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ABSTRACT Hyperspectral data processing is a computationally intensive task that is usually performed
in high-performance computing clusters. However, in remote sensing scenarios, where communications are
expensive, a compression stage is required at the edge of data acquisition before transmitting information to
ground stations for further processing. Moreover, hyperspectral image compressors need to meet minimum
performance and energy-efficiency levels to cope with the real-time requirements imposed by the sensors
and the available power budget. Hence, they are usually implemented as dedicated hardware accelerators in
expensive space-grade electronic devices. In recent years though, these devices have started to coexist with
low-cost commercial alternatives in which unconventional techniques, such as run-time hardware recon-
figuration are evaluated within research-oriented space missions (e.g., CubeSats). In this paper, a run-time
reconfigurable implementation of a low-complexity lossless hyperspectral compressor (i.e., CCSDS 123) on
a commercial off-the-shelf device is presented. The proposed approach leverages an FPGA-based on-board
processing architecture with a data-parallel execution model to transparently manage a configurable number
of resource-efficient hardware cores, dynamically adapting both throughput and energy efficiency. The
experimental results show that this solution is competitive when compared with the current state-of-the-
art hyperspectral compressors and that the impact of the parallelization scheme on the compression rate is
acceptable when considering the improvements in terms of performance and energy consumption. Moreover,
scalability tests prove that run-time adaptation of the compression throughput and energy efficiency can be
achieved by modifying the number of hardware accelerators, a feature that can be useful in space scenarios,

where requirements change over time (e.g., communication bandwidth or power budget).

INDEX TERMS

Data compression, dynamic and partial reconfiguration, FPGAs, high-performance

embedded computing, hyperspectral images, on-board processing.

I. INTRODUCTION

The use of hyperspectral imaging is already consolidated as
a key enabling technology in remote sensing applications.
However, the continuous improvements in the field still pose
several challenges at multiple levels. For instance, enhanced
sensor resolution means more data to be processed and/or
stored, which in turn increases both computing and memory
requirements in the systems. This, together with the lim-

ited communication bandwidth between satellites and ground
stations, motivates the use of high-efficiency on-board data
compression.

Hyperspectral compression algorithms are usually imple-
mented in hardware fabrics (e.g., ASICs or radiation-
hardened FPGAs), since they provide high-performance and
low-energy solutions [1]. However, these approaches present
several drawbacks: on the one hand, they lack flexibility
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once deployed, since it is impossible to make modifications
in the implemented circuit; on the other hand, they rely on
expensive space-qualified devices to ensure correct behavior
during mission time.

Recently, the appearance of CubeSats has enabled the
use of low-cost technology, usually based upon commercial
off-the-shelf components, in small satellite deployments [2].
One of the main benefits of this is that CubeSats can be
used as testbeds for non-conventional developments target-
ing space applications. For instance, they allow the eval-
uation of dynamically and partially reconfigurable FPGAs
as a possible replacement for traditional radiation-hardened
alternatives [3]. This evaluation includes the use of Dynamic
and Partial Reconfiguration (DPR) of SRAM-based fabrics
with a twofold objective: on the one hand, to support func-
tional adaptation with software-like flexibility but hardware-
like performance; on the other hand, to implement run-time
fault mitigation mechanisms such as module relocation or
configuration memory scrubbing [4].

In this paper, a run-time scalable hardware-based imple-
mentation of a lossless hyperspectral data compression
algorithm is presented. The proposed approach relies
on a configurable number of low-complexity compressor
cores (HyLoC) managed by a DPR-enabled hardware pro-
cessing architecture (ARTICo®) operating in the recon-
figurable part of a commercial System on Programmable
Chip (SoPC).

HyLoC [5] is a hardware-based implementation of the
Consultative Committee for Space Data Systems (CCSDS)
123 standard that targets resource-constrained systems,
where limiting area overhead is more important than achiev-
ing high compression throughput. As such, it has a reduced
footprint and features low-power execution at the expense
of limited performance. ARTICo? [6], on the other hand,
is a hardware-based processing architecture that benefits from
a multi-accelerator computing scheme to create a run-time
adaptive solution space for data-parallel algorithms. This
solution space is defined by a tradeoff between computing
performance, energy consumption and fault tolerance.

The HyLoC compressor is sequential in nature. In order to
make it compatible with the ARTICo? execution model, input
images are split in fixed-size subimages that are compressed
independently. Hence, the implementation is provided with
data-level parallelism and can fully benefit from a config-
urable number of accelerators to achieve better performance
(one order of magnitude) at a very low cost in terms of power
consumption, logic resources and design/verification times.

To the best of the authors’ knowledge, this is the first
implementation of a lossless hyperspectral compressor with
multiple SIMD-like hardware accelerators that renders run-
time adaptive throughput and energy consumption, while
still being competitive with alternative state-of-the-art solu-
tions. This novel approach allows the system to compress
faster or slower depending on the availability of the down-
link bandwidth or the urgency to receive, in the ground
station, the information contained in the image. In addition,
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the proposed image partitioning scheme can complement
the inherent redundant operation available in ARTICo? to
increase the fault tolerance of the compressor (i.e., a single
error in one of the compressed bitstreams only prevents that
subimage from decoding from that point onwards, instead of
compromising the whole input image).

The ARTICo3-based HyLoC compressor differs from all
hardware-based alternatives available in the literature, which
typically rely on the use of a single and highly opti-
mized accelerator. These implementations can achieve high
throughput (ideally, 1 compressed sample per clock cycle)
in BIP mode with an optimized pipeline, although data
dependencies force the compressor to run slower in BSQ or
BIL modes. However, resource utilization grows significantly
when optimizing the cores, due to the amount of internal
storage required. Moreover, the throughput may be severely
affected if internal resources are not enough and storage needs
to be outsourced (e.g., to an external memory attached to
the FPGA). Although this last problem cannot be avoided,
the parallel execution of several resource-constrained hard-
ware accelerators mitigates the impact on execution perfor-
mance without increasing area overhead drastically.

The rest of this paper is organized as follows. Section II
presents the building blocks used in this work. A discussion
on the parallelization approach used to deploy the hyper-
spectral image compressor on the hardware-based process-
ing architecture is presented in Section III. The proposed
implementation is assessed in Section IV, and the conclusions
drawn from the results are presented in Section V.

Il. TECHNOLOGY BACKGROUND

A. HYLOC: A LOW-COMPLEXITY IMPLEMENTATION

OF THE CCSDS 123 STANDARD

The CCSDS 123 standard [7] describes a compression algo-
rithm divided in two stages: a predictor and an entropy
coder. The algorithm takes a multispectral or hyperspectral
image (i.e., a three-dimensional array of integer samples) as
input, and exploits redundancies in both spatial and spec-
tral domains to reduce data volume without compromising
its integrity (i.e., the compression is lossless). As a result,
the original input samples can be completely recovered from
the encoded bitstream that is produced as output.

A simplified flowchart of the algorithm is presented in
Figure 1. The predicted sample $_ , r, which corresponds to
the actual sample sy x, is computed using the previously
processed samples in a three-dimensional neighborhood that
spans the current spectral band as well as the P previous bands
(see Figure 2). P is a user-defined parameter that can range
between O (i.e., no information from previous bands is used
for prediction) and 15.

The steps of the algorithm are as follows. First, a local
sum (i.e., 04y x) of the neighboring samples of s, ,  in the
current band is computed. Users can select how this local
sum is computed from two alternatives: neighbor-oriented
and column-oriented (see Table 1). Then, the local sums are
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FIGURE 1. Flowchart of the CCSDS 123 standard algorithm for
multispectral and hyperspectral data compression.
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FIGURE 2. Three-dimensional neighborhood used for prediction in the
CCSDS 123 standard.

TABLE 1. Equations to calculate the local sum 02,y ,x-

Local sum 0,5 of sample s 4,

Neighbor-oriented
Szy—1,2—1 +t Sz yx—1 + Szy—1,2 + Sz,y—1,2+1
Column-oriented
4sz,y—1,z

used to calculate the local differences vector (i.e., U,y x).
The elements of this vector depend on the prediction mode,
which is also a user-defined parameter. Hence, for reduced
prediction, only central local differences (i.e., d;y ) are
used; for full prediction, on the other hand, both central
and directional local differences (i.e., d, ., d  and d}}")
are required. The exact equations to obtain all values are
shown in Table 2.

The predicted sample 5, . is calculated by performing the
dot product of the local differences vector Uy, and a weight
vector W,y , that is updated according to the resulting predic-
tion error (i.e., the difference between prediction and actual
sample). Finally, the prediction residuals are mapped to posi-
tive integer values &,y  that are subsequently entropy coded.
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TABLE 2. Equations to calculate the elements of the local differences
vector Uz,y x. For reduced prediction, only central local differences are
used; for full prediction, both central and directional local differences
are used.

Local differences vector U,y o

Central local differences
dz1yaz =451y~ 0z-lya
d272,y,z = 45272,%1 —0z—2y,x

d:—Pyaz=48:—Pye —0z-Pya
Directional local differences

N —
dz,y,z - 452«’!!—171 — Ozy,x

w —
dz,y,z - 45219’1*1 —Ozy,x
NW _
dz,y,a; - 45279*111*1 —Oz,y,x
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FIGURE 3. Block diagram of the HyLoC IP Core.

The CCSDS 123 standard offers two options for entropy
coding: a sample-adaptive and a block-adaptive encoder.

HyLoC [5] is a low complexity VHDL implementation
of the CCSDS 123 lossless compressor for multispectral
and hyperspectral images that fits in a small space-qualified
FPGA. It performs the compression in BSQ order with
sample-adaptive entropy coding only, and serializes the com-
putation of the local differences and weight vectors to reduce
complexity as much as possible. It is fully compliant with the
standard and allows for tuning the the CCSDS 123 parameters
at compile time. A simplified block diagram of the HyLoC
compressor IP core is presented in Figure 3.

During the HyLoC development, the tradeoffs between
compression efficiency and hardware complexity of the
implementation were analyzed under several compression
scenarios (i.e., exploring using different user-defined param-
eters). The final hardware architecture designed for HyLoC
makes it possible to compress any image in BSQ order with-
out requiring an additional external data memory to store
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the local differences vector, and it also features the lowest
complexity in terms of necessary logic to compute the math-
ematical operations at the prediction stage. The price to be
paid in return for the reduced complexity is an increased
latency, as the computation of the dot product between
the local differences and the weight vectors is serialized.
Nevertheless, the low complexity of the IP core allows for
several instances to co-exist in the same FPGA and conse-
quently scale up the throughput. As it will be shown in the
following sections, this is one of the main contributions of
this paper.

The VHDL description of HyLoC was validated against
reference software implementations from ESA [8] and
UAB [9]. Moreover, it was synthesized for anti-fuse
and SRAM FPGA technologies, including space-qualified
devices such as the RTAX1000S. When implemented on
a Virtex-5 FX130, the maximum occupancy of resources
was 10%, demonstrating its low-complexity nature, and the
maximum operating frequency was 134 MHz, providing a
throughput of 11.3 MSamples/s.
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Host Reconfiguration
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uP Engine
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H
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< Shuffler Acceler
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FIGURE 4. Top-level block diagram of the ARTICo® architecture.

B. ARTICo®: A FRAMEWORK FOR HARDWARE-BASED
HIGH-PERFORMANCE EMBEDDED COMPUTING

ARTICo? [6] is a DPR-enabled hardware-based processing
architecture for high-performance embedded systems (see
Figure 4 for a top-level block diagram). Its execution model
follows a processor-coprocessor approach, where computa-
tionally intensive tasks with explicit data-level parallelism
(called kernels) are offloaded to hardware accelerators. More-
over, one of the main features of ARTICo3-based process-
ing is that the pool of hardware accelerators is dynamic:
DPR can be used to either achieve flexible functional adap-
tation (i.e., time-multiplexing application-specific logic in
the FPGA), or to enable module replication (i.e., loading one
or more copies of the same accelerator).

VOLUME 7, 2019

Global Workload
(Application)

Local Workload
(Accelerator)

Execution Time

FIGURE 5. ARTICo® execution model. User applications offload a global
workload to a reconfigurable number of hardware accelerators, each one
being capable of processing a local workload. Black boxes represent DMA
transfers to (Write) or from (Read) accelerators.

In addition, the internal datapath of the architecture can be
configured at run time to support different operation modes.
Hence, several instances of the same hardware accelerator
can be used to execute a kernel in SIMD-like fashion, in a
fault-tolerant manner using module redundancy and a voter
unit, or in a combination of both modes. This configurability
creates, for each kernel, a dynamic solution space defined
by run-time tradeoffs between not only computing perfor-
mance and fault tolerance, but also energy consumption.
Furthermore, and given the data-parallel nature of the ker-
nels, the architecture provides transparent performance scal-
ability when dynamically changing the number of effective
kernel-specific accelerator instances operating in SIMD-like
fashion. An effective accelerator instance is either a single
accelerator operating in non-redundant mode or a group of
accelerators operating in redundant mode (i.e., 2 in DMR,
3 in TMR). Figure 5 illustrates performance scalability in
the ARTICo? execution model: given a global workload,
which is defined in the user application running in the host
microprocessor, the time it takes for the offloaded computa-
tion to finish depends on the number of effective accelera-
tor instances and their processing capabilities (i.e., the local
workload they can accept). In the example, a global workload
of 4 units requires 1 execution round with 4 accelerators,
2 execution rounds with 2 accelerators, or 4 execution rounds
with 1 accelerator.

The ARTICo® framework uses the architecture as its
core element, but provides additional components at both
design and run time. At design time, the ARTICo? toolchain
eases the integration of user-defined accelerator logic into
a run-time reconfigurable computing system. An automated
flow builds the multi-accelerator setup and generates the
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required FPGA configuration files from the kernel spec-
ifications provided by the developer. These descriptions
can be done either in low-level RTL code (e.g., VHDL,
Verilog) or in high-level C/C++ code. Hence, hard-
ware engineers can work with performance-oriented and
resource-efficient accelerators, whereas software engineers
can also work with ARTICo® by leveraging High-Level
Synthesis (HLS) engines. At run time, the ARTICo? runtime
library makes both reconfiguration and execution manage-
ment transparent for developers, relying on a user-friendly
API called from the code running on the host processor. The
application executable is also built by the ARTICo? toolchain
from a C/C++ specification, making it mandatory to pro-
vide an already partitioned hardware/software application as
input.

Ill. PARALLELIZATION APPROACH
The original HyLoC compressor was conceived to have a
small footprint in terms of logic resources and, as a result,
its normal operation is eminently sequential. Moreover, and
due to the adaptive nature of the compression algorithm
itself, it was meant to compress relatively large hyperspectral
images. This approach, although reasonable in some contexts
(e.g., small rad-hard FPGAs or expensive ASICs), is no
longer valid in an ARTICo3-based implementation, because
no data-level parallelism can be extracted and exploited.
According to Section 2.1 of the CCSDS 123.0 Recom-
mended Standard [7]: A user may choose to partition the
output of an imaging instrument into smaller images that are
separately compressed (...). This Recommended Standard
does not address such partitioning or the tradeoffs associ-
ated with selecting the size of images produced under such
partitioning. This is further described in Section 5.3.2 of the
CCSDS 120.2 Informational Report [10]: The Recommended
Standard does not directly address such image segmentation;
the term “segment” is not part of the standard. In the view
of the Recommended Standard, each such image segment is
simply a separate image.

/T >

|

o g

"Recovered
Decompressible  Segmented Original
Segments Image Image

Recovered

" Original Segmented
Image Image

Independently

FIGURE 6. Extracted data-level parallelism (from CCSDS

120.2 Informational Report [10]). In this example, image segments are
produced by partitioning a larger image along the y-axis. This is a
natural approach for imagers that produce data in BIP or BIL order, but
other partitioning approaches could also be used.

Hence, extracting data-level parallelism by splitting the
image in several segments (as shown in Figure 6) is compli-
ant with the reference standard, as long as each partition is
handled as an independent image. Notice, however, that the
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document mentions certain tradeoffs that need to be taken into
account when applying partitioning. These tradeoffs involve
sacrificing the compression rate to, for instance, achieve fault
tolerance (e.g., minimize the effects of data corruption in
communication links), or to limit the maximum size of each
compressed image [7]. By using ARTICo?, computing per-
formance (algorithm speedup) and energy efficiency become
part of these tradeoffs, since they are also considered when
deciding the size and number of segments that are to be
compressed independently.

In any case, hyperspectral image partitioning usually leads
to a reduction in the compression rate for several reasons:

« Each segment requires a header, since it is handled as an

independent image.

« Prediction is limited at the boundaries between segments

(less neighbors).

o Small segments mean less data to “learn” from and

therefore, less adaptivity in the compressor.

Although the limits might change depending on the appli-
cation scenario, variations in the compression rate need to
be bounded. It is important to analyze the whole constraint
set in order to assess the feasibility of any given partitioning.
This is even more important in the proposed approach, where
low-level, physical restrictions derived from the DPR-based
design flow are present. For this reason, an in-depth analy-
sis on the impact of different partitioning strategies on the
compression rate is presented below. It is important to high-
light that, although this analysis is particularized through-
out the discussion to the data-parallel implementation of
HyLoC in ARTICo?, the proposed partitioning strategies
are platform-agnostic and hold valid for CPUs, GPUs and
hardware accelerators on FPGAs.

TABLE 3. CCSDS 123 compressor configuration.

Parameter Value
Encoding Order BSQ
Bands for Prediction (P) 3

Local Sum Mode
Prediction Mode

Neighbor-Oriented
Full Prediction

The configuration parameters used in the CCSDS 123
compressor for all tests can be found in Table 3. Although
the HyLoC core supports more customization parameters,
only these have an actual impact on compression performance
and area overhead [5]. With this setup, two schemes have
been evaluated using a calibrated AVIRIS [11] image with
224 spectral bands and different spatial dimensions: on the
one hand, a strip-based partitioning over the y-axis; on the
other hand, a square-based partitioning over both x-axis and
y-axis.

The strip-based partitioning (see Figure 7), which is the
same one presented in [10], shows convergence in the com-
pression rate for subimages that are fairly large. Small images
render worse compression rates, especially when partitioned,
since the compression algorithm does not have enough input
samples to fully exploit its adaptive core. This partitioning
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FIGURE 8. Compression Rate: evaluation when dividing the original
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scheme is not uniform, since the subimage size changes from
smaller images to larger ones.

The square-based partitioning (see Figure 8), on the other
hand, shows strong deviations in the compression effective-
ness due to the partitioning being uniform (i.e., subimages
have fixed size regardless of the actual input image size).
In this scenario, the impact of small subimages is larger,
since there are even less input samples for the compression
algorithm to reach efficient results. However, the deviation
in the compression rate remains within an acceptable range
when the size of the subimages is increased (e.g., from
4.022 to 5.015, around 25%, for a spatial resolution of 8 x
8 pixels).

Although the strip-based partitioning is better than the
square-based one when compressing large input images,
its implementation leads to increased memory footprints that
are incompatible with ARTICo? accelerators. Before building
the reconfigurable system, the ARTICo?® toolchain takes the
input kernel specifications and places them in a parametric
wrapper that provides seamless integration with the rest of the
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hardware infrastructure. Within this wrapper, the user logic
is attached to a local memory with a size of up to 64 KiB.
The dashed line in both Figure 7 and Figure 8 represents
this resource limitation for both partitioning schemes (points
above the line denote realizable solutions). Note that, due
to its lack of scalability, the strip-based approach becomes
no longer feasible in the region where better compression
results are achieved. As a result, the square-based partitioning
scheme, which provides bounded results regardless of the
input image and thus favors scalability, has been selected for
implementation in an ARTICo>-based deployment.

TABLE 4. Compression Rate: single image versus parallel partitioning. All
reference images are calibrated AVIRIS samples. The size of all subimage
blocks is 224 x 8 x 8.

Rate (bpppb)
Image NzxNyxNx Single  Parallel

Indian Pines 220x152x 152 6.3 7.07
Yellowstone SCN 0 3.98 4.98
Yellowstone SCN 3 3.87 4.86
Yellowstone SCN 10 224x512x512 3.37 4.28
Yellowstone SCN 11 3.68 4.61
Yellowstone SCN 18 3.97 5.09

At this point, it is important to highlight that compression
effectiveness is data-dependent (i.e., is not only affected by
the specific partitioning of the hyperspectral image, but also
by the image itself). This is due to the adaptive nature of
the compression algorithm, and further discussion in this
regard can be found in [10], where it is also possible to see
certain convergence in the compression effectiveness pro-
vided that subimages are large enough. Hence, additional
tests have been carried out using well-known datasets as input
images (i.e., Indian Pines [12], Yellowstone Scenes [13]).
Table 4 presents the compression rates achieved using subim-
age blocks of 224 x 8 x 8, which is the maximum size
for ARTICo3-based implementations. Please note that spatial
dimensions have been extended (Indian Pines) or reduced
(Yellowstone Scenes) to achieve correct partitioning with an
integer number of blocks. Results show that the worst case
only incurs in 28% overhead in the compression rate for a
spatial resolution of 8 x 8 pixels, a value that is consistent
with the previous tests.

IV. EXPERIMENTAL RESULTS

Once the feasibility of the data-parallel approach has been
assessed, the next step is to evaluate the run-time adaptation
and scalability features of the ARTICo3-based HyLoC imple-
mentation. To this end, a Zynq MMP development board
featuring an XC7Z100-2FFG900 Zyng-7000 device has been
used. This decision has been motivated by two key factors:
on the one hand, Zyng-7000 devices provide better embed-
ded processor performance than any other Xilinx FPGA
(dual-core ARM Cortex-A9 versus single-core MicroBlaze);
on the other hand, the selected device features the largest
number of logic resources in the family, which allows for
better accelerator scalability. A hardware template has been
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FIGURE 9. Experimental setup: 16 HyLoC accelerators (green) connected
to the ARTICo? infrastructure (black). Reconfigurable slots have been
highlighted in red for clarification.

TABLE 5. Resource Utilization: ARTICo? infrastructure, HyLoC kernel, and
reference implementation.

Component ARTICo® HyLoC Kernel Baseline HyLoC [5]
64 KiB -
Info _ 0 registers -
VHDL (Vivado) VHDL (ISE)
Zyng-7000 Virtex-5

LUTs 4158 2932 2342

FFs 2366 1529 1535
DSPs - 1 1
BRAMSs - 16 -

defined to support this board in the ARTICo® toolchain,
enabling up to 16 reconfigurable slots to load kernel-specific
hardware accelerators. Figure 9 shows the FPGA layout
after implementation, with the ARTICo? architecture and all
HyLoC instances. Moreover, an ad-hoc port of the ARTICo3
runtime library for bare-metal applications has been used
instead of the standard Linux-based version, aiming at
improving computing performance and execution scalability
by reducing memory management overheads.

Table 5 shows the resource utilization of the ARTICo?
infrastructure, one instance of a HyLoC kernel, and the refer-
ence implementation [5]. Notice that, although the synthesis
tool (ISE versus Vivado) and the FPGA used (Virtex-5 versus
Zynq-7000) are not the same, the area overhead introduced
by the ARTICo? wrapper is almost negligible (except for
the local memory storage). Also note that, when scaling up
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TABLE 6. Estimated power consumption.

Power (W)
FPGA Static 0.298
Processing System 1.578
HyLoC 0.04 (x16)
ARTICo® 0.08
Additional Logic 0.021
Total 2.617

the number of HyLoC accelerator instances, the ARTICo3
infrastructure becomes a small fraction of the overall resource
utilization (e.g., 8% with 16 accelerators).

The Zynq MMP development board does not have power
measurement circuitry and therefore, only estimated values
have been used to evaluate the energy efficiency of the pro-
posed implementation. However, the values obtained using
Vivado power estimator are coherent with actual power traces
obtained in other ARTICo® deployments where on-board
measuring capabilities were present [6]. Table 6 reports
the estimated power consumption values for both individual
components and complete system.

The evaluation of computing performance, execution scal-
ability and energy efficiency of the ARTICo>-based HyLoC
implementation has been done using as input hyperspectral
image a calibrated AVIRIS capture with 224 bands, 512 lines
and 512 samples. Each of the hardware accelerators has been
configured with the maximum subimage size (as discussed
in Section III), which is 224 bands, 8 lines and 8 samples,
and operates at a clock frequency of 100 MHz. Table 7 shows
the theoretical results (i.e., assuming zero on-chip communi-
cation and memory access overheads, and knowing that one
ARTICo?-compliant HyLoC takes 185555 clock cycles to
compress one subimage), and the values obtained when using
DPR to dynamically change the pool of available processing
cores in a real implementation. These results correspond to a
scenario where no module redundancy is used, but the same
values would be obtained when using the same number of
effective accelerator instances. In this context, execution time
shows almost linear scalability when using up to 8 accel-
erators, proving that they operate in a computing-bounded
region (i.e., accelerator execution takes more time than data
transfers between memories), which is the preferred scenario
to fully benefit from ARTICo3-based acceleration. However,
using 16 accelerators only renders 9.7x speedup, which
indicates that the system is entering the memory-bounded
region (i.e., memory bandwidth reaches its saturation point).
In any case, all configurations are compliant with the CCSDS
specification in terms of energy efficiency, even though some
of them are below the required threshold for compression
throughput. Please bear in mind that the specification states
that a compressor should reach 20 MSamples/s at less than
0.5 W/(MSamples/s) [10].

Finally, Table 8 shows a comparison of the proposed
implementation with different alternatives from the state of
the art. In addition, reference values for AVIRIS sensors
and the CCSDS reference standard are also included in the
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TABLE 7. Compression throughput and energy efficiency when compressing a calibrated AVIRIS image with 224 bands, 512 lines and 512 samples using
ARTICo® and a variable number of HyLoC accelerators (configured to compress subimage blocks of 224 bands, 8 lines and 8 samples,

FPGA fabric @ 100 MHz).

Theoretical Throughput  Actual Throughput  Energy Efficiency
Accelerators  Rounds MSamples/s MSamples/s mW/(MSamples/s)
1 4096 7.72 6.92 378.18
2 2048 15.45 13.28 197.1
4 1024 30.9 24.52 106.73
8 512 61.81 42.48 61.61
16 256 123.62 67.04 39.1

TABLE 8. Comparison of CCSDS 123 implementations according to the encoding order, bands used for prediction (P), target device, maximum operating

frequency, throughput and energy efficiency.

. . fimax Throughput Energy Efficiency
Implementation Order P Device MHz MSamples/s mW/(MSamples/s)
AVIRIS [11] - - Sensor - 1.7 -
AVIRIS-NG [14] - - Sensor - 42.29 -
CCSDS [10] - - Reference standard - 20 500
Emporda [9] All 0-15  Software (i7-7500U) - 4.93[15] -
HyLoC [5] BSQ 3 Virtex-5 134 11.3 207.52
SHyLoC [16] All 3 Virtex-5 - 140 -
Tsigkanos et al. [1] BIP 3 Virtex-5 213 213 22.6
Bascones et al. [15] All 0-15 Virtex-7 50 47.62 9.45
Fjeldtvedt et al. [17] BIP 15 Zyng-7000 147 147 2
Davidson et al. [18] BIP 3 Jetson TX1 - 116.2 86.06
This work BSQ 3 Zyng-7000 100 (134)  67.04 (165.65) 39.1 (15.8)

list to highlight real-time processing conditions. Since some
solutions do not consider the communication and memory
access overheads to calculate the throughput, both actual and
theoretical values are provided for the proposed approach
(for the latter, the maximum operating frequency of a single
HyLoC instance has been used). It is possible to see that
the ARTICo3-based HyLoC compressor renders results in
the range of the rest of implementations, being only 3.2x
slower (considering actual throughput values) than the fastest
solution but flexible at run time, a unique feature of this
work. The GPU-based implementation presented in [18] is
the only one that also uses input image partitioning (referred
to as tiling). However, the implemented partitioning scheme
is the strip-based one, and the execution is performed using a
fixed number of processing elements (GPUs cannot dynam-
ically change its computing resources). Therefore, it cannot
dynamically adapt its performance to changing requirements
as the implementation proposed in this work. Regarding other
hardware-based alternatives in the literature, the most com-
mon approach is to generate highly optimized application-
specific accelerators, as opposed to ARTICo?, which has
a more general purpose (i.e., the same architecture can be
used to accelerate different algorithms). For instance, in [1],
a combination of task-level parallelism and a reconfigurable
fine-grained pipeline is used to achieve one of the fastest
implementations of the CCSDS 123 standard up to date.
In addition, these implementations usually rely on design-
time customization of the hardware accelerators, as opposed
to ARTICo?, where DPR allows dynamic changes at run
time. This can be seen in [15], where the authors hint that
several logic synthesis iterations can be run to fine-tune the
parameters of the compressor to the hyperspectral sensor that
is used.
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V. CONCLUSIONS

In this paper, a novel run-time scalable implementation of
the CCSDS 123 standard has been presented. As opposed to
other alternatives from the literature, the proposed approach
relies on a DPR-enabled multi-accelerator approach, where a
configurable number of low-complexity and resource-
efficient compressor cores operate in SIMD-like fashion,
exploiting data-level parallelism to achieve competitive
performance values.

The proposed parallelization approach is supported by a
platform-agnostic hyperspectral image partitioning scheme
that is compatible with the reference standard. Moreover,
the impact of this partitioning on the compression rate is
acceptable even if additional low-level constraints derived
from the hardware implementation are taken into account
(e.g., compression rate does not exceed a 30% overhead
when using subimage sizes of 224 bands, 8 lines and
8 samples).

Experimental results show that adaptation is supported at
run time, enabling different performance/energy levels by
switching the number of hardware accelerators. Performance
scalability is almost linear until memory bandwidth starts
to saturate (e.g., using 16 accelerators reduces compression
time around 10x), and although some configurations do
not meet the reference standard requirements in terms of
throughput, energy efficiency is always below the required
threshold.

Furthermore, the competitiveness of the proposed imple-
mentation when compared with other alternatives from
the literature encourages the increase of research activ-
ity around the use of commercial off-the-shelf devices
with run-time reconfiguration capabilities in low-cost space
applications.
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