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ABSTRACT With the advances in genetic sequencing technology, the automated assignment of protein
function has become a key challenge in bioinformatics and computational biology. In nature, many kinds of
proteins consist of a variety of structural domains, and each domain almost holds its own function indepen-
dently or implements a new function in cooperation with neighbors. Thus, a multi-domain protein function
prediction problem can be converted into multi-instance multi-label (MIML) learning tasks. In this paper,
we propose a novel ensembleMIML algorithm calledmulti-instancemulti-label randomized clustering forest
(MIMLRC-Forest) for protein function prediction. In MIMLRC-Forest, we develop a set of hierarchical
clustering trees and conduct a label transfer mechanism to identify the relevant function labels in learning
process. The clustering tree with a hierarchical structure can handle the multi-label problem by exploiting
more discriminable label concepts at higher-level nodes and by transferring less discriminable labels into
the lower-level nodes. Then, the label dependency can be computed by aggregating tree labels for protein
function prediction. Extensive experiments on five real-world protein data sets show the effectiveness of
the proposed algorithm compared with several state-of-the-art baselines, including MIMLSVM, MIMLNN,
MIML-kNN, EnMIMLNN, and M3MIML.

INDEX TERMS Protein function prediction, multi-instancemulti-label learning, randomized clustering tree,
Hausdorff distance, ensemble learning.

I. INTRODUCTION
With a revolution in genomics and proteomics in last decade,
biological sequence data are undergoing an explosive growth
in the content and quality. Detection of functions to unknown
proteins has become a key challenge in genome sequenc-
ing projects. Due to its inherent time-consuming and labor-
intensive, it is hard to apply this large-scale prediction to
biological experiment method. In recent years, computational
methods have been successful applied to those prediction
tasks, in which the machine-learning based methods have
obtained good predictive performance [1].

A protein domain can be defined as a conserved part
of a given protein sequence and structure. Each of them
forms a compact three-dimensional structure and often can
be independently stable and folded. Many proteins are com-
posed of a variety of structural domains. One domain may
appear in many different proteins. Molecular evolution pro-
ceeds based on these domains which may be recombined in

different arrangements to create proteins with different func-
tions. Multi-domain proteins always have emerged during
evolution to generate new functions [2], and they appeared
in majority of genomic proteins, two-thirds in unicellular
organisms and more than 80% in metazoa [3].

Recently, Multi-instance multi-label (MIML) learning
framework [4], [5] has been widely used to solve problems
involving multiple instance associated with multiple class
concepts, where an object is described by a bag of instances
and then mapped to multiple labels simultaneously. Obvi-
ously multi-domain protein can be represented in MIML
framework [24]. Specifically, each protein domain may be
seen as an instance of input object, e.g., BAR Domain,
PX Domain, VPS29, etc. and each multi-domain protein is
usually annotated with multiple function labels. Therefore,
it is a possible way to apply MIML framework to tackle
the protein function prediction problem [9], [10]. Previous
studies have shown that the learning performance of protein

12360
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-0907-5821


H. Tang et al.: Randomized Clustering Forest Approach for Efficient Prediction of Protein Functions

function prediction can be significantly improved using the
MIML framework [11].

A straightforward approach forMIML learning is to degen-
erate the problem to multi-label (ML) or multi-instance (MI)
problem based on predefined degeneration strategy so that
existing MI or ML techniques can be directly applied to
solve the problem. For instance, multi-instance multi-label
SVM (MIMLSVM) and multi-instance multi-label Boost-
ing(MIML Boosting) are well-known degeneration strategy-
based methods for MIML learning task achieving impres-
sive performances on certain type of data sets [4]. However,
these approaches are not suitable for protein data due to
its underlying relationships among multi-function structure.
Direct application of the degeneration strategies may lead to
a loss of useful classification information, e.g., the correlation
between instance distribution and labels. Moreover, a specific
protein function may require multiple domains to cooperate
with each other. A protein represented by multi-instance may
exploit more relationship information between domains and
functions, which would facilitate effective learning.

As reported in [12], label dependency relations can sig-
nificantly improve MIML learning performance. In order to
exploit the dependency relations, some approaches assume
that the relations are externally provided, e.g., predefined
label hierarchies of data sets [13], [14]. However, such prior
dependency relations are usually unavailable in practice.
In contrast, some other approaches [1], [15] tempted to auto-
matically learn the label dependency relations from limited
resource, e.g., using label’s co-occurrences in their training
set. These approaches may lead to an overfitting problem in
the learning phase [16]. In addition, exploiting the correla-
tion between instances and labels in one object is also an
effective manner for providing useful information to MIML
learning [17], [18].

Motivated by recent researches in MIML and label depen-
dency learning, this paper proposes a novel ensemble MIML
learning framework called Multi-Instance Multi-Label Ran-
domized Clustering Forest (MIMLRC-Forest) for protein
function prediction. The MIMLRC-Forest constructs a set of
hierarchical trees to learn label dependency relations. These
randomized clustering trees are combined as an ensemble
to predict protein functions. To seek a suitable hierarchi-
cal tree structure for locating relevant proteins with strong
label dependency relations at the same tree node, this paper
designs an automatic tree structure generation algorithm to
distinguish relevant labels for nodes through a label transfer
mechanism.

The algorithm is implemented in three tasks: Firstly, a data
clustering algorithm is applied to allocate the protein data
as objects to tree nodes according to clustering results. For
each node, a set of relevant labels are exploited by com-
puting its label purity over the classes. Secondly, a label
transfer mechanism is proposed for recursively propagating
the relevant labels from root to leaf nodes. In case a relevant
label is assigned to a node, all of its child nodes are auto-
matically associated with the label and the algorithm finds

a new relevant label (if any) which complies with the label
dependencies of the objects in the child node. Eventually each
node is denoted by multiple relevant labels obtained from
the nodes at different levels. Hence, a new label dependency
representation is formed that the learning models at different
levels cooperate to exploit multi-label concepts for a given
protein. Intuitively, the relevant labels at higher hierarchy
levels are thematically more general and that at lower levels
are more specific.

To evaluate the proposed MIMLRC-Forest approach,
we compare it with five widely-used MIML learning
algorithms, i.e. multi-instance multi-label support vector
machine (MIMLSVM) [4], multi-instance multi-label near-
est neighbor (MIMLNN) [5], multi-instance multi-label
k nearest neighbor (MIMLKNN) [22], Maximum Margin
Method for Multi-Instance Multi-Label (M3MIML) [18]
and ensemble multi-instance multi-label nearest neighbor
(EnMIMLNN) [11]. Experimens on five protein multi-
instance multi-label data sets show that our MIMLRC-Forest
approach outperforms the baseline methods, demonstrating
its effectiveness in protein function prediction.

The main contributions of this paper are given as
follows:
• proposing a new hierarchical classification approach to
model the inherent label dependency relations between
data into a tree structure to handle the multi-label clas-
sification task.

• designing a label transfer mechanism to assign protein
data with the relevant class labels in the hierarchy way.

• developing an ensemble framework that builds a multi-
tude of hierarchical multi-label trees and combines the
predictions of different trees as an ensemble to make
more effective predictions.

The rest of this paper is organized as follows:
Section 2 presents the related work. The proposed
MIMLRC-Forest approach is described in Section 3. The
experimental results and evaluations are discussed in
Section 4 and Section 5 concludes the work.

II. RELATED WORKS
Let X = Rd be the d-dimensional input space and
Y = {1, 2, · · · , n} be a finite set of labels. Given a labeled
training set D = {(X1,Y1), (X2,Y2), · · · , (Xi, Yi)|1 ≤ i ≤ n}
with n examples, the i-th example Xi = {x1(i), · · · , xni

(i)
}

contains a bag of ni instances, and Yi = {y1(i), · · · ,Yj(i)} is
a set of labels associated with the example Xi. Y

(i)
j = 1 if

the j-th label is a relevant label of example Xi and Y
(i)
j = 0

otherwise. The goal of multi-instance multi-label learning is
to learn a function f : 2X → 2Y fromD to map each example
from D to a set of proper labels.

During the past few years, multi-instance multi-label
learning has received a lot of attentions both in academic
and industry. A number of MIML learning approaches
have been developed for solving various types of real-
world applications, such as text categorization [6], [7], [22],
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bioinformatics [11], [23], [24], image classification [8], [25],
[26], and video annotation [27].

In particular, Zhou and Zhang [4] was the first to apply
the degeneration strategy to MIML learning and presented
two approaches, namely MIMLSVM and MIMLBoosting
methods. The MIMLSVM is firstly used a similarity matrix
of examples to cluster training data by k-means clustering
algorithm at instance level. Based on the medoids of the
obtained clusters, a feature space is transformed to a dis-
tance matrix between the examples and the medoids. In this
way, it successfully degenerates the MIML learning task to
a ML problem, which can be easily handled by MLSVM
method [4] or other ML learning methods [25], [28]. The
MIMLBoosting converts each multi-label object into mul-
tiple single-label objects by assigning a single label to all
the instances that belongs to the same object. It then applies
boosting algorithms, such as MIBoosting [29] or previous MI
learning approaches [30]–[32], to solve the derived multiple
instances learning problem. In order to optimize the above
algorithms, Zhou et al. [5] further explored MIMLSVM and
MIMLNN methods which use MI-SVM [20] to replace the
MIBoosting [29] in MIMLBoost and use a two-layer neu-
ral networks structure [33] to replace the MLSVM [25] in
MIMLSVM, respectively.

In addition, some existing researchers found that exploiting
correlations between instances (or objects) and labels in an
effective manner was essential for achieving a good perfor-
mance in a MIML learning task. For instance, Wu et al. [17]
proposed a markov chain-based MIML learning algorithm,
where the correlations between objects and labels are
exploited by computing label ranks. They demonstrated the
importance of a set of label to an object in determining the
MIML learning performance. Although this method achieved
a good performance on text and image data sets, it was
ineffective for the protein function prediction task as the algo-
rithm was always terminated by the steady-state probability
matrix (termination conditions) at the first iteration. After
that, Zhang and Zhou [18] developed a maximum margin
approach for multi-instance multi-label learning (M3MIML)
which directly discovers the connections between instances
and labels. This approach assumes a linear model for each
label, where the output of a specific label was the maxi-
mum prediction of MIML objects with respect to the rele-
vant linear models. This method could not be well applied
in practical applications due to it’s expensive computa-
tion. Ge et al. [21] proposed LPBNI approach to identify
potential lnc RNA-interacting proteins, by making full use
of the known lnc RNA-protein interactions. Li et al. [19]
applied a feature-based approach to extract protein inter-
actions(LPIs) from biomedical literatures. Meng et al. [24]
proposed PDAMIML and PDAMIML-Ensemble to predict
the annotation of domains without knowing the whole protein
sequences and annotations of other coexisting domains.

Recently, a number of other well-known MIML
approaches was proposed. For instance, the MIMLNN [5]
and EnMIMLNN methods [11] both employ a two-layer

architecture to train a model for MIML learning task, where
it’s first layer exploited a relation matrix between the objects
and the mediods of obtained label cluster and then trans-
formed the matrix into an one-to-one weight matrix revealing
the correlations between objects and labels. It’s worth noting
that EnMIMLNN was an optimized version of the method
MIMLNN. Besides, MIMLKNN [22] approach utilizes
k-nearest neighbor technique to solve the MIML learning
task. What’s more, many researchers utilized MIML learning
framework to handle multi-graph learning task. Wu et al.
built a MI model to represent multi-graph features in a multi-
graph bag [34]. bMGC [35] approach employs dynamic
weight adjustment at both bag- and graph-levels to select
one subgraph as a weak classifier. MSVBL [36] approach
explores subgraph features across different structure views to
generate a bag constrained graph classification. puMGL [37]
framework assigns each bag a confidence weight which can
be dynamically adjusted to select ‘‘reliable negative bags’’.
MILDM [38] approach identifies the best instances to directly
discriminate bags in a new mapping space.

The protein function prediction task is essentially a
MIML learning problem, where each multi-domain protein
is annotated by a list of relevant function labels. There
is a strategy to predict protein function by exploiting the
label dependency of multi-domain protein data and build-
ing a tree structure model. Hierarchical tree-based model
includes a series of learning algorithms with simple the-
oretical foundation and wide applications. Although tree-
based models are rarely mentioned in MIML learning task,
many tree-based multi-label classification methods have
been proposed and applied [10], [39]–[44]. For instance,
Clare and King [10] adjusted the C4.5 tree to deal with multi-
label data by modifying the common formula for calculat-
ing the entropy. Blockeel et al. [45] developed a predictive
clustering trees (PCT), while Vens et al. [46] presented sev-
eral multi-label learning methods based on PCT framework
where class labels are organized in a hierarchical pattern.
Tsoumakas et al. [39] presented a tree structure-based algo-
rithm called HOMER to handle data containing large num-
ber of labels. HOMER algorithm disjointed the entire label
set into several subsets so as to build a tree by a balance
clustering. ML-FOREST algorithm [52] constructed a set of
hierarchical trees which can identify the multiple relevant
labels in a hierarchy way.

Different from the existing tree structure-based multi-label
learningmethods, in ourMIMLRC-Forest method, an ensem-
ble of tree classifiers is constructed by addressing label
dependency generated from root to leave nodes via a label
transfer mechanism. The underlying label dependency trans-
fer can be explicitly expressed in a hierarchical structure,
offering a natural and comprehensive way in a MIML learn-
ing task.

III. METHOD
This section presents the detail of MIMLRC-Forest method
for MIML learning. The method includes a classifier-tree
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construction algorithm, a label transfermechanism, and a new
ensemble framework.

A. RANDOMIZED CLUSTERING TREES
Statistically, the joint conditional probability distribution
p(y|x) states the probability of label combination for a par-
ticular instance and it can be decomposed as:

p(y|x) = p(y1|x)p(y2, · · · , yq|y1, x)

= p(y1|x)p(y2|y1, x)p(y3, · · · , yq|y1, y2, x)

= p(y1|x)p(y2|y1, x) · · · p(yq|y1, · · · , yq−1, x) (1)

Our goal is to construct a hierarchical randomized cluster-
ing tree and find relevant labels assigned to the data examples
at each tree node. The proposing new hierarchical tree algo-
rithm studies the inherent label dependency hierarchically.
More specifically, three folds construct the hierarchical struc-
ture: 1) At each internal node, the training data is partitioned
into smaller subsets as its child nodes; 2) A group of relevant
labels are associated with each node; 3) The relevant labels
of a higher level node are transferred into its child nodes.

The pseudo code of the algorithm is described in
Algorithm 1. It consists of the following major steps:
1) construct a new feature matrix D′ if the node is the root
(line 1-2); 2) decide whether it is an internal node or leaf node
(line 3-5); 3) determine the set of reused labels from parent
nodes (line 9); 4) randomly select an attribute and a threshold
for generating child nodes (line 11-16); 5) calculate the score
according to the current strategy of node partition (line 17);
6) find the best strategy for node partition (line 19); 7) create
a decision node to make prediction (line 20-22); 8) invoking
above steps for dealing examples in left and right child nodes
recursively. These major steps to construct a hierarchical tree
are detailed as follows.

The training examples of each function label are clustered
using k-Medoids algorithm and the medoids of each obtained
clusters are used to construct a new input feature space D′
for the randomized clustering tree. More specifically, given
a set of training objects D = {Xi|1 ≤ i ≤ n} and
relevant label set Y = {y1, y2, · · · , yl}, Dr = {Xi|1 ≤
i ≤ m,m ≤ n} denotes the training set associated with
r-th function label, where D = D1 ∪ D2∪, · · · ,∪Dl and
|D| ≤ |D1| + |D2|+, · · · ,+|Dl |. Given two objects with
multiple instances Xa = {x

(a)
1 , x(a)2 , · · · , xna

(a)
} and Xb =

{x(b)1 , x(b)2 , · · · , xnb
(b)
}, the distance between the two objects

can be computed by a novel Hausdorff distance, which is
defined as Eq. 2 and Eq. 3:

H (Xa,Xb) =
1
3

∑
d∈η

Hd (Xa,Xb) (2)

In Eq. 3, as shown at the bottom of the next page,
MinDist(x(b),Xa) = minx(a)∈Xa ||x

(a)
− x(b)|| and ||.|| denote

the Euclidean distance between the two instances. According
to the metric H (Xa,Xb), the k-Medoids algorithm partitions
the Ds into Qs groups of clusters Cs

j (1 ≤ s ≤ l, 1 ≤ j ≤ Qs),
where Cs

j ∩ C
s
k = φ and the number of medoids Qs for each

function label is determined by the fraction parameter α as
well as the size of Di,i.e, Qs = α × |Ds|. Thus, the feature

dimension of training objects is Q =
l∑

s=1
Qs and the medoids

M s
j of cluster C

s
j are determined as:

M s
j = {arg min

Xa∈Csj

∑
Xb∈Csj

H (Xa,Xb)}(1 ≤ s ≤ l, 1 ≤ j ≤ Qs)

(4)

Based on the acquired cluster mediods, the correlation
between j-th medoid and object Xi is computed by radial basis
function neural networks rather than similarity measures in
MIMLSVM. The computation function is defined as Eq. 5
and Eq. 6. The parameter σ is determined by the average
Hausdorff distance between every two medoids. It is further
used to control the smoothness of function ψ s

j (.). µ is a
scaling factor.

ψ s
j (Xi) = exp

(
−
H (Xi,M s

j )
2

2σ 2

)
(1 ≤ i ≤ n, 1 ≤ s ≤ l, 1 ≤ j ≤ Qs) (5)

σ = µ×
(Q−1∑i=1

Q∑
j=i+1

H (Mi,Mj)

Q(Q− 1)/2

)
(6)

Using the definitions above, we can transform training
objects D to a new feature space D′ = {ψ(X1), ψ(X2), · · · ,
ψ(Xi)}, where ψ(Xi) = {ψ1(Xi), ψ2(Xi), · · · , ψq(Xi)}(1 ≤
q ≤ Q). Taking theD′ as input, the training data is recursively
partitioned into smaller subsets while moving from tree root
nodes down to leaf nodes. Such recursion continues until
all leaf nodes are pure (all the objects associated to a node
belong to the same classes). For each node, we randomly
select the i-th feature fi from the bag of each training example
as well as a threshold θi which are used to determine a suitable
child node that example belongs to. We repeat the random
selection for t times and compute the score of node splitting
to determine the best training example partition. In this way,
a randomized clustering tree, whose structure and predictions
are independent from the labels, is constructed. In the proce-
dure, a boolean test τ is used to partition training examples
into left child node or right one. That is, the example assigned
to left child if fi ≥ θi and is assigned to right child otherwise.
Here, we denoteD′ = D′l ∪D′r andD′l ∩D′r = φ whereD′
is a set of examples for parent node, D′l and D′r represents
the examples for left child and right child nodes, respectively.
We compute the node splitting score using the Eq. 7 and Eq. 8,
where |D′| is the total number of examples in set D′ and Hc
denotes the entropy of the class distribution of the current
node examples. Y = 1, 2, · · · , l is a set of l possible class
labels in the total data set and D′y is the examples in set D′
annotated with the y-th label.

Sc(D′,D′l,D′r ) = Hc(D′)−
∑
p∈{l,r}

|D′p|
|D′|

Hc(D′p) (7)
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Algorithm 1MIMLRC-Tree(D)
Input: A training data set D
Output: A MIML randomized clustering tree
1: if root = true then
2: Construct a new feature space D′
3: else
4: if stopsplitting(D′) = true then
5: create a leaf node
6: return
7: else
8: iterations = 0
9: compute the reuse label set b from parent node

10: repeat
11: iterations← iterations+ 1
12: select an attribute fi from each training example randomly(with the same random index i in each iteration)
13: select a threshold θ randomly
14: split the examples in D′ into two children D′l and D′r according to fi and θ :
15: D′l ← {d ∈ D′|fi < θ}

16: D′r ← {d ∈ D′|fi ≥ θ}
17: calculate score← Sc(D′,D′l,D′r )
18: until iterations ≥ Imax
19: select f ∗i , θ

∗ with the highest score
20: calculate the relevant label set b̂ for the current node
21: combine b and b̂ to the final prediction b∗

22: create a decision node by a group of selected parameters f ∗i , θ
∗, b∗

23: return MIMLRC-Tree(D′l) and MIMLRC-Tree(D′r )
24: end if
25: end if

Hc(D′) = −
∑
y∈Y

|D′y|
|D′|

log2
|D′y|
|D′|

(8)

At each node, a set of relevant labels are exploited by
computing its purity over the classes. Formally, given a set
of examples and labels assigned to a node D = {(xi,Yi)|1 ≤
i ≤ m}, the label purity of a node is represented as a vector
p = [p(1), · · · , p(q)]), which is computed using Eq. 9

p(j) =
1
|D|

∑
xi∈D

Yi(j) (9)

where p(j) is in the interval [0, 1] and Yi(j) = 1 if the example
Xi is assigned to the j-th label and Yi(j) = 0 otherwise.
The classes with purity score larger than a predefined thresh-
old λ(λ ∈ [0, 1]) are regarded as a relevant label vector

b = [b(1), · · · , b(q)]). Formally, we have:

b(j) =

{
1, if p(j) ≥ λ,
0, otherwise.

(10)

In addition, we propose a label transfer mechanism to
transfer the obtained relevant label vector to its lower-layer
nodes. In this mechanism, the identified relevant label vector
from the parent node at higher level is transferred to its child
node as an additional indicator incorporating in the relevant
label vector of the child node to get final relevant labels.
Specifically, suppose the relevant labels of the parent node is
denoted as b̂, the non-zero elements (i.e., the relevant labels)
in b̂ can be reused in the child nodes, and the zero elements
(i.e., the non-relevant labels) can be computed using Eq. (7)
and Eq. (10). The results are stored as another relevant label
vector b̂. The final output b∗ = [b∗(1), · · · , b∗(q)] is given as

Hd (Xa,Xb) =


∑

x(a)∈Xa MinDist(x
(a),Xb)+

∑
x(b)∈Xb MinDist(x

(b),Xa)

|Xa| + |Xb|
, d = average;

max
{
maxx(a)∈XaMinDist(x

(a),Xb),maxx(b)∈XbMinDist(x
(b),Xa)

}
, d = max;

minx(a)∈XaMinDist(x
(a),Xb), d = min.

(3)
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FIGURE 1. An example of randomized clustering tree construction.

follows:

b∗(j) =

{
1, if b(j) = 1 or b̂(j) = 1,
0, otherwise.

(11)

Fig. 1 shows an example to illustrate the randomized
clustering tree construction. At the top level, all objects are
assigned to the root nodeD0, and then are partitioned into two
child nodes D1 and D2 through the boolean test τ = f > θ .
The objects in left node D1 are all annotated with the same
label city, while the objects on right node D2 are associated
with label nature. After that, the nodes D1 and D2 are further
partitioned into two nodes {D3,D4} and {D5,D6} at next layer
in the same way, respectively. The red labels assigned to
nodes D3-D6 are transferred from the parent nodes D1 and
D2. The final predictions are determined on leaf nodes and
we define non-leaf nodes as composite nodes, e.g., the nodes
D1 and D2 above.

B. RANDOMIZED CLUSTERING FORESTS
To reduce the class label variance for a given single ran-
domized clustering tree aiming at improving the prediction
performance, we propose the MIMLRC-Forest algorithm (as
described in Table 1) to build an ensemble of tree classifiers.
The popular bootstrap replica scheme [47] is used to generate
training data so that diverse tree classifiers in the ensemble
can be built. The ensemble building procedure involves a ran-
dom selection of learning examples and a random clustering.
Considering the trees diversity, a best node splitting strategy
with score ranking is used to generate trees partitions to yield
a relative strong tree.

According to the generalization error bound which is
defined by Breiman [48], our method has a better error bound.
MIMLRC-Forest outputs a confidence vector, denoted as
ŵ = [ŵ(1), · · · , ŵ(q)] ∈ Rq for MIML learning, where ŵ(j)

is the confidence for the j-th class. Given a test example X̂ ,
we navigate X̂ across all the trees and find its predictions on
leaves where X̂ ends. Suppose the predictions on these leaves
are denoted as b̂∗1, · · · , b̂

∗
K (where K denotes the number of

trees), an ensemble confidence ŵ = [ŵ(1), · · · , ŵ(q)], repre-
senting the importance of the classes to X̂ can be conputed as
follows:

ŵ(j) =
1
K

K∑
k=1

b∗k (j) (12)

MIMLRC-Forest also outputs a binary vector, denoted
as Ŷ = [Ŷ (1), · · · , Ŷ (q)] where Ŷ (j) = 1 represents the
j-th label as a relevant class for x̂ and Ŷ (j) = 0 otherwise.
Specifically, a threshold function f is used to separate the
relevant and irrelevant classes according to the ŵ value. There
are many ways for selecting a threshold value for MIML
prediction, e.g., a threshold t = 0.5 commonly used for
its simplification and low computational complexity. In this
paper, we propose a maximum drop thresholding method
to optimize the threshold for multi-instance multi-label
learning.

Intuitively, a multi-instance multi-label example is
assigned with a set of relevant labels and it is expected
that the confidences of the relevant labels are much higher
than those of other labels. Given the confidence ŵ of the
class labels for an example X̂ , the labels are sorted by ŵ
to identify two classes with largest drops based on their
confidence values. The median value of these two classes
are then calculated as a threshold to establish a separation
that separates relevant and irrelevant labels to X̂ where the
relevant labels are labels with confidences higher than the
threshold and the irrelevant labels are the rest. As shown
in Table 2, in the example, the largest drop in confidences
of the sorted classes is observed between 1 and 0.25 and their
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TABLE 1. The pseudo-code of the MIMLRC-Forest algorithm to build an ensemble of tree.

TABLE 2. An example of MIMLRC-Forest prediction procedure, where
K = 4, q = 7 and the threshold is t = 0.625 for the function ft (ŵ).

median value 0.625 is used as a threshold for further multi-
instance multi-label classification. We find that this threshold
optimization method has better classification performance
against using an arbitrary threshold for all the examples and
data sets.

IV. RESULTS
In this section, we compare the performance of our proposed
MIMLRC-Forest algorithmwith five popularMIML learning
algorithms as baselines on real-world genome-wide protein
data sets. The baseline methods are MIMLNN, MIMLKNN,
MIML-SVM, EnMIMLNN and M3MIML and the experi-
mental results present that our algorithm outperforms all the
baselines.

A. DATA SETS
The experiments use five genome-wide protein data sets rep-
resented asmulti-instancemulti-label data pattern [11]. These
real-world protein data sets are mainly from three biologi-
cal domains containing two Archaea genomes (Haloarcula
marismortui and Pyrococcus furiosus), two Bacteria genomes
(Azotobacte vinelandii and Geobacter sulfurreducens) and a
Eukaryota genome(Caenorhabditis elegans) [49]. In the data
sets, each multi-domain protein was manually annotated with
a set of function labels, where each domain is represented as
an 216-dimensional independent bags and all the annotation
terms are based on one of the most famous and widely used
Molecular function called Gene Ontology Consortium [50].

More details about the protein data sets are shown in Table 3.
Specifically, the data sets about Archaea and Bacteria bio-
logical domains are more sparse as each example contains
3.07 to 3.20 instances and no more than 4.5 labels only. The
Caenorhabditis elegans data set in the instance number and
label number per example goes up to 3.64 and 5.34 with the
max values 115 and 107, respectively.

B. BASELINE METHODS
To evaluate the effectiveness of our method, we use five
widely used MIML learning algorithms, i.e., MIMLSVM,
MIMLkNN, MIMLNN, M3MIML and EnMIMLNN,
as baselines. For MIMLSVM algorithm, it applies a degen-
eration strategy to simplify the MIML learning task to a ML
learning problem. All instances are partitioned into different
clusters according to the similarity of each pair instances.
A feature space then is built by the distance matrix between
the examples and the medoids of clusters learned from a
supporting vector machine (SVM) classifier. There are two
parameters, Gaussian kernel parameter and the value of the
cost in MIMLSVM algorithm. We set them to the optimal
values 0.2 and 1 in the experiment, respectively. As for
MIMLkNN, it degenerates MIML learning problem to ML
problem by using another well-known method k-nearest
neighbor algorithm to explore the correlation of an example
among its neighbors. The number of the nearest neighbors k is
set to default value 10. The method MIMLNN is trained with
two layer architectures. It exploits the medoids of clusters
for each class labels by invoking k-Medoids algorithm in
first layer. The basic functions related to the medoids and
examples are determined in second layer. Finally, it utilizes
a weight matrix to solve MIML learning problem. The reg-
ularization parameter in the method is set 1. For optimizing
the MIMLNN algorithm, the EnMIMLNN applies a novel
Hausdroff distance to compute the medoids of each cluster in
first layer. It implements the basic functions by radial basis
function neural networks rather than back-propagation neural
networks in MIMLNN in second layer. We set the scaling
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TABLE 3. The characteristics of the five genome-wide protein data sets.

FIGURE 2. Graphical presentation of results from the Neminyi post hoc test at 0.05 significance level for the ranking-based measures. (a) Ranking-loss.
(b) Hamming-loss. (c) Coverage. (d) One-error (e) Average precision.

parameter µ = 0.4 and the fraction parameter α = 0.1 in
EnMIMLNN algorithm. The last baseline M3MIML trans-
forms a MIML learning task into a quadratic programming
problem and implements its dual form by exploiting the
correlations between instances and labels. The parameters γ
and λ are set to 1 and 10−4, respectively.

C. EVALUATION METRICS
In the comparison, we use hamming loss, one-error, coverage,
ranking loss, and average precision as evaluation metrics.
In particular, accuracy and kappa-error will not be used as
evaluation metrics. Because the accuracy is a key evaluation
metric for single label prediction, the kappa coefficient is a
different statistic which always used to evaluate average on
multi-label prediction. The meaning of accuracy and kappa
coefficient are similar as average precision. For the detailed

definitions of these metrics, one can refer to [5]. As multiple
algorithms and diverse data sets are used in the comparison,
the effectiveness of the algorithms across different data sets
is evaluated by comparing their performance in a two-step
statistical test procedure (the corrected Friedman test and the
post-hoc Nemenyi test) [51]. The Friedman test is used for
multiple hypotheses test without any parameter. The algo-
rithms are ranked (each row in each section of the table) in
a descending order according to their performance in each
data set separately and the one which shows best performance
for each data set is ranked first. It also computes the average
rank of each algorithm across all the datasets (each column
in each section of the table). Based on the average ranks
of the algorithms, the Nemenyi post-hoc test detects the
algorithms which are significantly different from each other.
Performance of two algorithms is viewed as significantly
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TABLE 4. Performance of the MIML learning algorithms on hamming loss ↓.

TABLE 5. Performance of the MIML learning algorithms on ranking loss ↓.

TABLE 6. Performance of the MIML learning algorithms on coverage ↓.

TABLE 7. Performance of the MIML learning algorithms on one error ↓.

TABLE 8. Performance of the MIML learning algorithms on average precision ↑.

different if their average rank difference is larger than a
critical distance (CD) which is computed in terms of the
number of algorithms, the number of data sets and a given
significance level p. The results of the Nemenyi post-hoc test
can be visualized with diagrams [51] as shown in Fig. 2,
where the critical distance is 2.849 and the significant level
is p = 0.05. For each evaluation metric, the average ranks
of the algorithms are displayed on the horizontal axis in the
way that the algorithm ranked best (worst) is shown at the
rightmost(leftmost) side of the diagram. Algorithms that are
not significantly different are connected by bold horizontal
lines.

D. PARAMETER TUNING
Four parameters are set for our method, which include the
fraction parameter α and the scaling parameter µ used to
transform the input data to a new feature space, the number of
trees K and the purity threshold ν which is used to construct
the tree classifiers. We set α = 0.1,µ = 0.4, K = 65, and we

use 3-fold cross validation on the training set to automatically
obtain the optimized value of parameter ν.

In this experiment, we test the impacts of the number
of trees (K ) in our proposed algorithm MIMLRC-Forest.
We vary the number of trees from 5 to 65 with an interval 10,
and the variation tendency of all the evaluation metrics on dif-
ferent data sets are shown in Fig. 3. Intuitively, except average
precision, the values of the other four evaluation metrics are
approximately declining with the increasing number of trees
(K ). More specifically, the values of each metric trend to be
stable when the number of trees reaching 45, on the other side,
a fulfilling performance can not be guaranteed with a small
number of trees, i.e., K = 5.

E. PERFORMANCE COMPARISON
In the comparison, the performances of all baselines are eval-
uated on five different evaluation metrics including ranking
loss, hamming loss, one error, coverage and average preci-
sion. The performances of all the methods on protein function
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FIGURE 3. The impacts of MIMLRC-Forest algorithm for each evaluation metric on protein data sets with a varying parameter K . (a) Ranking-loss.
(b) Hamming-loss. (c) Coverage. (d) One-error (e) Average precision.

prediction task with respect to the metrics are shown in Fig. 2.
A list of tables from Table 4 to Table 8 present specific exper-
imental results of the performances of all the methods. In the
tables, the up arrow ↑ (down arrow ↓) indicates that the value
of this particular evaluation metric is more competitive with a

larger (smaller) value. The average ranks of the method per-
formances are listed in the last row of each table. In the Fig. 2,
the numbers in brackets denote he performance ranks of the
algorithms according to one particular evaluation metric and
the numbers in boldface show the best ranking algorithm.
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FIGURE 4. The impacts of MIMLRC-Forest algorithm for each evaluation metric on protein data sets with different sizes training data. (a)
Ranking-loss. (b) Hamming-loss. (c) Coverage. (d) One-error (e) Average precision.

All the experimental results present:
• We observe that our proposed algorithm MIMLRC-
Forest highly outperforms the five baseline methods
using all the ranking-loss, coverage, one-error and
average precision evaluation metrics. The average
algorithm performance rank is: MIMLRC-Forest �
MIMLNN � M3MIML � EnMIMLNN � MIMLkNN

� MIMLSVM. Using ranking-loss and coverage
evaluation metrics, the performance of MIMLRC-
Forest is higher than MIMLSVM, MIMLkNN and
EnMIMLNN. As for average precision and one-error
evaluation metrics, the MIMLRC-Forest presents much
better performance compared with MIMLSVM and
MIMLkNN.
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• Using the hamming-loss metric, MIMLRC-Forest fails
to achieve the best performance, where it is ranked as 3rd
on average. BothMIMLNN and EnMIMLNN apply two
layers architecture to solve the MIML learning task and
obtain better performance. This result proves a recent
research [11] about EnMIMLNN reporting its signifi-
cant effectiveness with hamming-loss metric on protein
function prediction task.

• In general, the average performance ranks of the
compared MIMLRC-Forest, MIMLSVM, MIMLNN,
MIMLkNN and EnMIMLNN based on these five eval-
uation metrics are 1.68, 5.84, 2.44, 3.84 and 3.52,
respectively. This implies that MIMLSVM method
is evidently unavailable on protein function predic-
tion problem while MIMLRC-Forest and MIMLNN
approaches are more effective on protein data sets.
Although MIMLRC-Forest is the optimal choice for
protein function prediction task, MIMLNN steadily
achieves satisfied performance on almost all of the eval-
uation metrics.

In our experiments, we also study the performance of
MIMLRC-Forest algorithm with different sizes of training
set. We randomly pick up 10% to 90% of the data set as train-
ing data with an interval 10%, and the remaining data set is
used as test data. Fig. 4 shows the performances ofMIMLRC-
Forest with different sizes of training data on protein data
sets. From Fig 4(d) and Fig. 4(e), with the increasing size of
training data, MIMLRC-Forest achieves better performances
in terms of one error and average precision. In the contrast,
from the perspective of Fig. 4(a) to 4(c), the performances
using ranking loss, hamming loss and coverage are slightly
influenced by the different size of training data. The only
exception is on the Caenorhabditis elegans data set using the
ranking loss.

V. CONCLUSION
We propose a novel ensemble algorithm called Multi-
Instance Multi-Label Randomized Clustering Forest
(MIMLRC-Forest) in the paper to build a set of randomized
clustering trees for protein function prediction task. To exploit
the label dependency, a label transfer mechanism is also
developed to find relevant labels at each node of the tree
hierarchically and seek a decision path to do the predic-
tion. Based on the experiments on real-world protein data
sets, the results shows that the proposed MIMLRC-Forest
method achieves better performance against five state-of-
the-art MIML learning algorithms (MIMLSVM, MIMLNN,
MIMLkNN, M3MIML and EnMIMLNN) using ranking
loss, hamming loss, coverage, one-error and average pre-
cision as metrics, demonstrating the effectiveness of our
method in protein function prediction. Using the proposed
MIMLRC-Forest algorithm, researchers can perform the
structural analysis, functional annotations which can guide
the design of biological experiments and identify functional
units or domains of proteins. Moreover, the proposed
MIMLRC-Forest algorithm can provide a target for genetic

manipulation and a reliable basis for designing new pro-
teins or modifying existing ones. For future work, it will be
interesting to explore the effect of the fraction parameter α
and the scaling parameterµ. Also, wewill model the relations
among proteins and considering label relations as input to
improve the performance of MIMLRC-Forest.
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