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ABSTRACT In recent years, deep learning algorithms have achieved top performances in object detection
tasks. However, in real-time, systems having memory or computing limitations very wide and deep networks
with numerous parameters constitute a major obstacle. In this paper, we propose a fast method for detecting
pedestrians in surveillance systems having limited memory and processing units. Our proposed method
applies a model compression technique based on a teacher–student framework to a random forest (RF)
classifier instead of a wide and deep network because a compressed deep network still demands a large
memory for a large amount of parameters and processing resources for multiplication. The first objective of
the proposed compression method is to train a student shallow RF (S-RF), which can mimic the teacher RF’s
performance, by using a softened version of the teacher RF’s output. Second, a deep network cannot easily
detect small and closely located pedestrians in a surveillance video captured from a high perspective because
of frequent convolutions and pooling processes. In this paper, adaptive image scaling and region of interest
with S-RF were therefore combined to allow fast and accurate pedestrian detection in a low-specification
surveillance system. In experiments, our proposed method achieved up to a 2.2 times faster speed and a
2.68 times higher compression rate than teacher RF and a better detection performance than several state-
of-the-art methods on the Performance Evaluation of Tracking and Surveillance 2006, Town Centre, and
Caltech benchmark datasets.

INDEX TERMS Pedestrian detection, model compression, teacher-student framework, random forest,
shallower RF, surveillance video.

I. INTRODUCTION
Pedestrian detection is a fundamental task in computer vision
applications, such as surveillance, advanced driver assis-
tant systems (ADASs), robotics, entertainment and human-
computer interfaces. Although it has been studied for many
decades, accurate pedestrian detection remains an ongo-
ing problem and presents potential challenges caused by
different pedestrian postures, occlusion of pedestrians by
objects or other pedestrians, non-rigid motion and variance
in pedestrians’ appearance caused by illumination changes.
Among the various problems related to pedestrian detection
in surveillance videos, the critical problems of occlusion and
frequent pedestrian interactions in crowded scenes are the

most challenging [1] and we focus on these problems in this
paper.

In conventional pedestrian detection, the input images are
densely up- and down-sampled according to predefined ratios
to allow varying pedestrian sizes to be considered. Then,
hand-crafted features are extracted from the candidate pedes-
trian regions in each size image using the scanning window
method. Trained pedestrian detectors using a support vector
machine (SVM) or AdaBoost classifier verify that candidate
regions belong to the pedestrian or background class. Non-
maximum suppression (NMS) is a post-processing algorithm
that is responsible for merging all the detections that belong
to the same object. Although conventional approaches require
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less computing power and memory than deep learning-based
approaches, the feature extraction algorithms and the classi-
fiers should be designed by a programmer and they cannot be
jointly optimized to improve performance [2].

In contrast, deep learning-based pedestrian detection has
recently exhibited state-of-the-art performances in pedestrian
detection tasks. This approach performs end-to-end learning
by significantly reducing the dependence of the detection
on hand-crafted features and other preprocessing techniques.
In particular, the convolutional neural network (CNN) has
showed impressive accuracy as compared to conventional
approaches because of its capability to learn discriminative
features from raw pixels [3]. In CNN-based pedestrian detec-
tion, a kernel of size n× n is convolved with the input image
in the convolution layers to produce a feature map. After the
subsequent max-pooling layer, each feature map is also con-
volved with other kernels and the final feature maps are com-
bined into a fixed-length feature vector that is then fed into
the fully connected networks. The final softmax layer outputs
classification scores over two classes, pedestrian and back-
ground. Although the detection accuracy of the deep learning-
based approach is known to be better than that of conventional
approaches, a few issues remain to be resolved to allow effi-
cient pedestrian detection. Top performing systems usually
involve very wide and deep networks with numerous param-
eters. However, a large-scale dataset and massive computing
power are required for training, since these systems need
to perform a very large number of multiplications. In addi-
tion, the very considerable number of parameters requires a
large memory, and considerable skill and experience is also
required for selecting suitable hyper parameters. These are
themain reasonswhywide and deep top performing networks
are not well suited for applications with memory or time
limitations [4]. The convolution and pooling layers of the
CNN structure generate high-level sematic activation maps,
which is one cause of the blurred boundaries between closely
positioned pedestrians. As a result, CNN-based detectors are
more likely to fail to locate each individual than conventional
approaches as a result of inaccurate localization.

Surveillance videos tend to include a variety of perspective
views, because the cameras are usually installed at an elevated
location. Therefore, CNN-based detectors are not appropriate
for detecting pedestrians in low resolution video when the
altitude of the surveillance camera is high and the video thus
includes various small-sized pedestrians. Another problem
related to using a CNN-based detector is that it requires a
large number of datasets for training and testing, but it is
not easy to collect a large amount of training data for the
surveillance camera under sufficiently different conditions to
train the CNN. Moreover, to process multiple channel videos
simultaneously, a CNN-based detector requires a high-level
and massive computing device as compared to conventional
detectors.

Therefore, in this study, we focused on developing a new
fast pedestrian detection algorithm for surveillance cameras
that can be run in a low-level computing device by applying

the teacher-student framework to the conventional random
forest (RF).

The remainder of this paper is organized as follows.
In Section II, we describe pedestrian detection in videos cap-
tured by an elevated surveillance camera and the major con-
tributions of this paper. In Section III, we introduce pedestrian
detection using shallow RF (S-RF) based on a teacher-student
learning framework. In Section IV, we present experiments
demonstrating the accuracy and applicability of our proposed
pedestrian detection method. Finally, our conclusions and
scope for future work are presented in Section V.

II. RELATED WORKS
Because this paper presents a study on pedestrian detection in
videos captured by an elevated surveillance camera, we intro-
duce related research on various approaches for detecting
pedestrians in surveillance camera videos.

Histograms of oriented gradient (HOG) [5] is the most
widely used feature descriptor for pedestrian detection.
Although a dense overlapping HOG grid provides good
pedestrian detection results with a lower false positive rate
than traditional Haar-like descriptors, it is also produces false
positives when the pedestrian is similar in color and/or pat-
tern to the background or misses pedestrians positioned in a
crowd, as well as having a heavy computation demand [6].

To solve the missing pedestrian and false positive prob-
lems related to global feature descriptors such as HOG and
local binary patterns (LBP) [7], the deformable part model
(DPM) [8] was proposed for pedestrian detection based on
mixtures of multiscale deformable parts and a latent SVM.
The DPM is characterized by a coarse root filter that approx-
imately covers an entire object and higher resolution part fil-
ters that cover smaller parts of the object. However, the DPM
still cannot easily detect partially occluded pedestrians in
surveillance videos, because it considers the score of the
occluded parts in the final decision score. To solve this prob-
lem, Dehghan et al. [9] inferred occlusion information from
the score of the parts and utilized only those parts having high
confidence in their emergence by finding the most reliable set
of parts that maximizes the probability of detection.

The performance of conventional approaches is in general
limited by the representation power of the low-level hand-
crafted features [1]. Therefore, CNN-based pedestrian detec-
tors for surveillance systems have been attracting attention.
Ouyang and Wang [10] proposed a deep model that jointly
learns four components for pedestrian detection in a surveil-
lance camera video: feature extraction, deformation handling,
occlusion handling and classification. In this unified deep
model, three components interact with each other in the learn-
ing process and each component is allowed to maximize its
strength when cooperating with others. Chen et al. [1] con-
verted the task of pedestrian detection into head-shoulder part
detection to detect severely occluded pedestrians in surveil-
lance videos. In their paper, they proposed a three-stage CNN
cascade to capture the most discriminative information of the
head-shoulder parts of pedestrians. Zhao et al. [3] used the
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Edge Boxes algorithm [11] to obtain low-redundancy and a
high quality of candidate windows with Fast R-CNN [12]
architecture, which can extract thousands of region proposals
and classify pedestrians at those locations based on a CNN.
To reduce the run time of the region proposal of R-CNN,
Faster R-CNN [12] was proposed, in which a region proposal
network (RPN) that shares full-image convolutional features
with the detection network was introduced. However, Faster
R-CNN [12], as well as other CNN-based approaches, are still
not appropriate for real-time pedestrian detection in surveil-
lance systems. To reduce the processing time and improve
the detection performance, you only look once (YOLO) [13]
and YOLO 9000 [14] were proposed. These methods use a
single neural network to predict the bounding boxes and class
probabilities directly from full images in a single evaluation.

In recent years, research on small deep neural net-
work architectures has been actively conducted to detect
objects in embedded devices. For example, SqueezeNet [15],
MobileNets [16], ShuffleNet [17], and TinySSD [18] are
designed specifically to minimize model retaining object
detection performance. Although tiny CNN architectures for
object detection have shown a good performance, several
problems related to them still remain to be resolved as
mentioned in the Introduction. For example, in the case of
TinySSD [18], the size of the network is greatly reduced
through optimization, which is 26 times smaller than the
Tiny YOLO [14] (60.5MB). However, the size of the model
still exceeds 2.3MB and requires 571.09 million operations.
Therefore, these limitations make it difficult to implement
applications in real-time systems and constitute an obstacle
to operating multiple channel videos simultaneously.

In addition to the feature extraction and classification algo-
rithms related to pedestrian detection, variation in the cam-
era’s perspective affects the accuracy of pedestrian detection
because the range of the image scaling level and multi-scale
scanning can vary according to the camera’s altitude and these
two factors are closely related to the detection performance in
terms of accuracy and run-time speed. To handle pedestrian
detection in videos of surveillance cameras having different
altitudes, Bae et al. [19] proposed scale of interest (SOI) and
region of interest (ROI) estimation to minimize unnecessary
computations in practical multiscale pedestrian detection.
The role of the SOI is to determine the image-scaling level by
estimating the perspective of the image and that of the ROI is
to search the area of a scaled image. Ko et al. [6] proposed
Hough windows maps (HWMs) for determining the levels of
image scaling with a divide-and-conquer algorithm to reduce
the computational complexity involved in processing surveil-
lance video sequences. Moreover, an adaptive ROI for image
scaling helps improve the detection accuracy and reduce the
detection time.

Hattori et al. [20] proposed a spatially varying pedes-
trian appearance CNN model that takes into account
the perspective geometry of the scene, because when a
new surveillance system is installed in a new location,
a scene-specific pedestrian detector must first be trained.

To compensate for insufficient data resulting from frequently
changing camera positions, this method used geometric scene
data and a customizable database of virtual simulations of
pedestrian motion instead of changing the ROI or image
scaling level. Cai et al. [21] proposed a multi-scale CNN for
a fast multi-scale pedestrian detection algorithm consisting
of receptive fields of different scales and a scale-specific
detector to produce a strong multi-scale pedestrian detec-
tor. Jiang et al. [22] proposed pedestrian detection based on
sharing features across a group of CNNs that correspond
to pedestrian models of different sizes. This method detects
pedestrians of several different scales in a single layer of an
image pyramid by sharing features in order to reduce the
computational burden incurred by extracting features from an
image pyramid.

A. CONTRIBUTIONS OF THIS WORK
To design a fast pedestrian detection scheme that is well
suited for surveillance systems having a limited memory and
processing unit, we introduce an algorithm for compress-
ing deep and wide classification architectures into shallower
ones. In this study, the proposed compression algorithm was
applied to an RF classifier, which is an ensemble of decision
trees, instead of to a CNN, because a CNN still demands
a large amount of memory and processing resources, even
when the depth of the layers is decreased by the proposed
algorithm.

The major contributions of this paper are as follows.

• We describe the adoption of HWMs for determining the
levels of image scaling and an adaptive ROI algorithm to
reduce the amount of image scaling and sliding windows
in surveillance camera videos.

• We explore new types of model compression algo-
rithm that are realized by transferring the teacher-student
framework to an RF model instead of using computa-
tionally heavy deep learning.

• We propose a model compression in which a teacher-
student compression framework is applied to RF to allow
training of a student shallow RF (S-RF), which is shal-
lower than the teacher RF, using a softened version of
the teacher’s output.

• We prove that S-RF trained by soft target training is
a reasonable method for mimicking the classification
ability of a teacher classifier. In addition, it also an
efficient method for detecting small-sized and closely
positioned pedestrians in a high perspective surveillance
video.

• We prove that the proposed S-RF efficiently and consid-
erably decreases the processing time without sacrificing
accuracy.

We describe the successful application of the proposed
method to a benchmark dataset, and we confirm that its
detection accuracy is similar to or higher than that of
other CNN-based related methods with a shorter processing
time.
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III. TEACHER–STUDENT MODEL COMPRESSION
A. ESTIMATION OF IMAGE-SCALING LEVEL AND
ADAPTIVE REGION OF INTEREST
The amount of image scaling and the number of search
regions is a significant burden in pedestrian detection,
because a multi-scale image pyramid requires frequent image
scaling and the sliding windows should be applied at each
scale for feature matching.

To reduce the amount of image scaling and sliding
windows required to process surveillance camera videos,
we adopted HWMs for determining the levels of image
scaling and an adaptive ROI algorithm [6] for providing a
different search ROI for each image scale. The image scaling
level and corresponding ROI are changeable according to the
perspective angle of the surveillance camera. As the feature,
we use an oriented center-symmetric local binary pattern
(OCS-LBP) [23], because it supports the gradient magni-
tude and pixel orientation simultaneously. To create a robust
feature model for pedestrian occlusion, we compute the
OCS-LBP from 4 × 4 adjacent sub-blocks and produce a
single OCS-LBP descriptor with 128 dimensions by concate-
nating 8 types of local OCS-LBP descriptors from 16 sub-
blocks.

As the pedestrian classification algorithm, we introduce
an S-RF classifier trained using the proposed teacher-student
training framework to separate candidate windows into
pedestrian and non-pedestrian classes. The S-RF training
procedure is described in detail in Section 3-C.

B. REVIEW OF TEACHER-STUDENT FRAMEWORKS
Although the performance of deep neural networks improves
as the layers become deeper, they suffer from the disad-
vantage of increasing memory requirements for millions of
parameters and computational complexity for millions of
multiplications of filters. For these reasons, as mentioned
above, a high-performance wide and deep network is not suit-
able for memory and time constrained applications [4], [24].
To reduce the memory required for numerous parameters
and the computational burden at the inference time, several
model compression frameworks have been proposed, such
as parameter pruning and sharing [25], low-rank factoriza-
tion [26], transferred/compact convolutional filters [27] and
the teacher-student framework [4], [28]–[30]. It is known
that among these four categories, the performance of the
teacher-student framework matches or is superior to that
of the teacher’s framework and requires considerably fewer
parameters and multiplications [24].

The teacher-student framework constructs a deep and wide
teacher network having a high performance based on a large
amount of training data and deep layers, and constructs a
shallower student network with an equal performance based
on the teacher network [4], [28]–[30]. As shown in Fig. 1,
the student network is generated by using the probability
values extracted by the softmax of the teacher network in the
learning process instead of the class labels of the training data.

FIGURE 1. Teacher-student learning framework for compressing a teacher
network into a student network. The softened outputs of the teacher
network are used for training the target student network using other
unlabeled training data by comparing the loss function (L)L)L) and
cross-entropy (H)H)H) of the output of the teacher (PτT ) and the student (PτS ).
(a) Teacher network having deep layers, (b) student network generated by
using the probability values extracted from the teacher network.

The correlation between classes can be considered by using
probability values (soft targets) instead of class labels (hard
targets) for training data. Student networks that use non-hard
target (soft targets) train the student network by using cross-
entropy to reduce the difference in the output of the teacher
and the student network.

However, as mentioned in the Introduction, a compressed
CNN model still demands a large memory for very consider-
able amounts of parameters and processing resources formul-
tiplication. For example, the representative teacher-student
framework, FitNet [4], still requires 2.5 million parameters
and 382 million multiplications, although the teacher net-
work is reduced at a compression ratio of 3:6. Therefore,
CNN-based deep top performing networks are not well suited
for applications with memory or time limitations, even if
model compression algorithms are applied.

In this study, we explored new types of model compression
algorithms achieved by transferring the CNN-based teacher-
student framework to the RF model, that is, an ensemble of
decision trees. An RF is a decision tree ensemble classifier,
where each tree is grown using a certain type of randomiza-
tion. RFs have the capacity to process very large amounts
of data with high training speeds, based on a decision tree.
Moreover, this classifier has been shown to be effective in
a large variety of high-dimensional problems, with a high
computational performance and accuracy as compared to
conventional SVM or AdaBoost classifiers. The structure
of each tree in the RF is binary and is created in a top-
down manner [31], [32]. An RF has a structure to which a
CNN-based teacher-student framework can easily be applied
because it can reduce the size of the forest by pruning the
number of decision trees.

C. TRAINING OF SHALLOW RANDOM FOREST
In this study, we applied the teacher-student compression
framework to RF to allow training of a student S-RF that is
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shallower than the teacher RF, using the softened version of
the teacher’s output.

Hinton et al. [28] trained a student network using real class
labels and the softened output of an ensemble of a teacher
network. The student network was trained to optimize the loss
function (L) based on two cross-entropies (H)H)H).

L (WS) =H
(
ytrue,PS

)
+ λH

(
PτT ,P

τ
S
)

(1)

where the first term HHH means a cross-entropy between the
real class labels ytrue and the output of student networks
PS. The second term means a cross-entropy between the
softened output of the student network PτS and the teacher
PτT . However, it needs a tunable parameter λ to balance both
cross entropies. Moreover, significant effort is required to
label ytrue for training data. However, unlabeled data help the
student networks learn to approximate better the outputs of
the fully trained teacher networks [29].

According to the experimental results presented in [29],
soft target data (a class probability vector) are able to capture
more information than the original hard target (0/1 labels)
data by retaining the class relationship between the different
classes and the input that has been internalized by the teacher.
Moreover, unlabeled data help the student networks to learn
to approximate better the outputs of the fully trained teacher
networks. Therefore, in this study a new dataset B∗ consisting
of soft target data for training a student RF was constructed
instead of using the same dataset as that used for training
the teacher RF. The soft target dataset B∗ of each sample is
obtained from the pre-trained teacher RF.

First, the training pedestrian dataset is divided into dataset
A for learning the teacher and a larger dataset B for learning
the student. For training the teacher RF model, a training set
A is given as a base for training component

A ={(xi,yi) |i = 1, 2, . . .N }

where xi= (xi1, xi2, . . . , xiM ) is an input vector with M (128)
dimensions and yi = {g1, g2, . . . , gC } is a scalar (C is the
number of classes and it has two classes), representing the
class marked by the expert for xi. Dataset A labeled with a
scalar 1 (pedestrian)/0 (non-pedestrian) is called a ‘hard tar-
get’. The teacher RF is then trained to construct an ensemble
of decision trees that minimizes the classification error using
a labeled training set A.

In the training procedure of the teacher RF, the RF first
chooses a random subset A′ from the training dataset, A. At
node O, the sample A′O is iteratively split into left and right
subsets, A′l and A′r , by using the threshold, t , and split func-
tion, f (vi), for the feature vector, v. Then, several candidates
are randomly created by the split function and threshold at
the split node. From among these, the candidate that maxi-
mizes the information gain about the corresponding node is
selected. The information gain, 1E , is easily calculated by
entropy estimation, according to

1E = E
(
A′O
)
−

∣∣A′l ∣∣∣∣A′O∣∣E
(
A′l
)
−

∣∣A′r ∣∣∣∣A′O∣∣E(A′r ) (2)

where E (·) is the Shannon entropy of the classes in the set of
training samples A′.
After the decision tree has been trained, the leaf nodes store

statistical information containing the probability of each class
that reached node S, pt (ci|o), i ∈ 1, . . . ,C . A random forestT
then consists of a set of T trees and each treeTt , t ∈ {1, . . . ,T
is trained on a randomly sampled subset of the training data
A. The final class distribution of a sample x is generated by
the ensemble (arithmetic averaging) of each distribution of all
trees T :

p (ci | x) =
1
T

∑T

t=1
pt (ci|x) (3)

Training dataset B is then input to the teacher RF, which
is trained using the corresponding hard targets. Unlike those
of training dataset A, the input samples of dataset B have
the same labels, consisting of a vector of class posterior
probability summing to 1, expressed as

B ={(xi,pi) |i = 1, 2, . . .N }

where xi = (xi1, xi2, . . . , xiN ) is the feature vector and
pi = (pi1, pi2, . . . , piC ) is the class probability vector. pij is
the probability for class j for sample i and the initial class
probability vector pi of the i-th sample must have the same
class distribution as 1/C.

To obtain pi in the original dataset B, each sample is
applied to the teacher RF to calculate the class probability
vector according to the results of Eq. (3) and relabel the
original dataset B. After all the samples included in dataset
B have been trained, a new dataset B∗ is constructed:

B∗ =
{(
x∗i ,p

∗
i
)
|i = 1, 2, . . .N ∗

}
The new dataset B∗ is transcribed with a class probability

p∗i that is called as ‘soft target’ as opposed to a hard tar-
get [29].

For training the decision tree of the student RF, the entropy
estimation for evaluating the split function is calculated using
output class distribution p∗i estimated from the teacher RF,
instead of Shannon entropy. Let us assume B′ is the randomly
selected subset of B∗ and B′O represents the samples at node
O. The samples B′O are iteratively split into left and right
subsets B′l and B′r by using the entropy estimation:

E
(
B′O
)
= −

1
N

∑N

i=1

∑C

j=1
p∗ijlog(p

∗
ij) (4)

where p∗ij is the j-th class distribution of sample i at node O
andN is the total number of data classified into nodeO. Then,
the information gain 1E of node O is calculated by Eq. (2).
After decision tree Trt has been expanded, the final cross

entropy is estimated to decide whether or not the candidate
decision tree is selected to be a member of the student S-RF.
The general form of the final cross entropy is

Tr (T,S)t = −
∑N

i=1

∑C

j=1
p∗ij(T )log(p

∗
ij(St )) (5)

where p∗ij(T ) represents the j-th class distribution of sample
i of the B∗ dataset transcribed by the teacher RF, and p∗ij(St )
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Algorithm 1 Procedure of Training Student ShallowRandom
Forest
Input:
B∗ : soft target dataset transcribed with a class probability
by output of teacher RF
D : maximum depth of a tree1

T ′: desired number of target trees of S-RF
N, C: number of samples of B∗ and class
S-RF: set of student S-RF
n(S-RF): number of trees in S-RF

While n(S-RF) ≤ T do
Select subset B′ from training set B∗

Grow an unpruned tree using the B′ samples
Step 1: Tree growing with D depth
For d=1 to D do

Each internal node randomly selects p variables and
determines the best split function using only these
variables

Loop: Using different p-th variables, the split function
f (vp) iteratively splits the training data into left (B′l) and
right (B′r ) subsets at node O.

B′l = {x ∈ B′|f
(
vp
)
< t,

B′r =
{
x ∈ B

′

| f
(
vp
)
≥ t

}
.

The threshold t is randomly chosen by the split function
f (vp) in the range t ∈ (min f

(
vp
)
,max f (vp)).

Compute entropy E
(
B
′

O

)
of a function f (vp) using

Eq. (4)
Calculate information gain 1E of node O using Eq. (2)
If (1E = max), then determine the best split function
f (vp) for node d
Else go to loop.
Store the tree structure Trt and probability distribution
to leaf node.
End of For

Step 2: Tree evaluation
Compute the class probability, p∗ij, on all B

∗ data using
the trained t-th decision tree Trt .
The cross-entropy Tr(T , S)t about Trt is estimated
using Eq. (5)
Minimization criteria of cross-entropy.
IF Tr (T , S)t< τ ,
Then S− RF 3Trt ;
Else remove Trt .

End While // End of student random forest growing
Step 3: Output of student S-RF
The S-RF consists of T ′(T ′ <= T ) soft target trained
decision trees and class probability p∗ij for each leaf node.

represents the j-th class distribution of sample i by the con-
structed decision tree t .
Algorithm 1 details the student RF training process using

a soft target dataset.

Threshold τ for theminimization criterion of cross-entropy
is 0.39 and detail experiment is described in Section IV-F.

Figure 2 shows the overall S-RF training procedure based
on soft-target training data B∗. After the t-th tree Trt is
grown using information gain criteria and a random subset of
B∗ (Fig. 2(a)), tree evaluation is performed using the cross-
entropy estimation of tree Trt to decide whether or not the
candidate decision tree is selected as a member of student
RF (Fig. 2(b)). The final S-RF consists of T ’ optimal trees
selected after T iterations.

To train the teacher RF, we collected 4,250 images from
Caltech dataset images [33] and YouTube consisting of 5,502
positive and 7,566 negative pedestrian samples as dataset
A. In this study, we set the maximum size (number) of the
teacher RF at 300 trees, because the accuracy no longer
improves as the tree number of trees increases over 300. Then,
dataset B was also generated from 1,700 images consisting of
2,2001 positive and 3,000 negative samples using the rest of
dataset. After the teacher RF was constructed using dataset
A, dataset B was applied to the teacher RF and produced soft
target training data B∗.

IV. EXPEIMENTAL RESULTS
From among many datasets for evaluating pedestrian detec-
tion in video sequences, we chose two, Town Centre [34]
and Performance Evaluation of Tracking and Surveillance
(PETS) 2006 [35], because these two datasets were origi-
nally designed for evaluating pedestrian detection in videos
captured by elevated surveillance cameras, which was the
focus of this study. The resolution of Town Centre is
high, 1920×1080 pixels, and its image capture rate is
25 frames per second (fps). It supports a ground truth
consisting of 71,500 hand labeled head locations, with an
average of 16 people visible at one time. The PET 2006
dataset includes multi-view camera sequences containing
left-luggage scenarios at a train station in which the scene
complexity increases. To evaluate the pedestrian detection
performance, we used only a single viewpoint so that the
evaluation would be performed under the same conditions as
that for the comparison algorithms [36].

In addition, we compared performance with state-of-the-
art researches for Caltech dataset to measure pedestrian
detection performance in low-angle moving cameras.

In this study, we fixed the model size of the pedestrian at
63×27 pixels for the Town Centre, PETS 2006, and Caltech
datasets. The image-scaling level was set at five by consider-
ing the camera perspective angle of the dataset: up-scaling to
detect a pedestrian smaller than the model at ratios of 1:1.26,
1:1.03 and down-scaling to detect a pedestrian larger than the
model at ratios of 1:0.77, 1:0.66 and 1:0.52, according to the
results of the HWMs.

To evaluate the performance of the pedestrian detection,
we measured the precision and recall, which are in general
used to evaluate the performance of pedestrian detection.

1We set maximum tree depth to 20 using the same method found in [6].
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FIGURE 2. Shallow random forest (S-RF) training procedure based on soft target training data B∗. (a) Tree Tr_t grown using information gain
criteria, (b) tree evaluation using the cross-entropy to decide whether or not candidate decision tree is selected as a member of student RF,
and (c) the final S-RF consisting of T optimal trees.

A correct detection was counted if the overlap ratio between
the detected bounding box and the ground truth bounding box
exceeded 50%.

All the experiments were conducted using an Intel Core
i7 processor with 8 GB of RAM running Microsoft Windows
10. In addition, all the RF approaches, including teacher RF
and S-RF, were executed based on a CPU and the CNN-based
state-of-the-art approaches were executed based on a single
Titan-X GPU.

A. NUMBER OF OPTIMAL DECISION TREES FOR
SHALLOW RANDOM FOREST
To determine the number of optimal trees of the S-RF,
we compared the detection performance on the Town Centre
dataset while changing the size (number) of trees as shown
in Table 1. From the teacher RF consisting of 300 trees,
we sequentially decreased the desired number of trees (T ′)
to 250, 200, 150, 100, 50 and 30. In addition to precision
and recall, we used additional standard criteria to measure
the quality of the model compression and speed-up rate. The
compression rate means the relative compression ratio of
the S-RF to the teacher model, and similarly, the speed-up
rate means the run time of the S-RF relative to the teacher
model [24]. All the experiments were conducted based on
a CPU, and a GPU was not used. As we can see from the
Table 1, when the number of trees is 30, the number of
parameters and the compression rate are excellent, but the
precision and recall are relatively low. In contrast, as the
number of trees is increased, the precision and recall rates are
increase, but it can be seen that the number of parameters is

TABLE 1. Comparison of speed-up and compression rate using the
teacher random forest and six compression methods that reduced the
number of trees (M: million, ms: millisecond).

relatively increased, and the speed and compression rate are
lowered. Therefore, in this paper, we set the number of trees
to 50 considering the compression rate and processing speed
as well as the detection accuracy.

B. DETECTION COMPARISON ON PETS2006 DATASET
To verify the effectiveness of the soft target training scheme,
we compared its performance with that of six state-of-the-
art methods: (1) DPM [8]; (2) the Faster R-CNN approach,
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FIGURE 3. Precision-recall (PR) curve for six comparison approaches on
PETS2006.

which shares full-image convolutional features with the
detection network [12]; (3) the scene pose CNN network
(SPN), which generates a scene-specific pedestrian detector
and pose estimator [36]; (4) YOLO 9000, which is a real-
time CNN-based object detection system over 9000 object
categories [14]; (5) teacher RFs consisting of 300 trees
(teacher RF); and (6) proposed S-RF consisting of 50 trees
(proposed S-RF). Faster R-CNN and YOLO 9000 used pre-
trained model parameters without performing fine-tuning.
SPN used synthetic pedestrian dataset considering wider
range of human poses for training.

In the first experiment using the PETS 2006 dataset, we
predicted that two CNN-based methods, Faster R-CNN [12]
and YOLO9000 [14], but not SPN [36], would produce
a worse detection performance than the other methods as
shown in Fig. 3. The main reason is that they are more
likely than conventional approaches to fail to locate each
individual in a perspective view, because of the small and
blurred boundaries between closely positioned pedestrians.

The SPN approach showed a higher performance than
Faster R-CNN, but the precision rate fluctuated according
to the variation in the recall rate. In contrast, the DPM and
RF-based approaches showed a better performance than the
CNN-based approaches. The results confirmed that amethod-
ology that uses ROI with scanning window is effective for
pedestrian detection in surveillance videos. Moreover, the
best performance of the proposed S-RFmethod is very similar
to that of teacher RF and better than other state-of-the-art
approaches.

C. DETECTION COMPARISON ON TOWN CENTRE DATASET
To achieve a fair performance comparison of the same
six algorithms using an additional dataset, we also per-
formed pedestrian detection using the Town Centre dataset.
Figure 4 shows the precision and recall curves for the six
methods. When the recall value was 0.5, the highest precision

FIGURE 4. Precision-recall (PR) curve for six comparison approaches on
Town Centre.

FIGURE 5. Five possible pairs of experimental results for determining the
threshold τ of soft target training.

rates of the teacher RF, DPM [8], YOLO9000 [14] and the
proposed S-RF algorithms were similar, about 0.97, and the
patterns were similar to those shown in Fig. 4. Although
the DPM algorithm [8] showed precision results similar to
those of the proposed method up to a recall value of 0.5,
the precision rate decreased rapidly when the recall value
was 0.7. YOLO9000 [14] yielded a higher precision rate
than other CNN-based approaches (Faster R-CNN [12] and
SPN [36]), with recall values around 0.8. It also showed a
somewhat higher precision rate than the proposed method
when the recall value was larger than 0.8. Through our exper-
iments using the additional Town Centre dataset, we verified
that the proposed method gave a generalized performance as
compared to CNN-based approaches, although the number of
trees decreased considerably.

In summary, the proposed method showed a higher perfor-
mance than the other state-of-the-arts methods and a similar
performance pattern on the precision and recall curve. In par-
ticular, the proposed method showed better performance than
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other CNN-basedmethods for small-sized or occluded pedes-
trians located in the upper part of the image (see Fig. 6). The
results indicate that S-RF trained by soft target training is
a reasonable method to mimic the classification ability of a
teacher classifier and also an efficient method for detecting
small-sized and closely positioned pedestrians in a high per-
spective surveillance video.

D. DETECTION COMPARISON ON CALTECH DATASET
Additional experiment was performed on the Caltech dataset
to test whether the proposed algorithm effectively detects
pedestrians in videos with various sizes of pedestrians
because approximately 70% of the pedestrian height of Cal-
tech dataset is less than 100 pixels, including extremely small
pedestrian less than 50 pixels. For this experiment, we divided
dataset into two categories, following the typical protocol in
literatures [39], [40]. First, far subset consists of non/partial
occlusion pedestrians which are less than 45 pixels in height
and middle subset has a height between 45 and 115 pixels.
As the evaluation metric, we used the averaged log miss rated
over the false positive per image, denoted as MR.

For evaluation, we used the standard test set of 4,024 Cal-
tech images under two different performance proto-
cols. To validate the detection performance of the proposed
algorithm, we compared the quantitative results with that of
six state-of-the-art methods focusing on detection of multi-
scale pedestrians: (1) UDN+SS [10]; (2) Faster-RCNN [12];
(3) SA-Fast-RCNN, which use multi-scale CNN [21];
(4) F-DNN+SS, which uses a derivation of the Faster
R-CNN; (5) TLL(MRF)+FGFA,where uses lightweight flow
networks [38]; (6) TLL(MRF)+LSTM, where uses temporal
feature aggregation [40]; and (7) proposed S-RF. For training,
six comparison methods used the dense sampling of the train-
ing Caltech data (every 3th frame, resulted in 42782 images)
and proposed method used the soft target training data B∗.
As shown in Table 2, the propose S-RF method achieved

lower MR to those of the state-of-the-arts for small-sized
pedestrians. In detail, the proposed method had better MR
performance for small-sized pedestrians as a result of 13.19%
improvement over TTL(MRF)+LSTM [40] method. In con-
trast, the general CNN based methods [10], [12], [21] showed
a good detection performance for middle-sized pedestrians.
However, when the size of the pedestrian becomes smaller,
the size of the image used for detection becomes smaller,
which results in increasing the MR.

From the result, we know that the proposed student
RF with adaptive image scaling is suitable algorithm for
detecting small-sized pedestrians. However, when the pedes-
trian size is middle, MR performance is 4.68% lower than
TTL(MRF)+LSTM [40]. This is because the camera per-
spective angle of the Caltech dataset is low, so pedestrians
of various sizes overlap at the same ROI. Therefore, in the
case of an image taken at a low camera perspective angle, our
method is necessary to adjust the ROI and the image scaling
level to reduce the MR.

TABLE 2. Comparison of log missing rate (MR, %) with recent
state-of-the-art algorithms on standard dataset of Caltech (low is better)2.

TABLE 3. Processing time comparison of five detection algorithms using
PETS 2006 dataset.

E. TIME COMPLEXITY
The purpose of soft target training based on a teacher student
framework is to reduce the computational cost of the classi-
fiers. The time complexity of the proposed S-RF was com-
pared with that of four other methods, as shown in Table 2.
DPM [8], teacher RF and S-RF were tested on an Intel Core
i-7 CPU, and two CNN-based methods (YOLO 9000 [14]
and SPN [36]) were tested on a Titan X GPU using PETS
2006. As shown in Table 3, the process time per frame
(FPS) of YOLO9000 [14] is fastest, 19.9 ms, and is faster
than the similar CNN-based SPN [36]. The second fastest
method is the proposed S-RF at 20.8 ms, being faster than
the similar CPU-based DPM [8] and teacher RF. Although
the processing time of the proposed S-RF is 1.1 ms slower
than that of YOLO90000 [14], we know that the proposed
S-RF efficiently and considerably decreases the processing
time without losing accuracy, because the processing time
of YOLO9000 [14] is obtained on a GPU and that of the
proposed S-RF is obtained on a CPU. The overall experimen-
tal results confirm that the proposed S-RF is more suitable
than CNN-based or computationally heavy classifiers for low
specification embedded surveillance systems.

F. DETERMINATION OF CROSS-ENTROPY THRESHOLD
Threshold τ , the minimization criterion of cross-entropy,
is also an important parameter that reduces the size of the

2In the evaluation, we referred comparison results of [40] with recent state-
of-the-art methods on standard test set of Caltech.
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FIGURE 6. Pedestrian detection results in a surveillance camera using the proposed method, (a) the pedestrian detection results for PETS 2006, (b) the
pedestrian detection results for Town Centre, (c) sample false detection results caused by a complicated or similar background and occlusion. The green
rectangles indicate correctly detected pedestrians and the red arrows indicate false or missing detections.

teacher RF and the convergence speed of the S-RF training.
To determine the appropriate threshold τ , we estimated the
average detection precision and recall on the Town Centre
dataset using five threshold values. As shown in Fig. 5,
when the threshold τ is set to 0.39, the precision is slightly
higher than for other values. A threshold of 0.38 yields a
0.001 higher recall value than one of 0.39. In contrast, the per-
formancemay be degraded when the threshold value is higher
than 0.39. On the basis of these results, we set the cross-
entropy threshold to 0.39, because the difference in precision
between two values is higher than the difference in recall.

Figure 6 shows the pedestrian detection results of PETS
2006 (Fig. 6(a)) and Town Centre (Fig. 6(b) and (c)) using
the proposed S-RF, in the case of occlusion. As shown in
Fig. 6(a), the proposed approach detects pedestrians correctly
when the pedestrians’ sizes are significantly small, occluded
by other pedestrians or the poses of the pedestrians differ.
In Fig. 6(b), although in the Town Centre dataset more pedes-
trians appear on the street and the perspective angle is larger
than that in PETS2006, the proposed S-RF also correctly
detected pedestrians when they were small-sized and closely
positioned in the high perspective surveillance video. How-
ever, the proposed S-RF still yields a few incorrect detections:
it missed a pedestrian pushing a stroller (Fig. 6(c), first col-
umn) and falsely detected a pedestrian on a background that
was similar in color and complicated (Fig. 6(c), second and
fourth columns); it also missed a pedestrian when occluded
by other objects and when the pattern of the background was

similar to that of the pedestrian (Fig. 6(c), third and fifth
columns).

Demo videos have been uploaded to our webpage,
http://cvpr.kmu.ac.kr/SoftTarget.htm.

V. CONCLUSION
In this paper, we proposed a pedestrian detection algorithm
that can detect small-sized and closely positioned pedestrians
in a surveillance video when the camera is installed at a high
location. Although deep learning, especially CNN, based
approaches are known to achieve top performances in pedes-
trian detection tasks, they also require very wide and deep
networks with numerous parameters, a large-scale dataset and
massive computing power for kernel multiplication. More-
over, CNN-based detectors have difficulty not only detecting
small-sized pedestrians in a low resolution video but also
operating in a low specification embedded surveillance sys-
tem. To detect small-sized pedestrians and determine the lev-
els of image scaling, we adopted HWMs and an adaptive ROI
algorithm instead of predicting the ROI using Faster R-CNN
and YOLO9000. This study focused on exploring new types
of model compression algorithms realized by transferring the
teacher-student framework to an RF model instead of using
heavy deep learning, because RF has a structure to which a
teacher-student framework can be easily applied by reducing
the size of the forest through pruning the number of deci-
sion trees. The proposed teacher-student compression model
S-RF is a shallower version of the original teacher RF, using
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a softened version of the teacher’s output. The experimental
results proved that the proposed S-RF trained by soft target
training is a reasonable method to mimic the classification
ability of a teacher classifier. In addition, in high perspective
surveillance datasets it also efficiently detected small-sized
and closely positioned pedestrians and decreased the process-
ing time considerably without losing accuracy.

In futurework, we plan to improve our algorithm in order to
reduce the false and missing detection rate when a pedestrian
is similar to the background or is occluded by other objects by
considering another feature.Moreover, although the proposed
method exhibited a reasonable computational speed without
degrading accuracy when run on a PC, a more compact
S-RF version is needed so that it can be applied it to a low
specification embedded board. In our opinion, it is reasonable
to combine two or three of model compression algorithms
to maximize the compression/speed up rates, for example,
compressing the RF with teacher-student framework and per-
forming a pruning method in each decision tree.
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