the interface in the service refinement
notation. We also notice that there is a third-part service
shown as another actor in Fig. 6. Although we focus on the
interactions between a customer and the interface, an actor
can also represent other external services in the environment.

G. THE CONTRACT OF INTERFACE
We have just specified the functional requirements in the
interface I of the system, the specification Spec of the services
including the guard condition for activating each service, the
state of the system before and after the execution of each
service, and the protocol Prot of the interactions between the
system and the environment. We still lack the information
about the initial state of the system. In the theory of service
refinement, the contract of interface also specifies the initial
state of the resources. For example, for the resources of the
RDec(ManageAccountI) below,

RDec(ManageAccountI) = {

UserDB : Customer∗, CurrentCustomer : Customer,

CurrentBalance : Double, LoginState : Boolean}

The initial settings of these resources are described as,

Ini(ManageAccountI) = true ` ¬wait ′

∧UserDB′ = CustomerDatabase

∧CurrentCustomer ′ = null

∧CurrentBalance′ = −1

∧LoginState′ = false.

After system initialization, the resource UserDB contains all
the customers in the database, CurrentCustomer is a refer-
ence initialized to null meaning this resource does not refer
to any customer object, similarly, CurrentBalance is−1, and
the boolean variable LoginState is set to false. Thewait signal
is false indicating that the system is in a stable state ready to
receive service requests from the environment. Adding the
initial state of the system finalizes the contract of the inter-
face. As a result, the contract of interface ManageAccountI
is specified as,

Ctr(ManageAccountI)

= (ManageAccountI , Ini(ManageAccountI),

Spec(ManageAccountI),Prot(ManageAccountI))

1) THE FAILURES OF CONTRACT
The contract of the interface contains the specifications of
resources, services, the initial state, and the protocol of the
interface. However, the protocol only provides the valid inter-
actions between the system and the environment. For the
analysis of safety properties, we not only need to know what
interactions the system accepts but also what the system
refuses. In service refinement, we can specify the refusal
scenarios by modeling the Failures of a contract. Recall that
a failure is a pair (s,X) where s is a trace of interactions

between the system and the environment, and X denotes the
refusal set of the services of the contract after the happen-
ing of s. The Failures(Ctr) returns the set of all failures of
contract Ctr , defined as the union of several fragments,

Failures(Ctr) =df


(〈〉,X) |
∃v′·Ini[true, false/ok,wait]

[true, false/ok ′,wait ′]
∧∀?m ∈ X · ¬gm[v′/v]

 ∪ · · ·
The first fragment of failures describes the refusal of those
requests whose guards do not hold in the initial state. For the
contract ofManageAccountI , the variable LoginState is false
in the initial state. In Fig. 6 showing the workflow of use case
ManageAccountI , the services checkBalance, deposit and
logOut are activated only if LoginState = true. This means
the mentioned services refuse to response to the environment
in the initial state of the system. Formally, after initialization
of ManageAccountI and the empty trace 〈〉, the refusal set X
is

{?checkBalance, ?deposit, ?logOut}.

The next fragment of the failures is about after the execution
of a sequence of requests, including the responses, the guards
of some services become false, i.e.,

(〈?m1(x1), !m1(y1), . . . , ?mk (xk), !mk (yk)〉,X) |
∃v′· (Ini; . . . ; (gmk & Pmk)[xk , yk/x, y])

[true, false/ok,wait]
[true, false/ok ′,wait ′]
∧∀?m ∈ X · ¬gm[v′/v]

 ∪ · · ·
For example, the postcondition of the logIn service implies
LoginState′ = true after a successful response. With the
guard condition LoginState′ = false, it means once the
customer has logged into the system, the logIn service can-
not be requested again. Moreover, with the guard condition
CurrentBalance ≥ 0 ∧ CurrentBalance ≤ 100, the deposit
service cannot be requested before getting the current balance
because CurrentBalance is −1. Formally, after the traces of
the logIn service,

〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out) 〉,

the refusal set X becomes {?signUp, ?logIn, ?deposit}. Simi-
larly, after the traces of the logOut service,

〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),

?checkBalance(), !checkBalance(outBalance),

(?deposit(inNewBalance), !deposit(out))∗,

?logOut(), !logOut(out) 〉,

the variable LoginState becomes false again. Thus, the refusal
set X = {?checkBalance, ?deposit, ?logOut}.

The next fragment of failures specifies that for every
request of a service, the system must have a response. Those
traces that refuse to respond, i.e., the response of the last

11606 VOLUME 7, 2019

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

request is in the refusal set of the trace, must not be included
in the failures of the contract, thus, will not be considered as a
valid trace of the contract. Formally, the fragment is defined
as,

(〈?m1(x1), !m1(y1), . . . , ?mk (xk)〉,X) |
(Ini; . . . ; (gmk & Pmk)[xk/x])

[true, false, true, false/ok,wait, ok ′,wait]
∧ !mk 6∈ X

 ∪ · · ·
In Fig. 6 of the event flow of contractManageAccountI , every
request event of a service has a corresponding response event.
Therefore, the system does not refuse to respond for any
request.

2) DEADLOCKS
The next fragment of failures includes the traces that lead the
system into waiting states. Formally, the fragment is defined
as,

(〈?m1(x1), !m1(y1), . . . , ?mk (xk)〉,X) |
(Ini; . . . ; (gmk−1 & Pmk−1)
[xk−1, yk−1/x, y][true, false/ok ′,wait ′];

(gmk & Pmk)[xk/x]
[true, false, true, true/ok,wait, ok ′,wait ′]

 ∪ · · · ,
However, if system is stuck in a permanent waiting state
(wait ′ variable cannot became false) and refusal set contains
all services of the interface X = {?m | m ∈ Public(SDec) ∨
Private(SDec)}. The system is in the state of deadlock.

For example, the deposit service can possibly lead the
system into a waiting state, when a customer uses the credit
card to add a balance to the account. In this case, the system
will wait for the response from the third-party payment ser-
vice. Usually, the third party service returns instantly and the
system sets thewait variable to falsewhen the deposit service
completes. However, it is also possible for the third-party
service not to return due to communication problems or other
external failures. If the requirements are not taking the excep-
tional cases into account, this will lead to a permanent waiting
state, hence a deadlock. The failure of this case can specified
as,

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),

?checkBalance(), !checkBalance(outBalance),

?deposit(inNewBalance)〉,

X = {?m | m ∈ SDec(ManageAccountI)}).

This is a terrible property of the system, and we must refine
the contract to get rid of the deadlocks before making any
implementation. A simple idea to handle this situation is to
design an private service repeatInvokingPayment to periodi-
cally, such as every 30 seconds, send the request to the third-
party payment service until there is a response. Note that
the repeatInvokingPayment must be a deadlock-free service.
That means repeatInvokingPayment contains a timeout timer,
when the timeout period has elapsed without any response,

repeatInvokingPayment should abandon the future requests
and response to the outer caller an error code. This is a
common strategy to resolve the indeterministic response time
for third party services.

3) LIVELOCKS
The interface of a class diagram can also describe internal
services. As shown in Fig. 4, the public services in the UML
interface diagram each have a prefix (+), the private services
for internal use are prefixedwith (−). An internal service does
not interact with the environment directly, it is completely
hidden from the outside. This complicates the failures of the
system in such a way that even if there are invocations to
private services within the system, the system may still not
be responding. In ourManageAccountI example, when third-
party payment service is dead, the repeatInvokingPayment
service will be invoked in infinite times. We say the system is
in a livelock, or diverging, if it is busy doing internal services
without responding to the environment. When a trace makes
the system to fall into a divergence, the systemwill also refuse
to respond to the environment. The final fragment of failures
describes this situation. Formally, this fragment is the set of
divergent traces defined as,

{(s,X) | s ∈ Divergences(Ctr)},

where X = {?+m | +m ∈ SDec(I (Ctr))}. The last event
of a divergent trace is a request that leads the system into an
unstable state, with the ok ′ variable is false. In a divergence,
the internal services are infinitely invoked, that cannot bring
the system back to a stable state. In our case, the inter-
nal service repeatInvokingPayment make system divergent
when the third-party service is forever unavailable. Formally,
the divergence of interface ManageAccountI is,

Divergences(Ctr(ManageAccountI))

=df



〈 (?signUp(inPersonalInfo), !signUp(out))?

, ?logIn(inUserName, inPasswd), !logIn(out)
, ?checkBalance(), !checkBalance(outBalance)
, ?deposit(inNewBalance)
, ?repeatInvokingPayment()∗〉
| (Ini; . . . ; (g1 & P1)[outBalance/y])

[true, false/ok ′,wait ′];
(g2&P2)[inNewBalance/x][true, false/ok, ok ′]


,

where

(α1, g1,P1)checkBalance
(α2, g2,P2)deposit

}
∈ Spec(ManageAccountI).

Once we specified the divergences of ManageAccountI ,
the final fragment of failures is

{(s,X) | s ∈ Divergences(Ctr(ManageAccountI))},

where X = {?+m | +m ∈ SDec(ManageAccountI)}. That is,
when a trace s leads to a divergence, all the public services
are in the refusal set of s, meaning that the system stops
responding to the environment.

VOLUME 7, 2019 11607

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

In this section, we show how to use service refinement to
specify all the possible valid traces from the initial state of an
interface, and determine the refusal set of services for each
trace. This precisely defines the semantics of the interface.
We also see that UML diagrams can help give a clue for
modeling each of the use cases. UML diagrams and ser-
vice refinement are complementary to each other. Although
we get all the possible traces and refusal sets, there may
still have deadlocks and livelocks. The requirements model
must be health before the implementation. That means the
requirements are functional correct without the deadlock and
livelock.

IV. REFINEMENT AND VERIFICATION IN UML-SR
In this section, we show how to refine the contract of an inter-
face to obtain the deadlock-free and livelock-free properties
through service refinement.

A. Ctr1 IS NOT REFINED BY Ctr2
The main refinement strategy is to add more control log-
ics and resources to make the refusal set to be a proper
subset of all the service requests, i.e., X ⊂ {?m |

m ∈ SDec} rather than X = {?m | m ∈ SDec}.
As shown in the previous section, the failures of contract
ManageAccountI contain two traces about the deposit service
that refuse all the public services afterwards. The first trace
is in the deadlock state because of the fault in the request
to the third-party payment service. The second one is in
the livelock (divergence) state the system infinitely repeats
the request to the third-party payment service through the
internal −repeatInvokingPayment service. We refer to the
original contract of ManageAccountI as Ctr1, and the one
with the −repeatInvokingPayment internal service added as
Ctr2. Although Ctr2 is a deadlock-free contract, it does not
really refine Ctr1, because contract Ctr2 is more divergent
than Ctr1, i.e., Divergences(Ctr2) ⊃ Divergences(Ctr1)
for the additional tail of ?−repeatInvokingPayment∗ infinite
requests in the trace. This violates the refinement condition.

B. Ctr1 IS REFINED BY Ctr3
We continue to improve Ctr2 to be a livelock-free contract
Ctr3 by adding a variable MaxRepeats of type Integer to
RDec(ManageAccountI), with a control logic that once the
number of invocations to repeatInvokingPayment reaches
MaxRepeats, e.g., 3 times, it will abandon the request
and return a default result !deposit(false). The wait ′ vari-
able is set to false in this case, therefore, the corre-
sponding refusal set will not contain all the public ser-
vices. After adding the variable MaxRepeats and limit-
ing the contract Ctr3 of interface ManageAccountI , when
requesting the ?deposit(inNewBalance) service, the environ-
ment eventually receives the response !deposit(out) after
no more than MaxRepeats times of invocations to the
−repeatInvokingPayment internal service.

〈(?signUp(inPersonalInfo), !signUp(out))?

, ?logIn(inUserName, inPasswd), !logIn(out),

, ?checkBalance(), !checkBalance(outBalance)

, ?deposit(inNewBalance)

, ?−repeatInvokingPayment()MaxRepeats

, !deposit(false) 〉

Ctr3 will not make system into a divergence state. Therefore,
Ctr3 is a deadlock-free and livelock-free contract, and it
refines Ctr1 because after hiding the events

−M3 = {?−repeatInvokingPayment,

!−repeatInvokingPayment}

of the private service, the failures and divergences ofCtr3 and
Ctr1 satisfy,
1) Divergences(Ctr1) ⊇ Divergences(Ctr3) \ −M3, and
2) Failures(Ctr1) ⊇ Failures(Ctr3) \ −M3.

The following is the formal proof of the refinements from
contract Ctr1 to Ctr3: Proof: Ctr1 is no private service.
The failures of contract are:

Failures(Ctr1) = {
(〈〉,

X = {?checkBalance, ?deposit, ?logOut}),

(〈?signUp(inPersonalInfo), !signUp(out)〉,

X = {?checkBalance, ?deposit, ?logOut, ?signUp}),

(〈(?signUp(inPersonalInfo), !signUp(out))?,
?logIn(inUserName, inPasswd), !logIn(out)〉,

X = {?signUp, ?logIn, ?deposit}),
(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),
?checkBalance(), !checkBalance(outBalance),
?deposit(inNewBalance)〉

X = {?signUp, ?logIn, ?checkBalance,
?deposit, ?logOut}),

(〈(?signUp(inPersonalInfo), !signUp(out))?,
?logIn(inUserName, inPasswd), !logIn(out),
?checkBalance(), !checkBalance(outBalance),
?deposit(inNewBalance), !deposit(false)〉,

X = {?signUp, ?logIn, ?checkBalance}),
(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),
?checkBalance(), !checkBalance(outBalance),
?deposit(inNewBalance), !deposit(out)〉,

X = {?signUp, ?logIn, ?checkBalance}),
(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),
?checkBalance(), !checkBalance(outBalance),
(?deposit(inNewBalance), !deposit(out))∗,
?logOut(inNewBalance), !logOut(out)〉,

X = {?checkBalance, ?deposit, ?logOut})
}

11608 VOLUME 7, 2019

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

Ctr3 contains private service repeatInvokingPayment(),
which only can be invoked by public service deposit(). There-
fore, the refusal set of Failures(Ctr3) contains the requests of
?repeatInvokingPayment(), when the public service deposit()
is not executed. The traces of Failures(Ctr3) contain the
requests of ?repeatInvokingPayment() representing the rep-
etition of the private requests. The corresponding failures of
contract The failures of contract Ctr3 are,

Failures(Ctr3) = {

(〈〉,

X = {?checkBalance, ?deposit,

?logOut, ?repeatInvokingPayment}),

(〈?signUp(inPersonalInfo), !signUp(out)〉,

X = {?checkBalance, ?deposit, ?logOut,

?signUp, ?repeatInvokingPayment}),

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out)〉,

X = {?signUp, ?logIn, ?deposit,

?repeatInvokingPayment}),

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),

?checkBalance(), !checkBalance(outBalance),

(?deposit(inNewBalance),

?repeatInvokingPayment()MaxRepeats,

!deposit(false))∗〉,

X = {?signUp, ?logIn, ?checkBalance,

?repeatInvokingPayment}),

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),

?checkBalance(), !checkBalance(outBalance),

(?deposit(inNewBalance),

?repeatInvokingPayment()1..MaxRepeats,

!deposit(out))∗〉,

X = {?signUp, ?logIn, ?checkBalance,

?repeatInvokingPayment})

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),

?checkBalance(), !checkBalance(outBalance),

(?deposit(inNewBalance),

?repeatInvokingPayment()1..MaxRepeats,

!deposit(out))∗,

?logOut(inNewBalance), !logOut(out)〉,

X = {?checkBalance, ?deposit, ?logOut,

?repeatInvokingPayment})

}

Hiding private services −M3 from Failures(Ctr3) is:

Failures(Ctr3) \ −M3 = {

(〈〉,

X = {?checkBalance, ?deposit, ?logOut}),

(〈?signUp(inPersonalInfo), !signUp(out)〉,

X = {?checkBalance, ?deposit, ?logOut, ?signUp}),

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out)〉,

X = {?signUp, ?logIn, ?deposit}),

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),

?checkBalance(), !checkBalance(outBalance),

(?deposit(inNewBalance), !deposit(false))∗〉,

X = {?signUp, ?logIn, ?checkBalance}),

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),

?checkBalance(), !checkBalance(outBalance),

(?deposit(inNewBalance), !deposit(out))∗〉,

X = {?signUp, ?logIn, ?checkBalance})

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),

?checkBalance(), !checkBalance(outBalance),

(?deposit(inNewBalance), !deposit(out))∗,

?logOut(inNewBalance), !logOut(out)〉,

X = {?checkBalance, ?deposit, ?logOut})

}

Note that the guard condition of service checkBalance()
is CurrentBalance = −1. Therefore, it can be only
invoked once when logging in to the system. The post-
condition of service deposit() indicates that CurrentBalance
will be updated after every deposit processes. The differ-
ence between the failures of Failures(Ctr3) \ −M3 and
Failures(Ctr1) is that Failures(Ctr3) \ −M3 does not contain
the deadlock pairs (4th pair above) in Failures(Ctr1). Fur-
thermore, both Ctr3 and Ctr1 are livelock-free contracts, i.e,
Divergences(Ctr1) = ∅∧Divergences(Ctr3) = ∅. Therefore,
Ctr1 is refined by Ctr3:

Failures(Ctr1) ⊇ Failures(Ctr3) \ −M3

Divergences(Ctr1) ⊇ Divergences(Ctr3) \ −M3

�

C. CONTRACT CONSISTENCY
Contract Ctr3 is a consistent, it will never enter deadlocks
and livelocks if the environment follows the protocol of the
contract.

Proof: The protocol of Ctr3 is:

Prot(Ctr3) = {s∗ |

VOLUME 7, 2019 11609

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

s = 〈〉

∨ s = 〈(?signUp(inPersonalInfo), !signUp(out))?〉

∨ s = 〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out)〉

∨ s = 〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out)

, ?checkBalance(), !checkBalance(outBalance)

, (?deposit(inNewBalance),

?repeatInvokingPayment()1..MaxRepeats,

!deposit(out))∗ 〉}

∨ s = 〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out)

, ?checkBalance(), !checkBalance(outBalance)

, (?deposit(inNewBalance),

?repeatInvokingPayment()1..MaxRepeats,

!deposit(out))∗, ?logOut(), !logOut(out) 〉}

The failures of contract Ctr3 are,

Failures(Ctr3) = {

(〈〉,

X = {?checkBalance, ?deposit, ?logOut,

?repeatInvokingPayment}),

(〈?signUp(inPersonalInfo), !signUp(out)〉,

X = {?checkBalance, ?deposit, ?logOut, ?signUp,

?repeatInvokingPayment}),

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out)〉,

X = {?signUp, ?logIn, ?deposit,

?repeatInvokingPayment}),

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),

?checkBalance(), !checkBalance(outBalance),

(?deposit(inNewBalance),

?repeatInvokingPayment()MaxRepeats,

!deposit(false))∗〉,

X = {?signUp, ?logIn, ?checkBalance,

?repeatInvokingPayment}),

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),

?checkBalance(), !checkBalance(outBalance),

(?deposit(inNewBalance),

?repeatInvokingPayment()1..MaxRepeats,

!deposit(out))∗〉,

X = {?signUp, ?logIn, ?checkBalance,

?repeatInvokingPayment})

(〈(?signUp(inPersonalInfo), !signUp(out))?,

?logIn(inUserName, inPasswd), !logIn(out),

?checkBalance(), !checkBalance(outBalance),

(?deposit(inNewBalance),

?repeatInvokingPayment()1..MaxRepeats,

!deposit(out))∗,

?logOut(inNewBalance), !logOut(out)〉,

X = {?checkBalance, ?deposit, ?logOut,

?repeatInvokingPayment})

}

The difference between the failures of Ctr3 and Ctr1 is that
Failures(Ctr3) does not contain the deadlock and livelock
pairs in Failures(Ctr1). Therefore, the contract Ctr3 is a
consistent contract, satisfying,

1) ∀tr ∈ Prot(Ctr3) · (∃s ∈ Traces(Ctr3) · s↓{?} = tr), and
2) ∀tr ∈ Prot,∀(s,X) ∈ Failures(Ctr3) · (s↓{?} � tr ⇒

X 6= ∪{{?m, !m} | m ∈ SDec3)} ∧ s↓{?} 6=

{t ˆ 〈?−m∗〉 | −m ∈ Private(SDec3), t � s}).
Condition 1 says, for every trace in the protocol, there is a

corresponding refusal set defined in the Failures, describing
what services cannot be invoked afterwards. Condition 2 says,
for every the trace of the protocol, there must be at least one
service that can be invoked afterwards, and the trace does
not include infinite invocations to a private services. In other
words, a consistent contract must be both deadlock-free and
livelock-free. �

V. RELATED WORK
All the related work about service refinement is summarized.
The paper [10] proposes a denotational semantics model
to service orchestration languages with service refinement,
and it can determine whether service orchestration satisfies
its specification. The paper [11] based on service refine-
ment proposes a formal model for web service interfaces
and mismatch detection among multiple web services. The
paper [12] proposes a formal model to specify and analyze
the behavior and robustness of service mashups under an
unstable environment. The paper [13] uses service refine-
ment to provide a mathematical model for WSDL 2.0. The
paper [14] proposes a concept of promoting models to
obtain refinements with support from cooperating models.
Two papers [15] and [16] are the case studies of this the-
ory but do not include the contract refinement, refinement
verification, and consistency checking. To the best of our
knowledge, all these efforts do not touch the integration
of service refinement and UML requirements analysis to
support contract refinement on use cases and consistency
checking. Neither do they demonstrate the power of UML
in helping specify the start-up requirements for service
refinement.

Other formal methods are also considered to be inte-
grated with UML for system modeling and verification.

11610 VOLUME 7, 2019

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

The paper [17] motivates an approach to formalizing UML
in which formal specification techniques are used to gain
the insights into the semantics of UML notations and dia-
grams. A small example is presented through the Z notation
to verify whether one class diagram is a valid deduction
of another. Another work [18] integrates UML class dia-
grams and OhCircus by written UML elements in terms of
OhCircus constructs. UML-B [19], [20] provides a UML
front-end for the B methods and Event-B, where the latter
provides a formally precise variant of UML to support model
refinement. The paper [21] provides a tool for automatic
verification of UML models after transforming the active
behavior from UML activity diagrams and class diagrams
into SMV. In short, the related work focuses on verifying
the design model (class diagrams) of the system specified by
UML. Our approach conducts the verification earlier in the
stage of requirements analysis, because 1) the problems in a
requirements model can be passed to the design model, and
2) to verify a design model, we not only need to specify a
requirements model first but also need the effort to specify a
design model. To be safe and take less prework, our approach
verifies the system in a stage of the process of software
engineering as early as possible. This is the main novel idea
of our approach.

VI. CONCLUSIONS AND FUTURE WORK
Formal methods provide us a rigorous way to reason about
the critical properties of a system, that are otherwise hard
to be ensured only by testing. However, formal methods
are not so familiar nor very friendly to everyday software
engineers and developers. The integration of formal meth-
ods and popular modeling tools is a good start to take the
advantages of both sides. With our visibility extension to
the service refinement, we are able to integrate UML and
service refinement for enhancing requirements modeling and
analysis. We show how UML requirements modeling can
be mapped to constructs in service refinement through a
typical case study, an Online Shopping System. Furthermore,
we derive the contract of the interface and reason about
the saftety properties, namely deadlocks and livelocks. As a
result, we use service refinement to obtain a deadlock-free
and livelock-free contract.

The case study in our discussion can be generalized to
help developers use UML and service refinement together
to present a consistent requirements model in the early
stage of software development, so that lots of unneces-
sary bugs can be avoided. Based on the formal analysis of
requirements with our proposed method, the contracts can
be further realized by object-oriented, component-based, and
service-oriented approaches. In the future, we will integrate
this formal approach with our developed automatic proto-
type generation tool RM2PT1 for requirement validation and
evolution.

1http://rm2pt.mydreamy.net

REFERENCES
[1] C. Larman, Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and Iterative Development. London, U.K.:
Pearson, 2012.

[2] I. Sommerville, Software Engineering (International Computer Science
Series). Reading, MA, USA: Addison-Wesley, 2015.

[3] J. He, ‘‘Service refinement,’’ Sci. China F, Inf. Sci., vol. 51, no. 6,
pp. 661–682, 2008.

[4] C. A. R. Hoare and H. Jifeng, Unifying Theories of Programming.
Upper Saddle River, NJ, USA: Prentice-Hall, 1998.

[5] C. A. R. Hoare,Communicating Sequential Processes. Upper Saddle River,
NJ, USA: Prentice-Hall, 1985.

[6] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge, U.K.: Cambridge Univ. Press, 2010.

[7] K. G. Larsen, P. Pettersson, and W. Yi, ‘‘UPPAAL in a nutshell,’’ Int. J.
Softw. Tools Technol. Transf., vol. 1, nos. 1–2, pp. 134–152, 1997.

[8] W. Yu, C. G. Yan, Z. Ding, C. Jiang, and M. Zhou, ‘‘Modeling and
verification of online shopping business processes by considering mali-
cious behavior patterns,’’ IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2,
pp. 647–662, Apr. 2016.

[9] D. B. Hopson and K. S. Keys, ‘‘Online shopping system,’’
U.S. Patent 7 590 567 B2, Sep. 15, 2009.

[10] Q. Li, H. Zhu, and J. He, ‘‘A denotational semantical model for Orc lan-
guage,’’ in Theoretical Aspects of Computing—ICTAC. Berlin, Germany:
Springer, 2010, pp. 106–120.

[11] S. Wang, G. Zhang, X. Zhang, and Y. Yang, ‘‘A method for detecting
behavioral mismatching Web services,’’ in Proc. 6th Web Inf. Syst. Appl.
Conf. (WISA), Sep. 2009, pp. 116–121.

[12] Q. Li, J. Shi, and H. Zhu, ‘‘A formal framework for service mashups
with dynamic service selection,’’ Innov. Syst. Softw. Eng., vol. 10, no. 3,
pp. 219–234, 2014.

[13] A. Zhang and X. Xie, ‘‘Web services semantic model system,’’ in Proc. 3rd
Int. Conf. Anti-Counterfeiting, Secur., Identificat. Commun. (ASID), 2009,
pp. 592–595.

[14] Q. Li, Y. Zhao, X. Wu, and S. Liu, ‘‘Promoting models,’’ in Unifying
Theories of Programming. Berlin, Germany: Springer, 2010, pp. 234–252.

[15] J. Liu and J. He, ‘‘Reactive component based service-oriented design—
A case study,’’ in Proc. 11th IEEE Int. Conf. Eng. Complex Comput.
Syst. (ICECCS), Aug. 2006, p. 10.

[16] S. Herold et al., ‘‘CoCoME—The common component modeling exam-
ple,’’ in The Common Component Modeling Example. Berlin, Germany:
Springer, 2008, pp. 16–53.

[17] A. Evans, R. France, K. Lano, and B. Rumpe, ‘‘The UML as a formal
modeling notation,’’ in Proc. Int. Conf. Unified Modeling Lang. Springer,
1998, pp. 336–348.

[18] R. M. Borges and A. C. Mota, ‘‘Integrating UML and formal methods,’’
Electron. Notes Theor. Comput. Sci., vol. 184, pp. 97–112, Jul. 2007.

[19] C. Snook and M. Butler, ‘‘UML-B: Formal modeling and design aided by
UML,’’ ACM Trans. Softw. Eng. Methodol., vol. 15, no. 1, pp. 92–122,
2006.

[20] C. Snook and M. Butler, ‘‘UML-B and event-B: An integration of lan-
guages and tools,’’ in Proc. IASTED Int. Conf. Softw. Eng. (SE), Innsbruck,
Austria. Anaheim, CA, USA: ACTA Press, 2008, pp. 336–341. [Online].
Available: http://dl.acm.org/citation.cfm?id=1722603.1722663

[21] M. E. Beato, M. Barrio-Solórzano, C. E. Cuesta, and P. de la Fuente,
‘‘UML automatic verification tool with formal methods,’’ Electron. Notes
Theor. Comput. Sci., vol. 127, no. 4, pp. 3–16, 2005.

YILONG YANG received the B.S. degree in
computer science from the China University of
Mining and Technology, China, in 2010, and the
M.S. degree from Guizhou University, China,
in 2013. He is currently pursuing the Ph.D.
degree in software engineering with the Univer-
sity of Macau. He has been a Fellow with the
International Institute for Software Technology,
United Nations University, Macau. His research
interests include automated software engineering
and machine learning.

VOLUME 7, 2019 11611

Y. Yang et al.: Integrating UML With Service Refinement for Requirements Modeling and Analysis

WEI KE received the Ph.D. degree in
computer applied technology from Beihang Uni-
versity, in 2012. He is currently an Associate Pro-
fessor with the School of Public Administration,
Macau Polytechnic Institute. His research interests
include programming languages, formal methods,
software engineering tool support, and software
implementation. He had successfully applied in a
couple of research projects funded by the Macau
FDCT, including the areas of formal methods and
software engineering.

JING YANG received the B.S. degree in math from
Southwestern Normal University, China, in 1990,
and the M.S. and Ph.D. degrees in math and com-
puter science from Guizhou University, China,
in 1993 and 2006, respectively. She is currently a
Professor with the College of Computer Science
and Technology, Guizhou University. Her research
interests include mathematical logic and formal
method.

XIAOSHAN LI received the Ph.D. degree from
the Institute of Software, Chinese Academy of
Sciences, Beijing, in 1994. He is currently an
Associate Professor with the Department of Com-
puter and Information Science, Faculty of Science
and Technology, UMAC. His research interests
include formal methods, object-oriented software
engineering with the Unified Modeling Language,
real-time specification and verification, and the
semantics of programming language.

11612 VOLUME 7, 2019

	INTRODUCTION
	SERVICE REFINEMENT AND VISIBILITY EXTENSION
	INTERFACES
	EXTENSION FOR INTERFACES

	SPECIFICATIONS
	CONTRACTS
	SEMANTICS OF CONTRACTS
	EXTENSION FOR SEMANTICS OF CONTRACTS

	CONTRACT CONSISTENCY
	CONTRACT REFINEMENT

	REQUIREMENTS MODELING IN UML-SR
	OVERVIEW
	USE CASE DIAGRAM
	SYSTEM INTERFACES AND DOMAIN CONCEPTS MODELING
	SERVICE SPECIFICATION BY SERVICE REFINEMENT
	THE PROTOCOL OF INTERFACE
	SYSTEM SEQUENCE DIAGRAMS FOR PROTOCOLS
	THE CONTRACT OF INTERFACE
	THE FAILURES OF CONTRACT
	DEADLOCKS
	LIVELOCKS

	REFINEMENT AND VERIFICATION IN UML-SR
	Ctr1 IS NOT REFINED BY Ctr2
	Ctr1 IS REFINED BY Ctr3
	CONTRACT CONSISTENCY

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	YILONG YANG
	WEI KE
	JING YANG
	XIAOSHAN LI

