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ABSTRACT In recent years, the Internet of Things has been applied in many fields with rapid development,
such as software, sensors, and medical and healthcare. In the case of medical and healthcare, extensive
research has focused on the development of brain–computer interface systems, particularly those utilizing
steady-state visual-evoked potentials (SSVEPs). However, the conventional short-time Fourier transform
(STFT) analysis is associated with the low-frequency resolution because of the length of the analysis window,
resulting in sidelobe artifacts. In this paper, we utilized the non-harmonic analysis (NHA), which does
not depend on the length of the analysis window, to analyze the continuous changes in and determine
the classification accuracy of SSVEPs. Moreover, our experiments utilized the gray-scale images, allowing
for the presentation of the stimulus as a sinusoidal pattern and reducing the effect of frequency distortion
associated with the refresh rate of the liquid-crystal display. Our findings indicated that NHA resulted in
exponential improvements in time–frequency resolution when compared with the STFT analysis. As the
accuracy of NHA was high, our results suggest that this method is effective for examining SSVEPs and
changes in brain waves during experiments conducted using liquid-crystal displays.

INDEX TERMS Brain computer interface, chirp stimulus, grayscale images, non-harmonic analysis,
steady-state visual evoked potential.

I. INTRODUCTION
The Internet of things (IoT) is the network of devices, vehi-
cles, home appliances and many other applications [1]–[3],
which is an important part of the new generation of informa-
tion technology, but also an important stage of development
in the ‘‘information’’ era.

Based on the recognition, pervasive computing, and other
communication perception technologies, the extensive appli-
cations for IoT has now covered many fields that contain
software [4], sensors [5], and medical and healthcare [6], etc.

In recent years, extensive research has focused on the med-
ical and health such as deep neural network or neuroscience
related purposes, data collection and accurate analysis, then
monitoring and connecting available medical resources and
healthcare services [7].

Brain–computer interface (BCI) systems [8]–[10] have
recently been applied to video games, service robots, and
household electrical appliances [11], which utilize a com-
puter to provide an interface between a human user and an
external processing unit [12]. Many BCI systems rely on
quantitative features, such as the P300—a type of event-
related potential (ERP) that is time-locked to a sensory,
motor, or cognitive event—or steady-state visual-evoked
potentials (SSVEPs), which represent natural responses to
visual stimuli presented at certain frequencies [13].

Several studies have aimed to improve the precision of
BCIs [14], [15]. As the classification accuracy of SSVEP-
based responses is high relative to that observed for auditory
steady-state responses or other ERPs, many research groups
have begun to apply SSVEPs to BCI systems [16].
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However, the stimulation required to elicit SSVEPs causes
marked fatigue in observers, making it difficult to conduct
lengthy experiments. Research has indicated that the fatigue
caused by visual stimulation is associated with the strength
of the SSVEP. Stimuli presented at a frequency of approxi-
mately 10 Hz induce a high degree of fatigue, and the fatigue
level increases in addition to decreases in the SSVEP ampli-
tude in the high-frequency band [17]. Moreover, the high-
frequency visual stimuli required in such settings may induce
epileptic seizures, degradation of signal quality, and deterio-
ration of system performance [18]–[21]. In addition, as the
number of commands increases, it becomes increasingly
important to distinguish the targets from stimuli of various
frequencies, as well as to reduce the effect of the stim-
ulus in specific frequency bands to attenuate fatigue and
seizure risk [22]. Evidence suggests that frequency modu-
lation reduces flicker perceptibility associated with SSVEP-
based BCI systems, leading to improvements in user experi-
ence and performance [23].

The processing of synchronous information is essential
during general SSVEP measurement [23], [24] in order to
reduce noise associated with bodily movement, particularly
when responses are relatively less robust or low in amplitude.
Although the signal-to-noise ratio has increased, to reveal the
SSVEP response induced by the stimulus frequency, it is nec-
essary to accurately determine the time-frequency variations
in the measurement response [25]. However, the accurate
analysis of responses—having a variety of frequency varia-
tions and containing noise—is difficult.

The short-time Fourier transform (STFT) is widely used in
the field of time-frequency analysis [26], [27], which divides
a long signal into shorter segments of equal length and then
computes the Fourier transform separately on each shorter
segment. However, it is difficult to achieve compatibility
between the time and frequency resolutions because the fre-
quency resolution depends on the length of the analysis win-
dow. Briefly, if the window is short, the frequency resolution
decreases, whereas the time resolution decreases in the case
of a long window.

In contrast, non-harmonic analysis (NHA) has consider-
able potential in SSVEP analysis. The effectiveness of NHA
has been validated for use in auditory [28], imagery [29], [30],
and visual applications [31], as well as in applications asso-
ciated with stock-price fluctuation [32], gravitational waves
visualization [33], [34], and medical tomography technol-
ogy [35]–[37]. As NHA uses the least squares method,
the frequency and other associated parameters can be accu-
rately estimated with little influence of the analysis window
length; in addition, the frequency resolution remains high
and even sharp changes can be correctly analyzed using
a short analysis window length. In brief, high time and
frequency resolutions can be simultaneously obtained. There-
fore, we hypothesized that NHA can be used to analyze con-
tinuous changes in and determine the classification accuracy
of SSVEP.

In the present study, we propose and attempt the appli-
cation of NHA to SSVEP analysis and compare the results
obtained using STFT analysis and NHA. We demonstrate
that NHA is a highly precise method, which yields marked
improvements in the frequency resolution. This technique
is effective for analyzing and visualizing Chirp-VEPs and
changes in brain waves.

II. MATERIALS AND METHODS
A. CHIRP STIMULUS
We used the chirp stimulus for performing experiments in the
present study. In general, the number of channels is limited;
however, this type of a stimulus may facilitate an increase
in the number of BCI commands in a high-sensitivity band.
As long as the slope of the frequency change differs, the stim-
uli will be identified as different, even when they belong to
the same limited frequency band, as shown in Figure 1.

FIGURE 1. Different slopes of stimulus in the same frequency band.

SSVEP stimuli can be presented either via an LEDor xenon
light source [20]. When these light sources are used,
the stimulus is presented directly, inducing a relatively strong
response. However, external control of the device is necessary
when such sources are used. Alternatively, because the size
and shape can change freely using liquid crystal display
(LCD), and it does not have image burn-in, LCD can display
arbitrary images and the stimulus can be altered in various
ways. Thus, we selected the LCD monitor to project the
stimulus in the present study [38].

However, previous studies have investigated the influence
of SSVEP distortion caused by the refresh rate of the moni-
tor [39]. Although the distortion level is relatively low for the
entire stimulus, high levels of distortion may occur in specific
bands, and the stimulus type that can be presented depends on
the refresh rate of the LCD. For example, Figure 2 depicts the
waveforms obtained when only black-and-white stimuli are
presented using an LCDmonitor in previous studies, in which
the stimulus appears as a rectangular wave, the frequency
becomes discrete and distortion occurred since the frequency
of the stimulus was limited to 1/N (N is natural number) times
the refresh rate.
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FIGURE 2. Signal of 3 Hz after sampling at 19 Hz (without grayscale
image).

FIGURE 3. Signal of 3 Hz after sampling at 19 Hz (with grayscale image).

To reduce the distortion and limit the frequency range at
which stimuli is presented, the grayscale image is added in the
present study, as shown in Figure 3. Changes in the brightness
value of the presented chirp stimulus occur as a sinusoidal
pattern allows one to visualize frequencies that cannot be
expressed using rectangular waveforms. In addition, because
the distortion-induced differences in the brightness value
remain close to the ideal waveform, it is possible to reduce
the effect of frequency distortion associated with the refresh
rate of the LCD monitor, even when the cycle has deviated.

B. ANALYSIS METHOD
The STFT as a Fourier-related transform has been commonly
used for analyzing organic signals, such as the SSVEP. The
Fourier transform can be represented as follows:

X (nf1) =
1
T

∫ T

0
x(t)e−j2πnf1tdt, (1)

where T is the analysis window length (f1 = 1/T , n is
a positive integer). Equation (1) is solved for determining
the Fourier coefficients. As the Fourier transform is used for
analyzing a completely periodic signal in an analysis window
T , the calculated frequencies (nf1) depend on the window
length T , and errors frequently occur in the analysis of non-
harmonic signal frequencies. Moreover, as changes in the
frequency of the chirp stimulus occur sharply over a short
duration, a decrease in the length of the analysis window
to increase the time resolution also decreases the frequency
resolution.

As the Fourier coefficient is estimated based on the
least squares method, NHA [28]–[37] enables an accurate

estimation of the frequency f , amplitude A, and initial phase
ϕ, avoiding the dominance of the analysis window length.
To minimize the sum of squares of the difference between
the object signal and sinusoidal model signal, the f , A, and ϕ
are calculated using the cost function, as follows:

F (A, f , ϕ) =
1
N

∑N−1

n=0
{x (n1t)− A cos (2π fn1t + ϕ)}2,

(2)

whereN is the total number of samples and1t is the sampling
interval (1t = 1/fs; here, fs is the sampling frequency).
In this way, NHA can reduce the effect of the analysis window
length, and the frequency resolution remains high, enabling
researchers to perform detailed analyses even when sharp
changes occur within a short period of time. Therefore, in the
NHA approach, a nonlinear equation is used (2) to perform
the optimum calculation of the final value of f , as well as the
parameters A and ϕ [40], [41].

By considering equation (2) as a cost function, this nonlin-
ear optimization can be formulated as a minimization prob-
lem. In this formulation, f̂m and ϕ̂m are determined using the
steepest descent method, producing the following expression:

f̂m+1 = f̂m − µm
∂F
∂f
, (3)

ϕ̂m+1 = ϕ̂m − µm
∂F
∂ϕ
. (4)

We use the following shorthand to express (3) and (4):

∂F = ∂F
(
Âm, f̂m, ϕ̂m

)
. (5)

A can be uniquely determined only if f̂m and ϕ̂m are known.
The following formula is used to cause A to converge:

Âm+1 = Âm − µm
∂F
∂A
, (6)

where µm is a weighting coefficient based on the retar-
dation method and has a value between 0 and 1. This
parameter is used to convert cost functions, calculated by
using recurrence formulas, into a monotonically decreasing
sequence [42]–[44].

This series of calculations is repeated so that Âm, f̂m, and ϕ̂m
converge with high accuracy. Although the steepest descent
method causes values to converge over a comparatively wide
range, a single series of operations is unable to ensure suffi-
cient accuracy. To achieve highly accurate conversion, NHA
improves the accuracy by applying Newton’s method after
the application of the steepest descent method. The following
recurrence formula is used for Newton’s method:

f̂m+1 = f̂m −
vm
J

∣∣∣∣∣∣∣∣
∂F
∂f

∂2F
∂f ∂ϕ

∂F
∂ϕ

∂2F
∂ϕ2

∣∣∣∣∣∣∣∣, (7)

ϕ̂m+1 = ϕ̂m −
vm
J

∣∣∣∣∣∣∣∣
∂2F
∂f 2

∂F
∂f

∂2F
∂f ∂ϕ

∂F
∂ϕ

∣∣∣∣∣∣∣∣, (8)
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where

J =

∣∣∣∣∣∣∣∣
∂2F
∂f 2

∂2F
∂f ∂ϕ

∂2F
∂f ∂ϕ

∂2F
∂ϕ2

∣∣∣∣∣∣∣∣. (9)

Equations (7)-(9) can be written as

∂2F = ∂2F
(
Âm, f̂m, ϕ̂m

)
, (10)

where µm and vm are weighting coefficients that are based on
the retardation method [45], [46]. After applying equations
(7) and (8), Âm is made to converge by applying equation (6)
in the same manner as the steepest descent method and the
calculation series is repeated. Thus, the frequency parameters
are quickly estimated to a high degree of accuracy by using
a hybrid process that combines the steepest descent method
with Newton’s method.

According to these analyses, the frequency value of a
response fluctuates with time, a waveform having a frequency
comprising integral multiples can be estimated accurately
using fast Fourier transform (FFT).

However, Figure 4 shows the spectrum analysis results of
a non-integer sinusoidal wave model (amplitude = 1 and
frequency = 1.5) processed using the FFT (zero padding)
and NHA techniques. Owing to the influence of the analysis
window, when the frequency is not an integral multiple, FFT
cannot splice the signal in a complete cycle, which causes the
amplitude to disperse into components in adjacent frequency
bands, creating a side-lobe artifact. In contrast, because the
influence of the analysis window is small during NHA, side-
lobe artifacts do not occur; thus, the amplitude and frequency
values can be estimated accurately, even if the frequency of a
particular waveform is not an integral multiple.

Therefore, NHA as a highly precise frequency analy-
sis method can be used to examine SSVEP responses and
improve the analytical precision in the present study.

III. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT AND PARTICIPANTS
Thirty-eight-channel electroencephalography (EEG) (EMC
NVX 52) was used to measure brain activity, while the par-
ticipants viewed the stimulus video. Electrode placement was
based on the International 10-10 system for EEG, and the
A1 and A2 electrodes were used as the reference. Data were
sampled at a rate of 2,000 Hz, band-pass filtered at 0.1-70 Hz,
and notch filtered at 60 Hz. Stimuli were presented on a
31.5’’ LCD monitor (EV3237, EIZO), which had a refresh
rate of 120 Hz and was capable of a 4-K resolution.

Ten male students in their 20s with normal vision and no
epilepsy history participated in the present study. All par-
ticipants provided written consent to participate, and ethical
approval was obtained from the institutional ethics commit-
tee [47]. Participants were positioned as shown in Figure 5.
The LCD on which the stimulus was projected was placed
in front of the participant at a distance of 0.6 m (presenta-
tion range: 0.33 × 0.33 m). To avoid the influence of outside

FIGURE 4. Spectrum analysis results for a non-integer waveform
frequency signal with A = 1 and f = 1.5 Hz. The (a) original, (b) FFT, and
(c) NHA cases are shown.

FIGURE 5. Experimental setup.

equipment, the experiment was conducted in an anechoic
chamber. Moreover, during the experiment, no other lights
could reach the LCD.

B. COMPARISON OF PRESENTATION MODE
The pattern-reversal checkerboard, an effective strategy
to stimulate the brain’s visual neurons, can always be
used for the SSVEP experiment. For eliciting a possible
strong SSVEP response, three types of presentation modes
were examined: full-screen (resembling a blinking LED),
2 × 2 checkerboard, and 4 × 4 checkerboard (Figure 6).
These modes were enables by presenting a stimulus at the
frequency of 12 Hz, which elicits a strong response [17].
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FIGURE 6. Presentation mode of stimulus. Full-screen (left),
2 × 2 checkerboard (middle), and 4 × 4 checkerboard (right).

FIGURE 7. FFT analysis of EEG data following presentation of stimuli
at 12 Hz.

Each stimulus was presented for 3 s, the synchronous addition
was performed 30 times, and each stimulus was followed by
a 3-s rest interval. EEG measurements were obtained while
participants gazed at the center of the screen.

Figure 7 depicts the analysis results of EEG data following
presentation of stimuli at 12 Hz using FFT. With respect
to the amplitude value of 12 Hz, the full-screen stimulus
was the highest, resulting in the strongest SSVEP response.
In contrast, responses to both checkerboard patterns were
weak, although the response to the 4 × 4 pattern was weaker
than that to the 2 × 2 pattern. Therefore, full-screen stimuli
were used in the present study.

TABLE 1. Stimulus presentation.

C. SELECTION OF STIMULUS
To measure differences in responses to each band, the follow-
ing types of stimuli with a sampling frequency of 2000 Hz
were presented (Table 1):

1. For measuring the response of α band of 7-13 Hz
and examining the influence of the inclination of the
chirp stimulus frequency variation, the frequency of the
stimulus changes from 6-15 Hz over a duration of 1, 2,
and 3 s were prepared; thus, the stimulus at rates of 9,
4.5, and 3 Hz/s, respectively.

2. For measuring the response of β band of 13-30 Hz and
unifying the inclination of frequency variation with the
last stimulus at 3 Hz/s, the frequency of the stimulus
that changed from 12 to 33 Hz over 7 s was prepared.

3. For determining the band in which the stronger
response occurred, a wide frequency band of the stim-
ulus which contained both the α and β bands was
selected. As a broadband stimulus requires a long pre-
sentation period, the frequency of the stimulus that
changed from 8 to 48 Hz over 5 s was prepared, and
the rate of this stimulus was 8 Hz/s.

Each taskwas performed 50 times, with a rest interval of 3 s
between each task.

IV. RESULTS OF STFT ANALYSIS AND
NHA FOR EACH STIMULUS
Shortening the analysis window should theoretically empha-
size the SSVEP, because NHA can maintain a high frequency
resolution even when a short time window is used since the
length of the analysis window exerts little influence. There-
fore, we selected an analysis window length of 500 (0.25 s)
for NHA. However, because of the poor frequency resolution
of STFT and its comparatively greater dependence on the
length of the analysis window, it cannot be used to analyze
stimuli within a short time window. Thus, an analysis window
length of 1,000 (0.5 s) was selected for STFT, for which the
Hamming window was also utilized.

FIGURE 8. Results of STFT analysis (up) and NHA (down) for stimuli
whose frequency changed from 6-15 Hz over 1 s under window lengths
of 1,000 (0.5 s) and 500 (0.25 s), respectively. The red line indicates the
frequency of stimulus presentation.

The results of analysis for each band using the STFT and
NHA are shown in Figures 8-12, and the red line of each
figure indicates the frequency of stimulus presentation with a
sampling frequency of 2000 Hz.
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FIGURE 9. Results of STFT analysis (up) and NHA (down) for stimuli
whose frequency changed from 6-15 Hz over 2 s under window lengths
of 1,000 (0.5 s) and 500 (0.25 s), respectively. The red line indicates the
frequency of stimulus presentation.

FIGURE 10. Results of STFT analysis (up) and NHA (down) for stimuli
whose frequency changed from 6-15 Hz over 3 s under window lengths
of 1,000 (0.5 s) and 500 (0.25 s), respectively. The red line indicates the
frequency of stimulus presentation.

Figures 8-10 present the results of EEG analysis for
stimuli presented at 6-15 Hz, which included the α band
over 1, 2, and 3 s.

Figure 8 shows that STFT could not perceive the response
as the influence of the analysis window is large and the
frequency of the stimulus changed rapidly. In addition, sub-
stantially severe distortion was observed over a large area,
especially for strong responses under 15 Hz. In the case of

NHA, as the length of the analysis window exerted little
influence, no side-lobe artifacts were observed, the frequency
change of the response was visualized as a line, allowing for
a clear and easy capture of the response even if the frequency
variation of the stimulus is large.

In accordance with the findings of previous studies,
Figure 9 shows that the amplitude of the SSVEP is the
highest at a frequency of approximately 12 Hz [21], [48].
Our results indicated that because of the low-frequency res-
olution of STFT analyses, it could only produce section-by-
section views of the frequency change and the responses were
blurred severely. However, NHA enabled the visualization of
the stimulus as a continuous line and the area surrounding
the response remained clear because of the high frequency
resolution.

The results presented in Figure 10 are nearly identical to
those in Figure 9, except that the reaction of the overtone
component has become stronger.

FIGURE 11. Results of STFT analysis (up) and NHA (down) for stimuli
whose frequency changed from 12-33 Hz over 7 s under window lengths
of 1,000 (0.5 s) and 500 (0.25 s), respectively. The red line indicates the
frequency of stimulus presentation.

Figure 11 depicts the results of EEG analysis for stimuli
presented at 12-33 Hz, which includes the β band. The high-
est amplitude values can be observed at 12 Hz. An exam-
ination of the overtone component demonstrated that the
amplitude values were the same as those observed for the
basic frequency within the same frequency band. These find-
ings indicate that the amplitude of the overtone component
depends on the frequency band.

Figure 12 presents the results of EEG analysis for stim-
uli presented at 8-48 Hz, which includes both the α and β
bands. As observed for stimuli presented at 6-15 Hz, the
highest amplitude values can be observed at a frequency
of approximately 12 Hz, and increases in frequency were
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FIGURE 12. Results of STFT analysis (up) and NHA (down) for stimuli
whose frequency changed from 8-48 Hz over 5 s under window lengths
of 1,000 (0.5 s) and 500 (0.25 s), respectively. The red line indicates the
frequency of stimulus presentation.

FIGURE 13. Spectra estimated of stimuli whose frequency changed from
6-15 Hz over 1 s using the STFT, NHA, and datum line.

accompanied by decreases in amplitude. Amplitude values
were particularly low above 30 Hz, and responses were diffi-
cult to determine for frequencies higher than 40 Hz.

V. DISCUSSION
For stimuli whose frequency changed from 6-15 Hz over 1 s,
the frequency started from 6 Hz at about 0.1 s and reached
14 Hz at approximately 1 s, as shown in Figure 8. Therefore, a
frequency component with the maximum amplitude of STFT
and NHA results was extracted at each time point in the 0.9 s
period from 0.1 s to 1 s. In addition, the frequency of stimulus
presentation in the same time period was extracted and used
as the datum line. Figure 13 shows the STFT, NHA, and the
datum line extraction results in the same 0.9 s period from
0.1 s to 1 s, and the characteristic of frequency change of
STFT was step-wise due to its low time-frequency resolution.

FIGURE 14. Frequency errors of the STFT and NHA results from 6-14 Hz.

The frequency errors of the STFT and NHA results were
calculated by:

e =

√√√√∑M
m=1

[
f (m)− f̂ (m)

]2
M

(11)

where e is the mean frequency error of the extracted interval
of the STFT or NHA results and the datum line;M is the num-
ber of STFT, NHA, and datum line data in the extracted inter-
val; f (m) is the STFT or NHA data in the extracted
interval; and f̂ (m) is the datum line data in the extracted
interval.

In the case of STFT, the mean frequency error of this
interval was 1.2646 Hz. However, the mean frequency error
in the NHA case was 0.4361 Hz, which is almost a third of
the STFT error.

Moreover, the standard deviation of STFT and NHA errors
were also calculated. The standard deviation was 2.6601Hz
for STFT, and NHA was 1.3402 Hz, which is almost half of
the STFT indicates that NHA had a low degree of dispersion.

Figure 14 presents the frequency errors of the STFT and
NHA results from 6-14 Hz. It was distinct that NHA had a
much smaller error than STFT. And from 6-9 Hz, the error
was higher than 9-14 Hz in the NHA case. Although STFT
had basically similar trend, the margin of error was much
larger, especially at each turning point. Thus, the analytical
precision of NHAwas quite high, even with significant noise.

In the same way, the mean frequency errors and standard
deviations of the rest of the stimuli were calculated and are
listed in Table 2.

For the stimulus of 12-33 Hz over 7 s and 8-48 Hz over
5 s, the mean frequency errors and standard deviations of
both methods were large since the response disappeared after
half the time of each stimulus, and the error was calculated to
the end time of each stimulus. However, the mean frequency
errors and standard deviations of NHA were still at least half
the magnitude of the STFT errors.

Consequently, the validity of NHA is very high, and that
it enables accurate estimation and detailed analysis, captures
changes in the angle of the frequency correctly, and is appro-
priate for use in LCD-based experiments.
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TABLE 2. Mean frequency error and standard deviation of each stimulus using STFT and NHA.

In conclusion, NHA is effective for obtaining accurate
spectral representations of stimulus, and NHA affords high
time frequency resolution, analytical precision, and noise
reduction.

VI. CONCLUSION
With the popularity of the IoT, which plays an irreplaceable
and important role in the field of medical processing. And
in the present study, we evaluated EEG responses when a
chirp stimulus was presented on an LCD monitor to partici-
pants. Our findings indicated that the use of grayscale images
reduces the frequency distortion associated with the refresh
rate of the monitor as the stimulus is presented as a sinusoidal
pattern.

Our results further indicated that STFT analyses are depen-
dent on the length of the analysis window. Although the
length of the analysis window for STFT is twice as long
as that for NHA, STFT analysis still produces section-by-
section views of the frequency change and exhibits low fre-
quency resolution. Moreover, STFT enables only a rough
trace when the frequency of the stimulus changes because
only the phased value of the frequency can be expressed and
visualized. The line is thick and blurred due to the presence
of the large main-lobe and side-lobe artifacts, which indicate
poor reproducibility for LCD monitors. SSVEPs were diffi-
cult to perceive using STFT analyses, so it was difficult to
perform a detailed analysis and observe the response change.

In contrast, the frequency changes that could not be ana-
lyzed by STFT analyses can be analyzed and visualized using
NHA. Since NHA can overcome the influence of the analysis
window and suppresses the side-lobe artifacts efficiently,
it allows for an accurate assessment of the frequency values
and other associated parameters. Furthermore, NHA enabled
the measurement of Chirp-VEPs—which could be visualized
as a continuous line and used to clearly capture even faint
signals—using a short time window; thus, it is possible to
observe and analyze the response in great detail. Moreover,
the results of NHA were highly similar and often overlapped
the datum line representing the frequency of the stimulus pre-
sentation (red line). The mean frequency errors and standard
deviations were distinctly less than those for STFT.

Our results indicate that NHA is effective for analyzing
Chirp-VEPs and changes in brain waves, suggesting that

NHA is a highly precise analysis method that can be used to
simultaneously achieve high frequency resolution and time
resolution. We will attempt to analyze responses to more
colorful stimuli on an LCD monitor using NHA without pre-
processing in future experimental environments.
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