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ABSTRACT In this paper, we develop a method for solving the problem of minimizing the H2 error norm
between the transfer functions of the original and reduced systems on the product set of the set of stable
matrices and two Euclidean spaces. That is, we develop a method for identifying the optimal reduced system
from all the asymptotically stable linear systems. However, it is difficult to develop an algorithm for solving
this problem, because the set of stable matrices is highly non-convex. To overcome this issue, we show that
the problem can be transformed into a tractable Riemannian optimization problem on the product manifold
of the set of skew-symmetric matrices, the manifold of the symmetric positive-definite matrices, and two
Euclidean spaces. The asymptotic stability of the reduced systems constructed using optimal solutions to
our problem is preserved. To solve the reduced problem, the Riemannian gradient and Hessian are derived,
and a Riemannian trust-region method is developed. The initial point in the proposed approach is selected
using the output from the balanced truncation (BT) method. The numerical experiments demonstrate that
our method considerably improves the results given by BT and other methods in terms of the H2 norm and
also provides the reduced systems that are globally near-optimal solutions to the problem of minimizing the
H∞ error norm. Moreover, we show that our method provides a better reduced model than the BT and other
methods from the viewpoint of the frequency response.

INDEX TERMS H2 optimal model reduction, Riemannian optimization.

I. INTRODUCTION
Accurate modeling is essential to various system control
methods. However, the complexity of the controller is usually
the same as that of the system [1]. That is, as the scale of
the system to be controlled increases, the controller becomes
more complex. This additional complexity can result in stor-
age, accuracy, and computational speed problems [2]. Thus,
we frequently need to approximate the original system as a
small-scale model with high accuracy.

To produce a highly accurate reduced model, we use
model reduction methods. The most famous approach is the
balanced truncation (BT) method [1]–[4]. BT provides an
asymptotically stable reduced model with guaranteed H∞

bounds, as long as the original model is asymptotically
stable. Another famous technique is the moment matching
method [5]–[8], which produces a reduced system matching
some coefficients of the transfer function of a given linear
system. Moreover, for network systems, some model reduc-
tion methods that preserve the original network structure
have been proposed [9]–[12]. Although the above mentioned

methods do not guarantee any optimality, the H2 optimal
model reduction problem was studied for general asymptot-
ically stable linear systems by formulating the optimization
problem on the Stiefel manifold in [13] and [14]. However,
themethods could be improved further as shown in SectionV,
because they only search for the optimal reduced model from
a subset of all asymptotically stable linear systems.

In this study, we develop a novel H2 optimal model reduc-
tion method for asymptotically stable linear systems. The
problem is formulated as a minimization problem of the H2

error norm between the transfer functions of the original and
reduced systems on the product set of the set of stable matri-
ces and two Euclidean spaces. That is, unlike [13] and [14],
we search for the optimal reduced model with respect to all
asymptotically stable linear systems. However, it is difficult
to develop an algorithm for solving this problem, because the
set of stable matrices is highly non-convex [15].

The contributions of this paper are summarized as follows.
1) We show that the original difficult problem can be trans-
formed into a tractable Riemannian optimization problem
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on the product manifold of the vector space of skew sym-
metric matrices, the manifold of symmetric positive-definite
matrices, and two Euclidean spaces. To solve the problem,
we propose a Riemannian trust-region method. To this end,
we derive the Riemannian gradient and Hessian of the objec-
tive function. Moreover, we suggest applying the result of the
BT method as an initial point of our algorithm.
2) Numerical experiments demonstrate that our proposed
method improves the results of the BT method in the sense of
the H2 and H∞ norms. That is, although the aim of our opti-
mization problem is to minimize the H2 error norm between
the transfer functions of the original and reduced systems,
the H∞ error norm between those is also smaller than that
of the BT method. Furthermore, we illustrate that our pro-
posed method produces reduced systems that are globally
near-optimal solutions to the problem of minimizing the H∞

error norm. Moreover, we show that our method provides a
better reduced model than the BT method from the viewpoint
of the frequency response. In addition, we illustrate that our
method using BT initialization is better than ourmethod using
random initializations and the method proposed in [13].

The remainder of this paper is organized as follows. In
Section II, we formulate the H2 optimal model reduction
problem on the product set of the set of stable matrices and
two Euclidean spaces. In Section III, we transform the prob-
lem into a tractable Riemannian optimization problem. In
Section IV, we propose an optimization algorithm for solving
our problem and a technique for choosing the initial point. In
Section V, we demonstrate that our method is more effective
than the BT and other methods. Finally, our conclusions are
presented in Section VI.
Notation: The sets of real and complex numbers are

denoted by R and C, respectively. The identity matrix of
size n is denoted by In. The symbol Skew(n) denotes the vec-
tor space of skew-symmetric matrices in Rn×n. The manifold
of symmetric positive-definite matrices inRn×n is denoted by
Sym+(n). The tangent space at x on a manifold X is denoted
by TxX . Given a matrix A ∈ Rn×n, tr(A) denotes the sum of
the elements on the diagonal of A, and Ai,j denotes the entry
in row i and column j. Moreover, sym(A) and sk(A) denote
the symmetric and skew-symmetric parts of A, respectively;
i.e., sym(A) = A+AT

2 and sk(A) = A−AT
2 . Here, AT denotes

the transpose of A. Given a vector v ∈ Cn, ||v|| denotes
the Euclidean norm. The Hilbert space L2(Rn) is defined by
L2(Rn) :=

{
f : [0,∞)→ Rn

∣∣ ∫∞
0 ||f (t)||

2 dt <∞
}
. Given

a measurable function f : [0,∞) → Rn, ||f ||L2 and ||f ||L∞
denote the L2 and L∞ norms of f , respectively, i.e.,

||f ||L2 :=

√∫
∞

0
||f (t)||2 dt, ||f ||L∞ := sup

t≥0
||f (t)||.

Given a matrix A ∈ Cn×n, ||A|| and ||A||F denote the induced
and Frobenius norms, i.e.,

||A|| := sup
v∈Cn\{0}

||Av||
||v||

, ||A||F :=
√
tr(A∗A),

where the superscript ∗ denotes Hermitian conjugation, and
tr(A) is the trace of A, i.e., the sum of the diagonal elements
of A. For a matrix functionG(s) ∈ Cn×n, ||G||H2 and ||G||H∞
denote the H2 and H∞ norms of G, respectively, i.e.,

||G||H2 :=

√
1
2π

∫
∞

−∞
||G(iω)||2F dω,

||G||H∞ := supω∈R σ̄ (G(iω)),

where i is the imaginary unit, and σ̄ (G(iω)) denotes the
maximum singular value of G(iω).

II. PROBLEM SETUP
This section describes the formulation of our problem.

As the original system, we consider the linear continuous-
time system {

ẋ = Ax + Bu,
y = Cx,

(1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp are the state, input,
and output, respectively. The matrices A ∈ Rn×n, B ∈ Rn×m,
and C ∈ Rp×n are constant matrices. Throughout this paper,
we assume that system (1) is asymptotically stable; i.e., the
real parts of all the eigenvalues of the matrix A are negative.
We also call thematrixA stable if system (1) is asymptotically
stable. That is, we assume A ∈ Sn×n, where Sn×n denotes the
set of all stable matrices in Rn×n.

In this paper, we consider the following H2 optimal model
reduction problem of preserving the stability.

Problem 1:

minimize ||G− Ĝr ||H2

subject to (Ar ,Br ,Cr ) ∈ Sr×r × Rr×m
× Rp×r .

Here, G is the transfer function of system (1), i.e.,

G(s) := C(sIn − A)−1B, s ∈ C,

and Ĝr is the transfer function of the reduced system{
˙̂xr = Ar x̂r + Bru,
ŷr = Cr x̂r .

(2)

Note that if u ∈ L2(Rm), then the error y− ŷr satisfies

||y− ŷr ||L∞ ≤ ||G− Ĝr ||H2 · ||u||L2 . (3)

The proof is shown in Appendix A. That is, if ||G− Ĝr ||H2 is
sufficiently small, then we can expect ||y− ŷr ||L∞ to become
almost zero for any u with a small ||u||L2 .
It is difficult to solve Problem 1 because the set Sr×r is

highly non-convex [15]. To develop an algorithm for solv-
ing Problem 1, we transform Problem 1 into an equivalent,
tractable Riemannian optimization problem.
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III. EQUIVALENT RIEMANNIAN OPTIMIZATION
PROBLEM
This section proves that Problem 1 is equivalent to

Problem 2:

minimize f (Jr ,Rr ,Br ,Cr ) := ||G− Gr ||2H2

subject to (Jr ,Rr ,Br ,Cr ) ∈ M .

Here, Gr is the transfer function of the reduced system{
ẋr = (Jr − Rr )xr + Bru,
yr = Crxr ,

(4)

and

M := Skew(r)× Sym+(r)× Rr×m
× Rp×r .

Note that system (4) is also asymptotically stable, because the
real parts of all the eigenvalues of Jr − Rr are negative.
To this end, we first note that asymptotically stable

system (1) can be transformed into{
ẋ = (J − R)Qx + Bu,
y = Cx,

(5)

where Q ∈ Sym+(n) and

J :=
1
2
(AQ−1 −Q−1AT ) ∈ Skew(n),

R := −
1
2
(AQ−1 +Q−1AT ) ∈ Sym+(n).

Although the proof can be found in [16, Proposition 1],
we repeat it here for completeness. By definition, it is
clear that J ∈ Skew(n) and (J − R)Q = A. Thus,
we show that R ∈ Sym+(n). As shown in [3], the asymp-
totic stability of system (1) is equivalent to that for any
P ∈ Sym+(n), there uniquely exists Q ∈ Sym+(n) such
that

ATQ+QA = −P.

That is, system (1) is asymptotically stable if and only if there
exists Q ∈ Sym+(n) such that

−(ATQ+QA) ∈ Sym+(n). (6)

Hence, the asymptotic stability of system (1) implies that

R = −
1
2
Q−1(ATQ+QA)Q−1 ∈ Sym+(n).

Conversely, A = (J−R)Qwith any (J ,R,Q) ∈ Skew(n)×
Sym+(n)× Sym+(n) is stable. To see this, consider

ẋ = (J − R)Qx, (7)

and H (x) := 1
2x

TQx. Then, the derivative of H along the
trajectories of system (7) is evaluated by

Ḣ (x) = xT ((J − R)Q)TQx = −xTQRQx.

That is, H (0) = 0, H (x) > 0 for x 6= 0, and Ḣ (x) < 0
for x 6= 0. Thus, the function H is a Lyapunov function and
(J − R)Q is stable. Hence, the set Sn×n can be characterized
by

Sn×n = {(J − R)Q |
(J ,R,Q) ∈ Skew(n)× Sym+(n)× Sym+(n)}.

Note that we can easily find Q ∈ Sym+(n) satisfying (6).
In fact, because the matrix A is stable, there uniquely exists
Q ∈ Sym+(n) satisfying the Lyapunov equation

ATQ+QA+ In = 0, (8)

as shown in [3]. Lyapunov equation (8) can be efficiently
solved using the Bartels–Stewart algorithm [17].

Because the transfer function of (5) coincides with that
of (1), Problem 1 is equivalent to

Problem 3:

minimize ||G− Ǧr ||H2

subject to (Jr ,Rr ,Qr ,Br ,Cr ) ∈ N .

Here, Ǧr is the transfer function of the reduced system{
˙̌xr = (Jr − Rr )Qr x̌r + Bru,
y̌r = Cr x̌r ,

and N := Skew(r)× Sym+(r)× Sym+(r)× Rr×m
× Rp×r .

Next, we show that Problem 3 can be transformed into
Problem 2. To see this, we note that system (5) is equivalent
to the form {

˙̃x = (J̃ − R̃)x̃ + B̃u,
y = C̃ x̃,

(9)

where x̃ ∈ Rn, J̃ ∈ Skew(n), R̃ ∈ Sym+(n), B̃ ∈ Rn×m,
and C̃ ∈ Rp×n. In fact, because Q is a positive-symmetric
matrix, there exists a unique lower triangular L ∈ Rn×n with
positive diagonal entries such that Q = LLT . This is called
the Cholesky decomposition ofQ. For a detailed explanation,
see [18]. Thus, if we perform a coordinate transformation
x̃ = (L−1)T x, we obtain (9), where J̃ = LT JL, R̃ = LTRL,
B̃ = LTB, and C̃ = C(L−1)T . Because the transfer function
of (9) coincides with that of (5), Problem 3 is equivalent to
Problem 2.

From the above discussion, Problem 2 is equivalent to
Problem 1, which completes the proof.

In contrast to Problem 1, we can develop an algorithm
for solving Problem 2 using a Riemannian optimization
method [19], as shown in the next section.
Remark 1: Reference [20] considered

minimize ||G− Ĝr ||2H2

subject to (Ar ,Br ,Cr ) ∈ Rr×r
× Rr×m

× Rp×r ,
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and proved that if reduced system (2) is controllable and
observable, then at every stationary point of ||G − Ĝr ||2H2 ,
we have that

Ar = W TAV , Br = W TB, Cr = CV , W TV = Ir .

Based on this fact, Antoulas et al. [5] and Gugercin
et al. [7] developed an algorithm for finding such V and
W . Although the algorithm can be applied to the model
reduction of large-scale systems, a sequence produced by
the algorithm does not generally converge to a local opti-
mal solution, except for single-input–single-output symmet-
ric systems [21].
Remark 2: References [13] and [14] considered

Problem 4:

minimize ||G− Ḡr ||2H2

subject to U ∈ St(r, n).

Here, Ḡr is the transfer function of the reduced system{
˙̄xr = UTAUx̄r + UTBu,
ȳr = CUx̄r ,

and St(r, n) is the Stiefel manifold defined by

St(r, n) := {U ∈ Rn×r
|UTU = Ir }.

As explained in [13] and [14], if A+ AT is negative-definite,
then A and UTAU are stable, i.e., A ∈ Sn×n and UTAU ∈
Sr×r . Thus, if this is the case, a solution to Problem 4 is a
feasible solution to Problem 1. That is, by solving Problem 4,
we can obtain feasible solutions to Problem 1. However,
in general, the optimal value of Problem 4 is larger than that
of Problem 1, as shown in Section V. This fact has also been
demonstrated for other model reduction problems [22], [23].
Remark 3: Instead of Problem 2, we can consider the fol-

lowing H∞ optimal model reduction problem.

Problem 5:

minimize ||G− Gr ||H∞

subject to (Jr ,Rr ,Br ,Cr ) ∈ M .

However, in contrast to Problem 2, the objective function
||G − Gr ||H∞ is not differentiable. Thus, it is difficult to
develop an algorithm for solving Problem 5. In Section V,
we demonstrate that there are examples for which we can
obtain a globally near-optimal solution to Problem 5 by solv-
ing Problem 2.
Remark 4: Asymptotically stable system (9) with C̃ =

B̃T is an asymptotically stable port-Hamiltonian system [22].
In [22], theH2 optimalmodel reductionmethod of preserving
the port-Hamiltonian structure has been proposed using a
Riemannian optimization.

IV. OPTIMIZATION ALGORITHM FOR PROBLEM 2
A. RIEMANNIAN GRADIENT, HESSIAN, AND
EXPONENTIAL MAP
To develop an optimization algorithm for solving Problem 2,
we derive the Riemannian gradient and Hessian of the objec-
tive function f , and compute the exponential map on the
manifold M .

To this end, we first note that, because systems (9) and
(4) are asymptotically stable, the objective function f can be
expressed as

f (Jr ,Rr ,Br ,Cr ) = tr(C̃6cC̃T
+ CrPCT

r − 2CrXT C̃T )

= tr(B̃T6oB̃+ BTr QBr + 2B̃TYBr ),

where 6c, 6o, P, Q, X , and Y satisfy

(J̃ − R̃)6c +6c(J̃ − R̃)T + B̃B̃T = 0, (10)

(J̃ − R̃)T6o +6o(J̃ − R̃)+ C̃T C̃ = 0, (11)

(Jr − Rr )P+ P(Jr − Rr )T + BrBTr = 0, (12)

(Jr − Rr )TQ+ Q(Jr − Rr )+ CT
r Cr = 0, (13)

(J̃ − R̃)X + X (Jr − Rr )T + B̃BTr = 0, (14)

(J̃ − R̃)TY + Y (Jr − Rr )− C̃TCr = 0, (15)

respectively. For a detailed derivation, see [13], [14], [20].
Let f̄ denote the extension of the objective function f to the

Euclidean space Rr×r
× Rr×r

× Rr×m
× Rp×r . In the same

way as in [22]–[26], we then obtain

∇ f̄ (Jr ,Rr ,Br ,Cr )

= 2(QP+ Y TX ,−(QP+ Y TX ),QBr + Y TB,CrP− CX ).

(16)

To derive the Riemannian gradient and Hessian, we define the
Riemannian metric of the manifold M as

〈(ξ1, η1, ζ1, κ1), (ξ2, η2, ζ2, κ2)〉(Jr ,Rr ,Br ,Cr )
:= tr(ξT1 ξ2)+ tr(R−1r η1R−1r η2)+ tr(ζ T1 ζ2)+ tr(κT1 κ2)

(17)

for (ξ1, η1, ζ1, κ1), (ξ2, η2, ζ2, κ2) ∈ T(Jr ,Rr ,Br ,Cr )M . It then
follows from (22) in Appendix B and (16) that

grad f (Jr ,Rr ,Br ,Cr )

= (2sk(QP+ Y TX ),−2Rrsym(QP+ Y TX )Rr ,

2(QBr + Y TB), 2(CrP− CX )). (18)

Furthermore, from (23) in Appendix B and (16), the Rieman-
nian Hessian of f at (Jr ,Rr ,Br ,Cr ) is given by

Hess f (Jr ,Rr ,Br ,Cr )[(J ′r ,R
′
r ,B
′
r ,C
′
r )]

= (2sk(Q′P+ QP′ + Y ′TX + Y TX ′),

−2Rrsym(Q′P+ QP′ + Y ′TX + Y TX ′)Rr
−2sym(R′rsym(QP+ Y TX )Rr ),

2(Q′Br + QB′r + Y
′TB), 2(C ′rP+ CrP

′
− CX ′)), (19)
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where P′, Q′, X ′, and Y ′ are the solutions to

(Jr − Rr )P′ + P′(Jr − Rr )T + (J ′r − R
′
r )P+ P(J

′
r − R

′
r )
T

+B′rB
T
r + BrB

′T
r = 0,

(Jr − Rr )TQ′ + Q′(Jr − Rr )+ (J ′r − R
′
r )
TQ+ Q(J ′r − R

′
r )

+C ′rC
T
r + CrC

′T
r = 0,

(J̃ − R̃)TX ′ + X ′(Jr − Rr )+ X (J ′r − R
′
r )+ B̃B

′T
r = 0,

(J̃ − R̃)TY ′ + Y ′(Jr − Rr )+ Y (J ′r − R
′
r )− C̃

TC ′r = 0,

respectively. Note that these equations are obtained by differ-
entiating (12), (13), (14), and (15), respectively. Moreover,
from (24) in Appendix A, we can define the exponential map
on the manifold M as

Exp(Jr ,Rr ,Br ,Cr )(ξ, η, ζ, κ)

:= (Jr + ξ,ExpRr (η),Br + ζ,Cr + κ)

= (Jr + ξ,Rr exp(R−1r η),Br + ζ,Cr + κ) (20)

for any (ξ, η, ζ, κ) ∈ T(Jr ,Rr ,Br ,Cr )M .

B. TRUST-REGION METHOD FOR PROBLEM 2
Algorithm 1 describes the Riemannian trust-region method
for solving Problem 2. At each iterate pr := (Jr ,Rr ,Br ,Cr )∈
M in the Riemannian trust-region method, we evaluate the
quadratic model m̂pr of the objective function f within a trust
region:

m̂pr (ξ, η, ζ, κ)

= f (Jr ,Rr ,Br ,Cr )+ 〈grad f (Jr ,Rr ,Br ,Cr ), (ξ, η, ζ, κ)〉pr

+
1
2
〈Hess f (Jr ,Rr ,Br ,Cr )[(ξ, η, ζ, κ)], (ξ, η, ζ, κ)〉pr .

Because we can construct the gradient and Hessian of f as
in Section IV-A, we can construct m̂pr . A trust region with a
radius 1 > 0 at pr ∈ M is defined as a ball in TprM . The
trust-region sub-problem at pr ∈ M with the radius 1 is thus
defined as the problem of minimizing m̂pr (ξ, η, ζ, κ) subject
to

||(ξ, η, ζ, κ)||pr :=
√
〈(ξ, η, ζ, κ), (ξ, η, ζ, κ)〉pr ≤ 1,

where (ξ, η, ζ, κ) ∈ TprM . This sub-problem can be solved
by the truncated conjugate gradient method [19]. We then
compare the decrease in the objective function f and the
model m̂pr attained by the resulting (ξ∗, η∗, ζ∗, κ∗), and use
this to determine whether (ξ∗, η∗, ζ∗, κ∗) should be accepted
and whether the trust region of radius 1 is appropriate.
The constants 1/4 and 3/4 in the conditional expressions in
Algorithm 1 are commonly used in the trust-region method
for a general unconstrained optimization problem. These val-
ues ensure the convergence properties of the algorithm [19].
In fact, if the trust-region sub-problem is carefully solved,
sequences generated by the Riemannian trust-region method
converge quadratically under certain assumptions on the
objective function in question [19].

Note that the reduced system attained by Algorithm 1 is
asymptotically stable, because (Jr ,Rr ,Br ,Cr ) ∈ M at each
iteration.

Algorithm 1 Trust-region method for Problem 2.

1: Choose an initial point (pr )0 ∈ M and parameters 1̄ > 0,
10 ∈ (0, 1̄), γ ′ ∈ [0, 14 ).

2: for k = 0, 1, 2, . . . do
3: Solve the following trust-region sub-problem for

(ξ, η, ζ, κ) to obtain (ξk , ηk , ζk , κk ) ∈ T(pr )kM :

minimize m̂(pr )k (ξ, η, ζ, κ)

subject to ||(ξ, η, ζ, κ)||(pr )k ≤ 1k ,

where (ξ, η, ζ, κ) ∈ T(pr )kM .

4: Evaluate

γk :=
f (Exp(pr )k (0,0,0,0))−f (Exp(pr )k (ξk ,ηk ,ζk ,κk ))

m̂(pr )k (0,0,0,0)− m̂(pr )k (ξk , ηk , ζk , κk )
.

5: if γk < 1
4 then

6: 1k+1 =
1
41k .

7: else if γk > 3
4 and ||(ξk , ηk , ζk , κk )||(pr )k = 1k then

8: 1k+1 = min(21k , 1̄).
9: else
10: 1k+1 = 1k .
11: end if
12: if γk > γ ′ then
13: (pr )k+1 = Exp(pr )k (ξk , ηk , ζk , κk ).
14: else
15: (pr )k+1 = (pr )k .
16: end if
17: end for

C. INITIAL POINT IN ALGORITHM 1
In this subsection, we describe a technique for choosing the
initial point (pr )0 ∈ M in Algorithm 1 using the output of
the BT method [1]–[4]. The BT method can be implemented
using the MATLAB command balred (i.e., we can easily
implement the BTmethod), and provides satisfactory reduced
models in many cases. That is, although there may be a lot
of local minimizers for Problem 2, we can avoid bad local
minimizers by using the BT method. In fact, we demonstrate
that our proposed method performs better when BT initial-
ization is used than when random initializations are used in
Section V.

The BT method outputs the reduced matrices (Ar )BT,
(Br )BT, and (Cr ) BT; the matrix (Ar )BT is stable, because the
originalmatrixA is stable [2]–[4]. Thus, there uniquely exists
Qr ∈ Sym+(r) satisfying

(Ar )TBTQr +Qr (Ar )BT + Ir = 0,

as explained in Section III. Next, we define

(Jr )BT :=
1
2

(
(Ar )BTQ−1r −Q−1r (Ar )TBT

)
,

(Rr )BT := −
1
2

(
(Ar )BTQ−1r +Q−1r (Ar )TBT

)
.
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TABLE 1. ||G− Gr ||H2 .

TABLE 2. ||G− Gr ||H∞ .

TABLE 3. ||grad f (Jr , Rr , Br , Cr )||(17).

Finally, we perform the Cholesky decomposition of
Qr = LrLTr , and set the initial point

(pr )0 = ((Jr )0, (Rr )0, (Br )0, (Cr )0)

= (LTr (Jr )BTLr ,L
T
r (Rr )BTLr ,L

T
r (Br )BT,(Cr )BT(L

−1
r )T ).

Note that, because transfer functions are invariant under coor-
dinate transformations, we have that

(Gr )BT = (Cr )BT(sIr − (Ar )BT)−1(Br )BT
= (Cr )0(sIr − ((Jr )0 − (Rr )0))−1(Br )0,

where (Gr )BT is the transfer function of the reduced system
attained by the BT method.

V. NUMERICAL EXPERIMENTS
In this section, three examples are presented to illustrate that
our method using BT initialization improves the result of BT
in terms of the H2 norm. Furthermore, we show that our
method using BT initialization may provide better results for
theH∞ norm and the frequency response than BT. Moreover,
we compare our method using BT initialization to our method
using random initializations and themethod proposed in [13].
To this end, we have used Manopt [27], which is a MATLAB
toolbox for optimization on manifolds.

A. MASS-SPRING-DAMPER SYSTEM
We consider mass-spring-damper systems with masses mi,
spring constants ki, and damping constants ci (i =

1, 2, . . . , n2 ), where n is an even number. The inputs u1 and
u2 are the external forces applied to the first two masses,
m1 and m2. The output y1 is the displacement of mass m1.
The state variables x̃j (j = 1, 3, . . .) are the displacements
of mass mj and the state variables x̃k (k = 2, 4, . . .) are the
momentums of mass mk . Here, we only consider the case

FIGURE 1. Mass-spring-damper system.

where mi = 4, ki = 4, and ci = 1 (i = 1, 2, . . . , n2 ). The
system can be described by (5) and the system matrices are
given by J̃1,2 = J̃3,4 = · · · = J̃(n−1),n = 1, J̃2,1 = J̃4,3 =
· · · = J̃n,(n−1) = −1, R̃2,2 = R̃4,4 = · · · = R̃n,n = 1,
Q̃1,1 = 4, Q̃2,2 = Q̃4,4 = · · · = Q̃n,n = 1

4 , Q̃3,3 =

Q̃5,5 = · · · = Q̃(n−1),(n−1) = 8, Q̃1,3 = Q̃3,5 = · · · =

Q̃(n−3),(n−1) = −4, Q̃3,1 = Q̃5,3 = · · · = Q̃(n−1),(n−3) = −4,
B̃2,1 = B̃4,2 = 1, C̃1,1 = 1, where the other entries of J̃ , R̃,
Q̃, B̃, and C̃ are zeros.
We reduced the dimension n = 50 to r = 4, 6, 8, 10, and

30, and compared our proposedmethod using BT and random
initializations, the BT results, and results obtained using the
method proposed by Sato and Sato [13]. Tables 1, 2, and 3
present the results for the H2 error norm, H∞ error norm,
and gradient norm, respectively. Here, || · ||(17) denotes the
induced norm from Riemannian metric (17). From Table 3,
we can consider that we obtained local optimal solutions to
Problem 2 when our method using BT and random initializa-
tions was applied. In contrast, the BT method did not provide
a local optimal solution except r = 30. In Appendix D,
we give the reduced matrices (Jr ,Rr ,Br ,Cr ) obtained by our
method using BT initialization in the case where r = 4. For
each r ∈ {4, 6, 8, 10}, the H2 and H∞ error norms given
by the BT method are greater than those of our method. In
particular, for each r ∈ {4, 6, 8}, the H2 error norms of our
method are less than 1/7 of the corresponding error norms
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FIGURE 2. Bode diagram of original and reduced systems.

of the BT method. This is because the reduced models of
the BT method are far from optimal, as can be seen from
Table 3. Furthermore, Tables 1 and 2 show that the results
of our method using BT initialization were better than those
of our method using random initializations and the method
proposed in [13]; however, the results of our method using
BT and random initializations were almost the same when
r = 4. Moreover, from Table 2 and Appendix C, we can
conclude that our proposed method using BT initialization
yielded a globally near-optimal solution to Problem 5. Here,
σr+1 is the (r + 1)-th Hankel singular value of the original
system.

Fig. 2 illustrates the Bode diagram of the original system
and the reduced systems obtained by the proposed method
using BT and random initializations, BT, and the method
proposed by Sato and Sato [13] with r = 4. Here, note that
the result of our proposed method using random initialization
overlappedwith themethod using BT initialization.When the
frequency is less than 1 rada/s, all reduced systems coincide
with the original system. In contrast, when the frequency
is greater than 1 rad/s, our reduced system is closer to the
original system than the systems obtained using BT method
and the method proposed in [13]. Thus, we can conclude that
our proposed method produced better reduced systems than
those produced using BT and the method proposed by Sato
and Sato [13] in terms of the frequency response.

B. BUILDING SYSTEM
We consider the building model of the Los Angeles Univer-
sity Hospital reported in [28]. This model can be described
by (1), and has n = 48 and m = p = 1. For r = 3,
we obtained the following results:

• BT method {
||G− Gr ||H2 = 0.0416,
||G− Gr ||H∞ = 0.0079.

FIGURE 3. Bode diagram of original and reduced systems.

• The method proposed in [13]{
||G− Gr ||H2 = 0.0427,
||G− Gr ||H∞ = 0.0052.

• Proposed method (Random initialization){
||G− Gr ||H2 = 0.0036,
||G− Gr ||H∞ = 0.0042.

• Proposed method (BT initialization){
||G− Gr ||H2 = 0.0030,
||G− Gr ||H∞ = 0.0039.

Note that

||G− G||H∞ ≥ σ4 = 0.0019.

Fig. 3 illustrates the Bode diagram of the original and
reduced systems with r = 3. The results given by the BT
method and the proposedmethod using BT initialization were
similar to that of the original system in the low-frequency
region. In contrast, the results obtained using our method that
used random initialization and the method proposed by Sato
and Sato [13] were far from that of the original system in
the low-frequency region. In addition, our proposed method
using BT initialization yielded considerably better results
than that of BT in the high-frequency region.

C. RANDOM SYSTEM
We also consider an asymptotically stable random system
with n = 100 and m = p = 1. For r = 5, we obtained
the following results:
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FIGURE 4. Bode diagram of original and reduced systems.

• BT method {
||G− Gr ||H2 = 0.1042,
||G− Gr ||H∞ = 0.4914.

• The method proposed in [13]{
||G− Gr ||H2 = 0.0230,
||G− Gr ||H∞ = 0.3700.

• Proposed method (Random initialization){
||G− Gr ||H2 = 0.0315,
||G− Gr ||H∞ = 1.3345.

• Proposed method (BT initialization){
||G− Gr ||H2 = 0.0213,
||G− Gr ||H∞ = 0.3039.

Note that

||G− G||H∞ ≥ σ6 = 0.1483.

Fig. 4 illustrates the Bode diagram of the original and
reduced systems with r = 5. Because the original system is
a complicated system, the BT method provided the reduced
system that is far from the original. In the other methods,
it was seemed that ourmethod usingBT initializationwas bet-
ter than the results of the method using random initialization
and the method proposed in [13] in terms of the magnitude,
although the results of all methods were not satisfactory near
the original in terms of the phase.

D. DISCUSSIONS
We can see from Table 3 that the BT method may
provide locally optimal solutions to Problem 2 if the
reduced model dimension is sufficiently large, because
||grad f (Jr ,Rr ,Br ,Cr )||(17) of BT is sufficiently close to zero
when r = 30. However, from the viewpoint of controller
design, it is preferable for the dimension of the state of
a plant to be as small as possible. Thus, from the results
presented in Sections V-A, V-B, and V-C, we can conclude
that our proposed method using BT initialization will be
useful for improving the results obtained by the BT method
to reduce the original asymptotically stable linear system
to a small-dimensional system in terms of the H2 and H∞

norms. Furthermore, the results showed that ourmethod using
BT initialization is better than our method using random
initialization and the method proposed in [13] in terms of the
H2 and H∞ norms.

Figs. 2, 3, and 4 showed that our method using BT ini-
tialization improved the magnitude characteristics of the BT
method. In contrast, Fig. 3 illustrated that our method using
random initialization and the method proposed in [13] are
not always better than that of the BT method in terms of the
frequency response. Thus, even if the results of our method
using BT and random initializations are almost the same in
terms of the H2 and H∞ norms (such as the case presented
in Section V-B), our method performs significantly better
when using BT initialization than it does when using random
initialization. In fact, although we made a number of random
systems in Section V-C and compared our method using BT
and random initializations, ourmethod usingBT initialization
always performed better in terms of the frequency response.
That is, we can also conclude that our method using BT
initialization performs better than our method using random
initialization, BT, and the method proposed in [13] in terms
of the frequency response.

VI. CONCLUSION
We have proposed a Riemannian optimal model reduction
method for asymptotically stable linear systems. The model
reduction problemwas formulated as aminimization problem
of the H2 error norm between the transfer functions of the
original and reduced systems on the product manifold of the
set of skew-symmetric matrices, the manifold of the symmet-
ric positive-definite matrices, and two Euclidean spaces. The
asymptotic stability of the reduced systems constructed using
the optimal solutions to our problem is preserved. Moreover,
we proposed that the initial point in our algorithm should
be the output of the BT method, because BT produces sat-
isfactory reduced models and is easily implemented in MAT-
LAB. Numerical experiments demonstrated that, in terms of
the H2 norm, our method is better than the BT and other
methods. Furthermore, we illustrated that our method pro-
vides globally near-optimal solutions to the minimization
problem of the H∞ error norm. Moreover, Bode diagrams
showed that our method is better than the BT and other
methods.
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A. PROOF OF (3)
For convenience, we prove (3), although a similar discussion
can be found in [25].

Because systems (1) and (2) are both asymptotically stable,
they are L2-stable. That is, u ∈ L2(Rm) implies that y, ŷr ∈
L2(Rp), and thus, there exist Fourier transformations U , Y ,
and Ŷr of u, y, and ŷr , respectively. Hence, we have that

||y− ŷr ||L∞

= sup
t≥0
||y(t)− ŷr (t)||

= sup
t≥0
||

1
2π

∫
∞

−∞

(Y (iω)− Ŷr (iω))eiωtdω||

≤
1
2π

∫
∞

−∞

||Y (iω)− Ŷr (iω)||dω

≤
1
2π

∫
∞

−∞

||G(iω)− Ĝr (iω)|| · ||U (iω)||dω

≤

√
1
2π

∫
∞

−∞

||G(iω)−Ĝr (iω)||2dω

√
1
2π

∫
∞

−∞

||U (iω)||2dω

≤ ||G− Ĝr ||H2 · ||u||L2 ,

where the second equality follows from the inverse Fourier
transformations of Y and Ŷr , the fifth inequality is from the
Cauchy–Schwarz inequality, and the final inequality follows
from ||G(iω)−Ĝr (iω)|| ≤ ||G(iω)−Ĝr (iω)||F and Parseval’s
theorem. This completes the proof.

B. GEOMETRY OF THE MANIFOLD Sym+(r )
We review the geometry of Sym+(r) to develop an opti-
mization algorithm for solving Problem 1. For a detailed
explanation, see [23].

For ξ1, ξ2 ∈ TSSym+(r), we define the Riemannian metric
as

〈ξ1, ξ2〉S := tr(S−1ξ1S−1ξ2). (21)

Let g : Sym+(r) → R be a smooth function and ḡ be the
extension of g to Euclidean spaceRr×r . Riemannian gradient
grad g(S) with respect to Riemannian metric (21) is given by

grad g(S) = Ssym(∇ḡ(S))S, (22)

where ∇ḡ(S) denotes the Euclidean gradient of ḡ at S ∈
Sym+(r). Riemannian Hessian Hess g(S) : TSSym+(r) →
TSSym+(r) of function g at S ∈ Sym+(r) is given by

Hess g(S)[ξ ] = Ssym(D∇ḡ(S)[ξ ])S

+sym(ξsym(∇ḡ(S))S). (23)

The exponential map on Sym+(r) is given by

ExpS (ξ ) = S
1
2 exp(S−

1
2 ξS−

1
2 )S

1
2

= S exp(S−1ξ ), (24)

where exp is the matrix exponential function.

C. LIMITATION OF MODEL REDUCTION IN TERMS OF THE
HANKEL SINGULAR VALUES
We review the relation between a lower bound of
||G− Gr ||H∞ and the Hankel singular values of G [3].
Let σ1 ≥ σ2 ≥ · · · ≥ σr ≥ σr+1 ≥ · · · ≥ σn > 0

be the Hankel singular values of the transfer function G.
Here, the Hankel singular values are the square roots of the
eigenvalues of 6o6c, where 6c and 6o denote the control-
lability and observability gramians satisfying (10) and (11),
respectively. Then, for any reduced transfer function Gr of
order r , we have that

||G− Gr ||H∞ ≥ σr+1.

That is, all approximation errors are not smaller than the
(r + 1)-th Hankel singular value of G in terms of the H∞

norm.

D. REDUCED MATRICES (Jr , Rr , Br , Cr ) IN THE CASE
WHERE r = 4 IN SECTION V-A
We present the reduced matrices (Jr ,Rr ,Br ,Cr ) produced
by our proposed method using BT initialization in the case
where r = 4 in Section V-A. Let Jr =

(
(Jr )1 (Jr )2

)
, Rr =(

(Rr )1 (Rr )2
)
, Cr =

(
(Cr )1 (Cr )2

)
. Then, we obtained

(Jr )1 =


0.000000000000000 −0.049530743507566
0.049530743507566 0.000000000000000
−0.018625039127746 0.626524211054092
0.007106890495913 −1.083765311671058

 ,

(Jr )2 =


0.018625039127746 −0.007106890495913
−0.626524211054092 1.083765311671058
0.000000000000000 0.066881602488369
−0.066881602488369 0.000000000000000

 ,

(Rr )1 =


0.020979798103068 0.008729495305520
0.008729495305520 0.296162218193050
−0.026753473825891 0.016509857981159
−0.003019900398660 −0.169695898367632

 ,

(Rr )2 =


−0.026753473825891 −0.003019900398660
0.016509857981159 −0.169695898367632
0.277287705425208 −0.447429037737505
−0.447429037737505 1.303620534440710

 ,

Br =


1.087281955207546 1.075128712585373
0.019632883027025 −0.081897882654859
−0.060704161404099 −0.031902870273656
0.013609328117831 −0.011572768539278

 ,
(Cr )1 =

(
0.079020553332377 0.648595865888539

)
,

(Cr )2 =
(
0.877453660076422 −3.055799879863735

)
.
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