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ABSTRACT Both wrapper and hybrid methods in feature selection need the intervention of learning
algorithm to train parameters. The preset parameters and dataset are used to construct several sub-optimal
models, from which the final model is selected. The question is how to evaluate the performance of these
sub-optimal models? What are the effects of different evaluation methods of sub-optimal model on the result
of feature selection? Aiming at the evaluation problem of predictive models in feature selection, we chose a
hybrid feature selection algorithm, FDHSFFS, and conducted comparative experiments on four UCI datasets
with large differences in feature dimension and sample size by using five different cross-validation (CV)
methods. The experimental results show that in the process of feature selection, twofold CV and leave-
one-out-CV are more suitable for the model evaluation of low-dimensional and small sample datasets,
tenfold nested CV and tenfold CV are more suitable for the model evaluation of high-dimensional datasets;
tenfold nested CV is close to the unbiased estimation, and different optimal models may choose the same
approximate optimal feature subset.

INDEX TERMS Feature selection, cross-validation, nested cross-validation, wrapper, hybrid.

I. INTRODUCTION
With the increase of data volume, the noise and redundancy
in data are also increasing. Feature selection has become
an important preprocessing step in data mining because of
its good ability to remove noise and redundancy. It has
been widely used in pattern recognition [1], data mining [2],
machine learning [3], information retrieval [4] and recom-
mendation [5], [6].

Model evaluation is an unavoidable topic in feature
selection. Cross-validation(CV) is the most commonly used
method for model evaluation in feature selection. Suppose
that there are m samples in the dataset used to build the
model and they are usually divided into two parts, training
set mtr and test set mte = m − mtr . The error produced
in the training process is often called training error or CV
error. The error produced in the test process is often called
test error or generalization error, which refers to the error in
new samples.mtr is used to select features and optimal model.
The selection of the optimal model is usually based on the
training error, that is, the model with the minimum training
error is the optimal model. Once the final model is deter-
mined, mte is used to evaluate the performance of the model.

Our goal is to obtain the model with the smallest generaliza-
tion error.

Strictly speaking, we should use all the m samples for
model selection, not some of them. If only the training set

is used for model selection, there are (
m
mtr

) different ways

to divide the dataset. CV is used to calculate the average
predictive power of all (partial) dataset partitioning methods,
and then the model with the best average predictive power is
selected.

Obviously, the computation load of this method is very
huge. Especially for the wrapper methods, which use the
prediction accuracy of the learning algorithms as the criterion
of feature selection. Every time we select the feature, we call
the learning algorithm to calculate the CV error. With the
increase of feature dimension and the number of samples,
the amount of calculation will increase dramatically. In addi-
tion, in the process of determining the optimal model, the CV
error and test error are used to determine the optimal model
simultaneously in fact. This makes the test set become one
part of the training process and the true generalization error
is not estimated [7].
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Therefore, is it reasonable for CV to evaluate the per-
formance of sub-optimal models for a certain task? How
do different CV evaluation methods affect the selection of
approximate optimal feature subset? Although there are a lot
of research results [8], [9] about the model evaluation prob-
lem and they have been applied to practical tasks [10]–[13].
However, as there are few studies on the model evaluation
of feature selection, these problems are still relatively vague,
and further study is needed.

A method of nested CV(CVnest ) was presented in
literature [14]. 10-fold CV is used in the inner layer to
determine the optimal model. LOOCV (Leave one out of
cross validation, LOO) is used in the outer layer to esti-
mate the generalization error. Simulation results on the
datasets show that CVnest can provide a nearly unbiased
generalization error estimation. However, a large number of
studies [30], [31], [34]–[36] have proved that LOO usually
produce high variance, and the model evaluation effect is not
as good as that of 10-fold CV [23].

Therefore, in order to solve the problem of model eval-
uation in feature selection, this paper improves the CVnest
method. 10-fold CV is used in the inner layer to determine
the optimal model and used in the outer layer to estimate
the generalization error. The improved CVnest method is
named as CVnest (10, 10). In order to improve the compu-
tational efficiency, we embed CVnest (10, 10) into a hybrid
feature selection method, FDHSFFS [15] algorithm. The
reason why we choose FDHSFFS is that it is a popular
hybrid method at present, and can improve the calcula-
tion performance while guaranteeing the prediction accu-
racy. The error estimation results of various CV methods
are compared in the feature selection process of FDHSFFS.
The polynomial fitting method is applied to construct the
model. The comparative experiments are carried out on four
UCI datasets with different feature dimension and sample
number. The results show that 10 times of 2-fold CV and
LOO are more suitable for low-dimensional data. In addition,
CVnest (10, 10) and 10 times of 10-fold CV are more suitable
for high-dimensional data, etc.

The rest of this paper is organized as follows. Related work
is introduced in section II, the design of the feature selection
process of FDHSFFS embedded with various CV methods is
detailed in section III, the experiments and results analysis
are presented in section IV, and the conclusion of this paper
is given in section V.

II. RELATED RESEARCH
When designing hybrid and wrapper feature selection meth-
ods, the problem of error estimation must be considered.
The accuracy of error estimation directly affects the result of
feature selection and the choice of optimal model. The com-
monly used error estimation methods include AIC(Akaike
Information Criterion) [7], [8], Cp [9], jackknife [10], hold-
out, bootstrap [11]–[13] and CV.

The commonly used error estimation method in feature
selection is k-fold CV. The value of k is usually set as 10,

which is called 10-fold CV. Other commonly used values
of k are 2,5 and so on. Since Mosier [24] first proposed
the CV method in 1951, it has attracted wide attention
from researchers, especially LOO. Researchers have carried
out a lot of theoretical and experimental researches about
it [25]–[28].

In literature [21], LOO, several variants of self-help
method and some other methods were compared through
five items sampling experiments, trying to find a suitable
error estimation method for small sample datasets. Experi-
mental results show that LOO obtains almost unbiased error
estimation, but it is usually accompanied by unacceptably
high variance, especially on small sample datasets. And the
self-help method of 0.632 performs better. In literature [29],
CV were used for decision tree pruning and 10-fold CV was
selected. Experiments show that 10-fold CV can always select
the right decision tree. In literature [30], ε0 self-help method
was compared with LOO with the nearest neighbor method
as the classifier on artificial dataset, and it claims that the
confidence interval estimated by self-help method is less than
that of LOO. On the basic of literature [30], literature [30]
compared hierarchical CV with two self-help methods on the
nearest neighbor classifier. The results show that compared
with LOO, hierarchical 2-fold CV has relatively low variance
and better performance.

In literature [32], a feature subset selection experiment for
regression was conducted. In the experiment, LOO, k-fold
CV, hierarchical k-fold CV, self-help deviation correction and
local CVwere compared on two artificial datasets with 60 and
160 samples respectively. The experimental results show that:
(1) LOO has lower deviation and root mean square error,
2-fold CV and 5-fold CV have higher deviation and root mean
square error only for model selection with many features;
(2) 10-fold CV has significantly lower performance on small
sample datasets; (3) 10-fold CV performs better than LOO
when used for model selection.

In literature [33], experiments were conducted using
real data to verify the effectiveness of CV on the prun-
ing of decision tree. The results show that 10-fold CV
can generate unbiased tree on datasets with at least
200 samples.

In literature [34], experiments were carried out on
low-dimensional synthetic and real datasets. In the experi-
ments, CV, bootstrap and resubstitution methods were com-
pared and analyzed. The results show that among all these CV
methods, 10 times of 10-fold CV has the best performance,
but its computational complexity is too large and other CV
methods have too high variance and a large number of out-
liers; bootstrap method, especially that for 0.632 estimation,
has the best performance, but its computational cost is too
high.

Literature [35] validated the performance of CV and
repeated CV on several datasets. The experiment results show
that the average results of 10 times of CV and 30 times of CV
are not better than that of single CV, but their computational
burden is larger than that of single CV.
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CV is also widely used in feature selection. For
example, in literature [36], 5-fold CV were applied to
improve the generalization performance of SVM model
and guide the removal of irrelevant and redundant features
in brain-computer interface, good application results are
obtained. In literature [37], CV was applied to guide the
feature selection to improve the performance of target detec-
tion in pedestrian detection. Literature [38] proposed a fea-
ture selection algorithm for the product quality monitoring
in the production process. It uses 10-fold CV to reduce
the generalization error, guide the selection of features with
strong correlation with product quality, and achieved good
results. Literature [39] proposed a new method to reliably
estimate the prediction accuracy and select the most predic-
tive features in a high-dimensional survival prediction set-
ting. To avoid overfitting while selecting features with high
predictive power, the proposed approach estimates accuracy
and performs feature selection using repeated nested CVwith
novel feature combination heuristics. This combination of
aggregating CV runs by weighting results in sparser fea-
ture selection with more accurate estimation of predictive
power. Literature [40] proposed a unified feature selection
framework to reduce the dimension of image/video data,
which can be applied to both supervised and semi-supervised
scenarios. It used a 10-fold CV to optimize the parame-
ters. Literature [41] proposed a novel semi-supervised feature
selection framework by mining correlations among multiple
tasks and apply it to different multimedia applications. It uses
a 5-fold CV to learn the optimal parameters and achieve good
results. Literature [42] proposed a Convex Sparse Principal
Component Analysis (CSPCA) algorithm and applied it to
feature selection task, a 5-fold CV is used and the experimen-
tal results showed that the CSPCA outperformed the other
state-of the-art unsupervised feature selection.

In summary, although most researchers choose the CV
method as the error estimation method in the feature selection
process, there is few application and theoretical research of
CV method in feature selection, and less related research in
hybrid feature selection. So we choose the hybrid feature
selection method FDHSFFS to verify the performance of var-
ious CV methods. This paper aims to provide a reference for
the selection of error estimation method in feature selection
process.

III. DESIGN OF THE ALGORITHM
FDHSFFS is a kind of hybrid feature selection algorithm in
which the filter method is used to select candidate features
and the prediction accuracy of the learning algorithm to
verify the performance of the candidate features. Therefore,
the result of error estimation determines the selection of
approximate optimal feature subset and optimal model.

In this section, the feature selection process of FDHSFFS
is designed in which various of CV methods are embedded.
Specifically, two feature selection processes of FDHSFFS
are detailed in which repeated CV and CVnest (10, 10) are
embedded respectively.

FIGURE 1. The model evaluation flow chart of FDHSFFS embedded with
repeated CV.

A. FEATURE SELECTION PROCESS
EMBEDDED WITH REPEATED CV
The feature selection process of FDHSFFS is shown
in Fig. 1 in which repeated CV is embedded. The parameters
to be optimized in FDHSFFS are collectively denoted by λ
(possibly one or more parameters, they are all denoted by λ
uniformly). We train different models according to different
values of λ, but it is not feasible to train models for all param-
eter configurations. Therefore, we can only select a range and
a change step for parameter λ. For example, within the range
of [0, 1], 0.1 is set as the step size, then there are 11 candidate
parameter values to be evaluated. The final selected value is
chosen from these candidate values. Assume that there are
p values for parameter λ, the p-th value is denoted by λp,
J (S) represents the performance of feature subset S, k is the
maximum feature dimension limited by FDHSFFS algorithm
and n is the dimension of original feature set.

It can be seen from Fig. 1 that FDHSFFS has two stopping
conditions. One is if |S| is greater than k , and the other is
when the number of iterations equals to n− 1. Repeated CV
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error is calculated for each addition or removal of a candidate
feature. When all the p parameters are tried, the test error
set {CV (λ1), · · · ,CV (λp)} corresponding to the p models is
obtained. Then the minimum test error is denoted as CV (λ1),
CV (λ1) = min{CV (λ1), · · · ,CV (λp)}, its corresponding
parameter is denoted as λ1. The model determined by λ1
is the optimal model and the feature set given by this model
is the approximate optimal feature subset.

It should be noted that the criterion of choosing the optimal
model here is actually the test error of repeated CV. So the test
set also participates in the process of model selection.

The computation of FDHSFFS algorithm is mainly
focused on the computation of repeated CV. The more values
of parameter λ, the higher the feature dimension, the more
computation times of repeated CV, the greater the amount of
computation is.

B. FEATURE SELECTION PROCESS EMBEDDED
WITH CVNEST (10, 10)
When CVnest (10, 10) is used to select the model, the feature
selection process of FDHSFFS is shown in Fig. 2 and Fig. 3.

FIGURE 2. The outer model evaluation flow chart of FDHSFFS embedded
with CVnest (10, 10).

In Fig. 2, themodel determined by λ1 is the optimal model,
the feature subset S1 corresponding to λ1 is the approximate
optimal feature subset, and the test error denoted by TE1,
TE1 = avg{CVnest (λop1}, · · · ,CVnest (λop10)}.
Comparing Figs. 1, 2, and 3, it can be seen that there

are many differences in the evaluation process of models
embedded with different CV methods.

FIGURE 3. The inner model evaluation flow chart of FDHSFFS embedded
with CVnest (10, 10).

(1) The amount of calculation is different. All the repeated
CV calculations in Fig. 1 are replaced by single CV calcula-
tion in Fig. 3, and the internal computation is reduced.

(2) The ways to determine the optimal parameters are
different. In Fig. 1, CV (λ1) is the minimum value of p
errors. While in Fig. 3, the inner layer of CVnest (10, 10)
trains one model for each parameter, and produces an aver-
age CV error which denoted by CVnest (λi)(i = 1, · · · , p).
When all the models with different parameter settings are
trained, the CVnest (λi) with the minimum value is chosen
from the p values and denoted by CVnest (λop). The number
of CVnest (λop) is 10, which is produced by the 10 times of
outer loops, and CVnest (λ1) is denoted by CVnest (λ1) =
mini=1,··· ,10CVnest (λopi). The corresponding parameter λ1 is
the optimal parameter and themodel trained by this parameter
is the optimal model.

(3) The ways to calculate the test error are different.
In Fig. 1, we chose the minimum error from p errors, it is the
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test error and denoted by CV (λ1). In Fig. 2, if the param-
eter λ1 is chosen, then the optimal model is determined,
and the approximate optimal feature subset generated by
the model is also determined. While the test error, TE1 =
1
10

∑10
i=1 CVnest (λopi) is the average value of all models’

errors.

IV. SIMULATION EXPERIMENTS
In this section, we conduct a large number of experiments to
compare the results of feature selection using different CV
methods. We compare the estimated errors of CVnest (10, 10),
repeated 10 times CV10 (r10CV10), repeated 10 times CV5
(r10CV5), repeated 10 times CV2 (r10CV2) and LOO in the
feature selection algorithm of FDHSFFS. For r10CVk , only
the test error CV (λ1) is estimated. And for CVnest (10, 10),
both the training error CVnest (λ1) and test error TE1 are esti-
mated. We compare various CV methods in FDHSFFS fea-
ture selection process on four UCI datasets with significantly
different feature dimensions and sample sizes. We com-
pare the error estimates results, computational efficiency,
the selected optimal model and approximate optimal feature
subset of various CV methods. We chose polynomial fitting
as the learning algorithm in the feature selection process.

The experiments run on a common desktop computer with
Intel (R) Core (TM) i5-4690 CPU 3.5GHz, 8GB memory,
Windows 7 operating system. And the simulation software
is MATLAB 2016.

A. DATASETS
The public datasets come from the UCI machine learning
library [34] and the description information of them are
shown in Table 1. Four datasets with different feature dimen-
sions and sample sizes are selected elaborately, including
dataset SP with low feature dimension and middle sample
size, dataset GSAFM with high feature dimension and high
sample size, dataset Breast Cancer Wisconsin Prognostic
(BCW (P)) with low feature dimension and sample size and
dataset UJIL with high dimension and sample size.

TABLE 1. Description of datasets.

In order to speed up the calculation, 6000 samples are
randomly selected from 19937 samples as the total sample
space of UJIL.

B. METHOD OF PERFORMANCE MEASUREMENT
Variance, bias and mean square error (MSE) are commonly
used in regression tasks. While MSE is composed of variance
and deviation and it can balance variance and deviation to a
certain extent. Therefore, we use MSE as the performance
measurement in the experiments.

The MSE is as follows

MSE =
1
m

m∑
i=1

(̂yi − yi)2. (1)

C. EXPERIMENT RESULTS AND ANALYSIS
To avoid over-fitting and under-fitting, regularization is done
in the experiments and the cost function is as follows

J (θ ) =
m∑
i=1

(hθ (x(i))− y(i))2 + γ
n∑
j=1

θ2j . (2)

Here, γ is the regularization parameter, y(i) denotes the i-th
real value, hθ (x(i)) denotes the i-th prediction value.
The range of regularization parameter γ is [0, 1].

In FDHSFFS algorithm, the dimension k of the selected
feature subset is limited. In the experiments, the dimension
of the dataset is assumed to be n. In order to improve the
calculation efficiency, the value of k follows the following
rule, k = min{|n ∗ 0.2|, 10}, that is, the maximum value of k
does not exceed 10.

1) RESULTS AND ANALYSIS ON DATASET SP
Fig. 4 shows a comparison of the estimated error distribution
of r10CV10, r10CV5, r10CV2, LOO andCVnest (10, 10). The
coordinate system of LOO is black and that of other methods
is red. It can be seen that the estimated error distributions of
the five CV methods are approximate. This is obvious espe-
cially in r10CV5 and r10CV2 as their distributions coincide
completely. It is shown that the test errors of the five CV
methods are approximately distributed on dataset SP, which
is of low dimension (no more than 32) and medium sample
size.

FIGURE 4. Estimated error distributions of various CV methods on
dataset SP.

Fig. 5 shows the training error and test error distributions of
CVnest (10, 10) in the model selection process. It can be seen
that the test error is higher than its training error. The training
error mainly focuses on the left side of the center point, that
is, the training error is always small in most cases.

Table 2 shows the results of feature selection for various
CV methods on dataset SP, the selected optimal parameters,
the average training error, the average test error and the
computational complexity.

33458 VOLUME 7, 2019



C. Qi et al.: On Estimating Model in Feature Selection With CV

TABLE 2. Experiment results of various CV methods on dataset SP.

FIGURE 5. Distributions of the training error and test error of
CVnest (10, 10) on dataset SP.

As only the test set ofCVnest (10, 10) does not participate in
the optimal model selection, so two kinds of errors are esti-
mated for CVnest (10, 10), average training error CVnest (λ1)
and average test error TE1. For other CV methods, only the
test error TE1 is estimated. This estimation method is used in
other datasets.

The following conclusions can be obtained from Table 2.
1) Approximate optimal feature subset:Although the opti-

mal models determined by various CV methods are different,
the same approximate optimal feature subsets are selected
eventually. This shows that different optimal models may
determine the same approximate optimal feature subset in
the process of feature selection. This is because the criterion
of selecting features in FDHSFFS is to select the feature set
that can reduce the prediction error. Although the estimation
errors of different optimal models may be different, the same
approximate optimal feature subset may be produced.
2) Error: The errors of the several CVmethods are approx-

imate and the differences among them are less than 0.03%.
The test error of r10CV2 is the smallest, followed by that of
LOO,CVnest (10, 10), r10CV5 and r10CV10.
3) Amount of calculation: As LOO does not need to

performCV repeatedly, so the computational effort of LOO is
minimal, followed by that of r10CV2, and other CV methods
consume approximate time.
4) CVnest (10, 10) can realize approximate unbiased esti-

mation: The test error estimated by CVnest (10, 10) is higher
than its training error, but the difference between them is less
than 1%.

2) RESULTS AND ANALYSIS ON DATASET BCW(P)
Fig. 6 shows the comparison of the error distribution of
r10CV10, r10CV5, r10CV2, LOO and CVnest (10, 10). It can

FIGURE 6. Estimated error distributions of various CV methods on dataset
BCW(P).

FIGURE 7. Distributions of the training error and test error of
CVnest (10, 10) on dataset BCW(P).

be seen that the error distributions of r10CV10, r10CV5 and
LOO are almost coincident, while the error distributions of
r10CV2 and CVnest (10, 10) are approximate and more con-
centrated. The test error distributions of the five CV methods
are approximate.

Fig. 7 shows the distributions of training error and test error
of CVnest (10, 10) in the process of model selection. The coor-
dinate system of the distribution of test error is black, and that
of the training error distribution is red. It can be seen that the
test error of CVnest (10, 10) is slightly higher than its training
error; the training error is mainly concentrated on the left side
of the center point, that is, most of the estimated values are
small; and most of the estimated values of prediction error are
concentrated near the mean (center point).

Table 3 shows the results of feature selection, the selected
optimal parameters, the average training error, and the run-
ning time of FDHSFFS for various CV methods on dataset
BCW (P).

The following conclusions can be obtained from Table 3.
1) Approximate optimal feature subset: Similar to the

result of feature selection on dataset SP, all CV methods
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TABLE 3. Experiment results of various CV methods on dataset BCW(P).

FIGURE 8. Estimated error distributions of various CV methods on dataset
GSAFM.

choose the same approximate optimal feature subset. It is
further verified that the same approximate optimal feature
subset may be generated by different optimal models.
2) Error: Similar to the results on dataset SP, the test

error of r10CV2 is the lowest, followed by that of LOO,
r10CV10 and r10CV5, and the test error of CVnest (10, 10)
is the highest.
3) Amount of calculation: LOO takes the least time to

determine the approximate optimal feature subset and opti-
mal model, followed by CVnest (10, 10). And the amount of
calculation of other CV methods is approximate.
4) CVnest (10, 10) can realize approximate unbiased esti-

mation:The test error ofCVnest (10, 10) is slightly higher than
its training error, and the difference is less than 0.005%, this
closes to unbiased estimation.

3) RESULTS AND ANALYSIS ON DATASET GSAFM
Fig. 8 shows the comparison of the error distributions of
r10CV10, r10CV5, r10CV2, LOO and CVnest (10, 10). The
coordinate system of the error estimation distribution of LOO
is black, and that of other CV methods is red. It can be seen
that the errors of r10CV10, r10CV5 and CVnest (10, 10) are
more concentrated.

Fig. 9 shows the distributions of the training error and
test error of CVnest (10, 10) in the process of model selection.
It can be seen that its test error is slightly higher than its
training error. The training error is mainly concentrated on
the left side of the center point, that is, most of the estimated
values are small.

Table 4 shows the results of feature selection, the selected
optimal parameters, the average training error, and the
amount of calculation of FDHSFFS for various CV methods
on dataset GSAFM.

FIGURE 9. Distributions of the training error and test error of
CVnest (10, 10) on dataset GSAFM.

The following conclusions can be obtained from Table 4.
1) Approximate optimal feature subset: The feature selec-

tion results in Table 4 further verify that different models may
determine the same approximate optimal feature subsets in
the feature selection process.
2) Error: The test error of r10CV10 is the lowest, followed

by that of CVnest (10, 10), r10CV5 and r10CV2, and that of
LOO method is significantly higher than other CV methods.
3) Amount of calculation:With the rapid growth of feature

dimension (from 32 in SP to 438 in GASFM), the amount
of calculation of CVnest (10, 10) is obviously higher than that
of other methods, and its computational efficiency drops
sharply. LOO still takes the least time to determine the
approximate optimal feature subset and the optimal model,
followed by r10CV2.
4) CVnest (10, 10) can realize approximate unbiased esti-

mation:The test error ofCVnest (10, 10) is slightly higher than
its training error and the difference is only 0.25%, this is close
to unbiased estimation.

4) EXPERIMENT RESULTS AND ANALYSIS ON DATASET UJIL
Fig. 10 shows the estimated error distributions of r10CV10,
r10CV5, r10CV2, LOO and CVnest (10, 10). The coordinate
of LOO is black and that of other CV methods is red. It can
be seen that the errors of various CV methods vary greatly,
and the error distribution of CVnest (10, 10) is the most con-
centrated, followed by that of r10CV2.

Fig. 11 shows the distributions of the training error and test
error of CVnest (10, 10) in the model selection process. It can
be seen that the test error ofCVnest (10, 10) is obviously higher
than its training error, and the distributions of training error
and test error are more uniform and they mainly concentrate
in the vicinity of the mean value.
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TABLE 4. Experiment results of various CV methods on dataset GSAFM.

TABLE 5. Experiment results of various CV methods on dataset UJIL.

FIGURE 10. Estimated error distributions of various CV methods on
dataset UJIL.

FIGURE 11. Distributions of the training error and test error of
CVnest (10, 10) on dataset UJIL.

Table 5 shows the results of feature selection, the selected
optimal parameters, the average training error, and the
amount of calculation for determining the optimal model for
various CV methods on dataset UJIL.

The following conclusions can be obtained from Table 5.
1) Approximate optimal feature subset: The approximate

optimal feature subsets determined by various CV methods
are different, but the similarity of the selected features is
very high. Especially for r10CV10 and r10CV5, their selected
approximate optimal feature subsets are almost the same.
2) Error: On the high-dimensional (greater than 438)

datasets GSAFM and UJIL, the test errors of LOO are

obviously higher than that of other CV methods, mainly
because its variance is too high, and the errors of other CV
methods are similar.
3) Amount of calculation: The amount of calculation

of r10CV10 is the largest, followed by that of r10CV5,
CVnest (10, 10) and r10CV2, and that of LOO is still the
smallest.
4) The errors of the CVnest (10, 10): The test error of

CVnest (10, 10) is higher than its training error and the differ-
ence is 2.97%.

V. CONCLUSION
Aiming at the error estimation in the feature selection
of supervised regression task, CVnest (10, 10), r10CV10,
r10CV5, r10CV2 and LOO are selected to estimate the errors
in the feature selection process of FDHSFFS, and compara-
tive experiments are carried on four UCI datasets with large
differences in feature dimension and sample size. The follow-
ing conclusions are obtained from the results.

(1) On low-dimensional(less than 32) datasets, the test
errors of r10CV2 and LOO are less than that of other CV
methods, and their amount of calculation of feature selection
is also less than that ofCVnest (10, 10), r10CV10 and r10CV5.
So it is recommended to apply r10CV2 or LOO to estimate
the errors for feature selection on low-dimensional (less than
32) datasets with small sample size.

(2) On high-dimensional (more than 438) datasets, the test
errors of r10CV2 and LOO are significantly higher than
that of other CV methods. And the estimated errors of
CVnest (10, 10) and r10CV10 are lower. However, the compu-
tational efficiency of CVnest (10, 10) and r10CV10 decreases
significantly with the increase of feature dimension. For prac-
tical tasks, high accuracy and low computational complexity
always need to beweighed. But with the development of com-
puter hardware, high-performance computing has become
popular. So, it may be considered to adopt CVnest (10, 10)
or r10CV10 to estimate errors for high-dimensional datasets
with large sample size.

(3) Different optimal models may select the same approx-
imate optimal feature subset.
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(4) CVnest (10, 10) can realize approximate unbiased
estimation.

The experimental results of this paper provide a reference
for the selection of model evaluation method in the process
of feature selection.
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