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ABSTRACT This paper investigates lag synchronization between two uncertain complex dynamical
network with time-varying coupling delay, fully unknown parameters, and disturbances in finite-time. First,
a nonsingular terminal sliding surface is proposed and its finite convergence is proved. Then, appropriate
adaptive laws are derived to estimate the unknown parameters of the networks. Subsequently, based on the
finite-time stability theory and adaptive laws, an adaptive sliding mode control is designed for achieving
finite-time lag synchronization. In addition, the unknown bounded disturbances are also overcame by the
proposed control and some corollaries are given. Finally, analytical results show that the states trajectory
of the networks error converge to the sliding phase within finite-time. Furthermore, numerical simulation
results demonstrate the applicability and the effectiveness of the designed method.

INDEX TERMS Complex dynamical networks, finite-time lag synchronization, sliding mode control,
unknown parameters, external disturbances.

I. INTRODUCTION
Due to the pioneering works of Pecora and Carroll in
the 1990s, synchronization of the dynamical systems has
appeared as an active area of research in dynamical systems
and nonlinear dynamics theory. Specially, synchronization
of coupled chaotic dynamical systems attracted attention of
many researchers because its evolution is sensitive to ini-
tial conditions. This property implies that the trajectories
of chaotic systems intrinsically defy synchronization, even
when the systems start from very slightly different initial
conditions. Ever since then, theoretical researche and applica-
tions of chaos synchronization have been developed rapidly
in recent years, and many researchers in various disciplines
have devoted their great efforts to investigate network syn-
chronization of coupled chaotic systems because of its wide
applications in different fields as seen in fireflies flashing in
unison and heart cells beating in rhythm [1]–[4]. As far as
we all know, network synchronization cannot occur without
added controller, which forces the state trajectories of the
response network to follow the behavior of the state tra-
jectories of the drive network dynamics. Thus, many con-
trol methods have been designed for achieving different

synchronization schemes such as activation control, linear
separation, linear coupling, adaptive control, etc [5]–[17].

In real-world complex networks, time delay unavoidably
occurs commonly in many implementation of real systems,
which is often regarded as the potential source of systems
instability and performance deterioration. For instance, in the
telephone communication system, the voice one hears on the
receive side at time t is often the voice from the transmit-
ter side at time t − τ [18]. Various types of time delays
such as internal delay, coupling delay and other hybrid
delays have been put forward [19]–[22]. In particularly, time
delay is not always a constant but varied with time, which
is called time-varying delay that has also received some
attentions [23]–[25]. Thus, time-varying delay is requisite
to take into the consideration when modeling networks.
In addition, many uncertain factors have been recognized
which demolish the network stability in engineering appli-
cations such as external disturbance, uncertain parameters
etc. In advance, the values of these factors can be often
not exactly known, thus the synchronization with uncertain
factors has become a hot topic, and many works have been
presented. In [26], robust outer synchronization problem

7082
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-0409-541X


G. Al-Mahbashi, M. S. M. Noorani: Finite-Time Lag Synchronization of Uncertain Complex Dynamical Networks

between two nonlinear complex networks with parametric
disturbances andmixed time-varying delays has been reached
by linear matrix control. Ji et al. [27] have investigated
lag synchronization of uncertain complex dynamical net-
works having constant delay coupling, uncertain parame-
ters and disturbances by adaptive control. In [28], hybrid
feedback controllers have been designed for projective lag
synchronization with time-varying delay, mismatch terms
and disturbances. Based on adaptive controller, projective
lag synchronization of uncertain dynamical networks with
time-varying delay, uncertain parameters and disturbance
terms has been accomplished in [29]–[31]. The switched
topologies as well as parametric uncertainties, on this basis,
Yang et al. [32] further considered the asymptotic synchro-
nization problem for a class of uncertain complex networks
with hybrid switching and impulsive effects. Even though the
increase attention on synchronization of complex networks,
how to realize the robust synchronization in networks is still
an open topic. In addition, a few of related results have been
established for lag synchronization of uncertain complex
dynamical networks with time-varying delay, which is one
of the main motivation of this work.

Sliding mode control technique is an effective and robust
method to deal with uncertainties which is the focus of our
paper. Its process aims to switch the control law to force
the states of the system from the initial states onto some
predefined sliding mode surface, on which the system has
desired performance such as stability, insensitivity to system
parameter variations, disturbance rejection capability, and
tracking ability. Therefore, this control method has poten-
tial applications in electrical engineering, aircraft, chemical
reactors and so on [33]. In recent years, many results have
been reported in chaos synchronization between two chaotic
systems by using this technique. For example, Lin and Wang
proposed observer-based decentralized fuzzy neural sliding
mode control for interconnected unknown chaotic systems
via network structure adaptation [34]. In [35] and [36], active
sliding mode control was designed to study modified pro-
jective synchronization of chaotic systems with disturbances
and fractional-order chaotic system with external noise
respectively. Based on adaptive sliding mode control, syn-
chronization problem between two different uncertain chaotic
systems with external disturbances and unknown parameters
was investigated in [37]. Chen et al. [38] investigated two
classes of synchronization problems of multiple chaotic sys-
tems with disturbances by sliding mode control. Up to now,
to the best of our knowledge, no results have been established
for synchronization of complex dynamical networks involv-
ing the effects of uncertainties and external disturbances
by sliding mode control, which is one of the focus of this
work.

All results mentioned above have been focused on the
asymptotic networks synchronization, which means the syn-
chronization can only be achieved when time tends to infin-
ity. In that case, the synchronization is not optimal, such
as in digital telecommunication where the encoded message

can not be recovered or sent and the information can suffer
irreversible loss [39], [40]. Thus, reducing the time of syn-
chronization for fast synchronization is crucial in real world
application. For instance, in secure communication the finite-
time synchronization can recover the transmitted signals in
finite-time which increases the performance and the confi-
dentiality greatly [41], [42]. In addition, network of robots
will use accurate information to accomplish other tasks,
when it reaches to the exact value of a quantity sensed in a
finite-time [43]. Therefore, finite-time control techniques are
desirable which not only demonstrate perfect performance in
convergence time but also better disturbance rejection prop-
erties and robustness against uncertainties [44]–[48]. Due
to their diverse advantages, many researchers have devoted
themselves to develop the appropriate finite-time control
methods [49]–[54]. For instance, Cheng et al. [55] have
designed adaptive intermittent control for finite-time hybrid
projective synchronization of rive-response complex net-
works with distributed-delay. In [56], finite-time synchro-
nization of general complex networks with time-varying
delays and hybrid couplings was studied by designing a sim-
ple discontinuous state feedback controller. Mei et al. [57]
explore the finite-time synchronization in drive-response
dynamical networks with non-delay coupling and the
response networks has uncertain parameter by feedback con-
trol and an updated law. Periodically intermittent control
was designed to achieve finite-time synchronization of com-
plex dynamical networks with time-varying delay [58], [59].
Linear and adaptive error-feedback controllers have been pro-
posed for finite-time lag synchronization of drive-response
dynamical networks with unknown signal time-delays [60].
In [61], periodically intermittent control technique along with
sliding mode control has been utilized for realizing finite-
time lag synchronization of complex networks with time-
varying delay, however it does not consider the parameter
identification and external disturbance parameters.

To the best of our knowledge, we have not come across
any theoretical results considering the problem of lag syn-
chronization between two uncertain dynamical networks with
time-varying delay coupling and external disturbances in
finite-time based on sliding mode control method. In the
light of the above discussion, we design sliding mode control
together with adaptive control and update laws to realize lag
synchronization of uncertain dynamical networks with time-
varying delay coupling, fully uncertain parameters and exter-
nal disturbances within finite-time. The proposed finite-time
control method is based on novel nonsingular terminal sliding
mode control technique. We construct a suitable novel non-
singular terminal sliding surface which can ensure the error
state e(t) = 0 in finite-time, where the sliding surface that
presented in [34]–[38] just satisfy the asymptotically stability
of error state e(t) → 0 as t → ∞. Based on adaptive laws
and finite-time control, adaptive update laws are designed to
force the error trajectories onto sliding surface in finite-time
and remain on it forever. In addition, the unknown bounded
disturbances are overcome and the uncertain parameters
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are identified. Numerical simulations results are given to
prove the efficiency of the designed control.

The paper is organized as follows: Section 2 introduce the
network model and some necessary preliminaries are given.
The main results are given and novel criteria are derived in
Section 3. Section 4 presented examples and their simula-
tions. Finally, the conclusions are drawn in Section 5.

II. MODEL DESCRIPTION
A general complex dynamical network model is consisting
of N linearly coupled nodes with uncertain parameters and
external disturbance can be described as follows:

ẋi(t) = fi(xi(t))+ Fi(xi(t))αi +
N∑
j=1

aij0xj(t − τ (t))+ ωi(t),

(1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn denotes
the state vector of the ith node, fi : Rn

−→ Rn and
Fi : Rn

−→ Rn×N are the continuous nonlinear function
matrices. Theαi’s are the unknown constant parameter vector,
ωi(t)’s are external disturbances and 0 is the inner coupling
matrix. The coupling time-varying delay τ (t) is a bounded
and continuously differentiable function, which means there
exist positive constants τ and ε satisfying 0 ≤ τ (t) ≤ τ,

τ̇ (t) ≤ ε < 1. Also A = (aij) ∈ RN×N is the coupling
configuration matrix, where the diagonal elements defined as

aii = −
N∑

j=1,j 6=i

aij i = 1, 2, . . . ,N .

The initial states satisfies: xi(t) = ϕ1i(t) ∈ C([−τ, 0],Rn).
Then the controlled network can be described by

ẏi(t) = gi(yi(t))+ Gi(yi(t))βi +
N∑
j=1

aij0yj(t − τ (t))

+µi(t)+ ui(t), (2)

with initial condition yi(t) = ϕ2i(t) ∈ C([−τ, 0],Rn).Where
yi(t) = (yi1(t), yi2(t), . . . , yin(t))T ∈ Rn is response state
of the ith node, gi : Rn

−→ Rn and Gi : Rn
−→ Rn×N

are the continuous nonlinear function matrices. The βi’s are
the unknown constant parameter vector, µi(t)’s are external
disturbances and ui ∈ Rn is the control input.
Definition 1: The drive network (1) and response network

models (2) are said to achieve lag synchronization in finite-
time for a given time delay θ > 0, if there exists a constant
T > 0 such that

lim
t−→T

‖ei(t)‖ = lim
t−→T

‖yi(t)− xi(t − θ )‖ = 0,

and

‖ei(t)‖ ≡ 0 for t > T ,

where T depends on the initial state vector value ei(t) =
ϕ2i(t)− ϕ1i(t − θ ) for t ∈ [−τ̄ , 0], τ̄ = max{τ, θ}.

The error dynamics can be obtained as:

ėi(t) = gi(yi(t))+ Gi(yi(t))βi +
N∑
j=1

aij0ej(t − τ (t))

+ ui(t)+ ρi(t)−
(
fi(xi(t − θi)+ F(xi(t − θ ))αi

)
.

(3)

Remark 2: For special case when θ = 0, the complete syn-
chronization can be achieved. Thus, our results have greater
applicability.

In order to obtain the main results, we use the following
assumptions and lemmas.
Assumption 3 [57]: The unknown parameters αi(t) and

βi(t) are bounded for any positive constants such that

‖αi(t)‖ ≤ `, ‖βi(t)‖ ≤ ϕ
Assumption 4 [27]: The time-varying disturbances ωi(t)

and µi(t) are bounded for any non-negative constants such
that

‖ωi(t)‖ ≤ 8, ‖µi(t)‖ ≤ 9
Note let θ > 0, ρi(t) = µi(t)− ωi(t − θ ), ρi = sup|ρi(t)|.

From Assumption 4, we obtain that ρi(t) is bounded.
Assumption 5: There exist a large positive constant ρ̄i such

that

ρi < ρ̄i

Lemma 6 [50]: Assume that a continuous and positive-
definite function V (t) satisfies the following inequality:

V̇ (t) ≤ −kV η(t), t ≥ t0, V (t0) ≥ 0,

where k > 0, 0 < η < 1. Then, for any given t0 the following
holds:

V 1−η(t) ≤ V 1−η(t0)− k(1− η)(t − t0), t0 ≤ t ≤ T1
V (t) ≡ 0, ∀t ≥ T1

with T given by

T1 ≤
V 1−η(t0)
k(1− η)

Lemma 7 [49]: For a1, a2, . . . , an ∈ Rn, 0 < r < 1,
0 < q < 2, then

(|a1| + |a2| + . . .+ |an|)r ≤ |a1|r + |a2|r + . . .+ |an|r

(|a1|q+|a2|q + . . .+ |an|q)
1
q ≤ (|a1|r+|a2|r + . . .+|an|r )

1
r

Lemma 8 [57]: Suppose a1, a2, . . . , an ∈ Rn, 0 < q < 2,
then the following inequality holds

‖a1‖q + ‖a2‖q + . . .+ ‖an‖q

≥ (‖a1‖2 + ‖a2‖2 + . . .+ ‖an‖2)
q
2

Lemma 9 [27]: For any vector x, y ∈ Rn and positive
definite matrix Q ∈ Rn×n, the following matrix inequality
holds:

2xT y ≤ xTQx + yTQ−1y.
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III. CONTROLLER DESIGN FOR FINITE-TIME LAG
SYNCHRONIZATION
In this section, we pay our attention to design an adap-
tive control and sliding mode control to ensure the error
dynamics (3) converge to zero within a limited time. First,
we need to select an appropriate sliding surface to realize the
sliding mode motion, which is proposed as following:

si(t) = Ciei(t)+
∫ t

0
sign(ei(σ ))|ei(σ )|ηdσ, (4)

where Ci > 0 and 0 < η < 1.
The sufficient condition for existence of sliding mode

that

si(t) = ṡi(t) = 0

Therefore, we can obtain the sliding mode dynamics as

ėi(t) = −
1
Ci
sign(ei(t))|ei(t)|η i = 1, 2, . . . ,N . (5)

Theorem 10: The sliding mode dynamics (5) is finite-time
stable and their states trajectory converge to the equilibriums
ei(t) = 0 in finite-time T1 given by

T1 ≤
(1/2

∑N
i=1 e

2
i (0))

1−η
2

(1− η)2
η−1
2 cm

, (6)

where e(0) is the is the initial values of e(t) and
cm = min{ 1Ci }.

Proof: Choosing the following Lyapunov function as

V (t) =
1
2

N∑
i=1

e2i (t)

Taking the derivative, we obtain

V̇ (t) =
N∑
i=1

eTi (t)ėi(t)

=

N∑
i=1

eTi (t)
(
−

1
Ci
sign(ei(t))|ei(t)|η

)
Using sign(ei(t)) =

|ei(t)|
ei(t)

, we get

V̇ (t) =
N∑
i=1

−
1
Ci
|ei(t)|η+1 ≤ −cm

N∑
i=1

|ei(t)|η+1,

By Lemma 8, one can obtain

V̇ (t) ≤ −2
η+1
2 cm

N∑
i=1

(1
2
e2i (t)

) η+1
2
= −2

η+1
2 cmV

η+1
2 ,

Applying Lemma 6, we conclude that the error dynamics
converge to zero within finite-time T1. Hence, the proof is
completed.
Remark 11: In [34]–[38], the authors studied different

synchronization schemes by sliding mode control, where
the proposed sliding surfaces just satisfy the asymptotically

stability (e(t) → 0 as t → ∞). By comparison, we con-
struct a suitable novel nonsingular terminal sliding surface
which can ensure the error state e(t) = 0 within finite-time.
Therefore, our results are more reasonable and have a greater
applicability.

Second, we need to design adaptive control to ensure the
trajectories of the error dynamics converge to the sliding
surface si(t) = 0 in finite-time and remain on it forever.
The finite-time adaptive sliding mode control is proposed as
follows:

ui(t) = −
1
Ci
sign(ei(t))|ei(t)|η − (Ki + ρ̂i)sign(si(t))

− γ1
sign(si(t))
Ci|si(t)|

− piei(t)− Gi(yi(t))β̂i(t)

+ fi(xi(t − θ ))+ Fi(xi(t − θ ))α̂i(t)− gi(yi(t))

− ξ
(
r
∫ t

t−τ (t)
eTi (χ )ei(χ )dχ

) 1+η
2 si(t)
Ci||si(t)||2

, (7)

The appropriate adaptive update laws defined as:

˙̂αi(t) = −FTi (xi(t − τ ))3, (8)
˙̂
βi(t) = GTi (yi(t))3, (9)

ρ̇i(t) = Ci|si|. (10)

where1 = ‖α̂i‖+`+‖β̂i‖+ϕ+‖ρ̂i‖+ ρ̄i. Ci,Ki, pi, r > 0.
ρ̂i are the estimated value of the upper bound ρi, α̂i(t) and
β̂i(t) are the estimated parameters of , αi(t), βi(t) , respec-
tively. 3 = [C1s1,C2s2, . . . ,CN sN ]T .
Theorem 12: Using the controller (7) and the adaptive

laws (8)- (10), then the trajectory of the error dynamics (3)
will converge to the sliding surface si(t) = 0 within finite-
time T2, and remain on it forever if the following conditions
hold:

1) 1
2 (r − I ) ≤ 0,

2) 1
2 (I − r(1− τ )) ≤ 0,

3) 1
23

2(λmin(QQT )− ppT ) ≤ 0,

where the sliding mode reaching time T2 given by

T2 ≤ 2
1−η
2
V

1−η
2 (0)

ε(1− η)
,

V (0) =
1
2

N∑
i=1

(
s2i (0)+ ‖α̃i(0)‖

2
+ ‖β̃i(0)‖2 + ‖ρ̃i(0)‖2

+ r
∫ 0

−τ (t)
eTi (χ )ei(χ )dχ

)
, (11)

where ε = min{ν, γ, ξ}, ν = min{C1K1,C2K2, . . . ,

CNKN }. α̃i(0) = α̂i(0) − αi, β̃i(0) = β̂i(0) − βi(0), ρ̃i(0) =
ρ̂i(0)− ρi and λmin(QTQ) represent the minimal eigenvalues
of QTQ.

Proof: Constructing the following Lyapunov function
candidate:

V (t) = V1(t)+ V2(t), (12)
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where

V1 =
1
2

N∑
i=1

s2i (t)+
1
2
r

N∑
i=1

∫ t

t−τ (t)
eTi (χ )ei(χ )ds,

V2 =
1
2

N∑
i=1

(α̂i(t)− αi(t))2 +
1
2

N∑
i=1

(β̂i(t)− βi(t))2

+
1
2

N∑
i=1

(ρ̂i(t)− ρ̄i)2.

Then, the derivative of V1(t) along the error dynamics (3) can
be derived as follows:

V̇1(t) =
N∑
i=1

si(t)ṡi(t)+
1
2
r

N∑
i=1

eTi (t)ei(t)

−
1
2
r

N∑
i=1

eTi (t − τ (t))ei(t − τ (t))(1− τ̇ (t))

=

N∑
i=1

sTi (t)
[
Ciėi(t)+ sign(ei(t))|ei(t)|η

]

−
1
2
r

N∑
i=1

eTi (t − τ (t))ei(t − τ (t))(1− τ̇ (t))

+
1
2
r

N∑
i=1

eTi (t)ei(t)

=

N∑
i=1

sTi (t)
[
Ci

(
gi(yi(t))+ Gi(yi(t))βi(t)

+

N∑
j=1

aij0ej(t − τ (t))+ ui(t)+ ρi(t)

−fi(xi(t − θ ))− F(xi(t − θ ))αi(t)
)

+ sign(ei(t))|ei(t)|η
]
+

1
2
r

N∑
i=1

eTi (t)ei(t)

−
1
2
r

N∑
i=1

eTi (t − τ (t))ei(t − τ (t))(1− τ̇ (t)).

Apply of the control function (7), we obtain

V̇1(t) =
N∑
i=1

si(t)Ci

(
F(xi(t − θ ))(α̂i(t)− αi(t))

−Gi(yi(t))(β̂i(t)− βi(t))− piei(t)

− ξ
(
r
∫ t

t−τ (t)
eTi (χ )ei(χ )dχ

) 1+η
2 si(t)
Ci||si(t)||2

+

N∑
j=1

aij0ej(t − τ (t))
)

−

N∑
i=1

CiKi|si(t)| +
N∑
i=1

si(t)Ciρi(t)

−

N∑
i=1

Ci|si(t)|ρ̂i)+
1
2
r

N∑
i=1

eTi (t)ei(t)

−
1
2
r

N∑
i=1

eTi (t − τ (t))ei(t − τ (t))(1− τ̇ (t))− γ1.

Using the fact

si(t)Ciρi(t) ≤ |si(t)Ciρi(t)| = Ci|si(t)||ρi(t)| ≤ Ci|si(t)|ρi

let e(t) =
(
eT1 (t), e

T
2 (t), . . . , e

T
N (t)

)T
, e(t − τ (t)) =(

eT1 (t − τ (t)), e
T
2 (t − τ (t)), . . . , e

T
N (t − τ (t))

)T
∈ RnN , and

Q = (A⊗ 0), we obtain

V̇1(t) ≤
N∑
i=1

(
(α̂i(t)− αi(t))TFTi (xi(t − θ ))3

− (β̂i(t)− βi(t))TGTi (yi(t))3
)
− eT (t)pT3

+ eT (t − τ (t))QT3− ξ (r
∫ t

t−τ (t)
eT (χ )e(χ )dχ

) 1+η
2

− ν

N∑
i=1

|si(t)| +
N∑
i=1

Ci|si(t)|(ρi − ρ̂i)+
1
2
reT (t)e(t)

−
1
2
reT (t − τ (t))e(t − τ (t))(1− τ̇ (t))− γ1.

Using Lemma 9, we get

V̇1(t) ≤
N∑
i=1

(
(α̂i(t)− αi(t))TFTi (xi(t − θ ))3

− (β̂i(t)− βi(t))TGTi (yi(t))3
)

− ξ (r
∫ t

t−τ (t)
eT (χ )e(χ )dχ

) 1+η
2
− ν

N∑
i=1

|si(t)|

+

N∑
i=1

Ci|si(t)|(ρi − ρ̂i)+
1
2
eT (t)(r − I )e(t)

+
1
2
eT (t − τ )(I − r(1− τ ))e(t − τ (t))

+
1
2
32(λmax(QQT )− ppT )− γ1 (13)

The derivative of V2(t) can be calculate as

V̇2(t) =
N∑
i=1

(α̂i(t)− αi(t))T ˙̂αi(t)+
N∑
i=1

(β̂i(t)− βi(t))T
˙̂
βi(t)

+

N∑
i=1

(ρ̂i(t)− ρ̄i)T ˙̂ρi(t)
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Inserting the adaptation laws, we have

V̇2(t) =
N∑
i=1

(αi(t)− α̂i(t))TFTi (xi(t − τ ))3

+

N∑
i=1

(β̂i(t)− βi(t))TGTi (yi(t))3

+

N∑
i=1

(ρ̂i(t)− ρ̄i)TCi|si| (14)

Combining (13), (14) and using the conditions (1-3),
we have

V̇ (t) ≤ −ν
N∑
i=1

|si(t)| − γ1

− ξ
(
r
∫ t

t−τ (t)
eT (χ )e(χ )dχ

) 1+η
2

≤ −ν

N∑
i=1

|si(t)| − γ
(
‖α̂i(t)‖ + `+ ‖β̂i(t)‖

+ϕ + ‖ρ̂i(t)‖ + ρ̄i
)

− ξ
(
r
∫ t

t−τ (t)
eT (χ )e(χ )dχ

) 1+η
2

≤ −ν

N∑
i=1

|si(t)| − γ
(
‖α̂i(t)− αi‖ + ‖β̂i(t)− βi‖

+‖ρ̂i(t)− ρi‖
)
− ξ

(
r
∫ t

t−τ (t)
eT (χ )e(χ )dχ

) 1+η
2

By Lemma 7 and Lemma 8, we get

V̇ (t) ≤ −ε
( N∑

i=1

|si(t)| + ‖α̂i − αi‖ + ‖β̂i − βi‖

+‖ρ̂i − ρi‖ + (r
∫ t

t−τ (t)
eT (χ )e(χ )dχ )

1+η
2

)
≤ −2

1+η
2 ε

(
1
2

N∑
i=1

s2i (t)+
1
2
‖α̂i − αi‖

2

+
1
2
‖β̂i − βi‖

2
+

1
2
‖ρ̂i − ρi‖

2

+
1
2
(r
∫ t

t−τ (t)
eT (χ )e(χ )dχ )

) 1+η
2

≤ −2(1+η)/2εV (1+η)/2(t)

According to Lemma 6, the states of error ei(t) converge to
the sliding surface si(t) = 0 in finite-time T2. This completes
the proof.
Remark 13: According to the Theorem 10 and 12, the slid-

ing mode control (7) with adaptive laws (8)- (10) can lead the
drive networks and the response networks to lag synchroniza-
tion within finite-time T ≤ T1 + T2.

Remark 14: According to the previous discussion,
the convergence times T1,T2 and the controller ui are depen-
dent on the control gains Ci,Ki,Pi, ξ, γ. On the one hand,
T1 is proportional to the value of Ci, which means a smaller
Ci leads to shorter convergence times T1. On the other hand,
the sliding mode reaching times T2 is inversely proportional
to ε = min{ν, γ, ξ} = min{C1K1,C2K2, . . . ,CNKN , γ, ξ}.
At the same time, the controller ui is proportional
to 1

Ci
,Ki, pi, ξ, γ. Based on these relationships, the appropri-

ate control gains should be selected according to the specific
designer requirements.
Remark 15: We investigate the robust lag synchronization

problem of uncertain complex networks in finite-time with
time-varying delay, fully unknown parameters, and exter-
nal disturbances. The robustness of the proposed control
is mainly reflected in the resistance to time-varying delay,
unknown parameters and external parametric disturbances.
Remark 16: In this paper, we explore lag synchronization

with time-varying delay coupling, uncertain parameters and
disturbances by utilizing adaptive control along with slid-
ing mode control in finite-time whilst the results in [27]
and [29]–[31] discussed lag synchronization problems in
long time for drive-response dynamical network with delay
coupling, uncertain parameters and disturbances by adaptive
control.
Corollary 17: When ωi(t) = µi(t) = 0, then lag synchro-

nization can be realized in finite-time T2 under the following
sliding mode controller:

ui(t) = −
1
Ci
sign(ei(t))|ei(t)|η − Kisign(si(t))

− γ

(
‖α̂i‖ + `+ ‖β̂i‖ + ϕ

)
sign(si(t))
Ci|si(t)|

− ξ
(
r
∫ t

t−τ (t)
eTi (χ )ei(χ )dχ

) 1+η
2 si(t)
Ci||si(t)||2

− piei(t)+ fi(xi(t − θ ))+ Fi(xi(t − θ ))α̂i(t)

− gi(yi(t))− Gi(yi(t))β̂i(t), (15)

where T2 given by

T2 ≤ 2(1+η)/2εV (1+η)/2(0) (16)

Corollary 18: Suppose that τ (t) = 0, then lag
synchronization can be achieve in finite-time under
Assumptions 3,4 and 5, if the controller designed as

ui(t) = −
1
Ci
sign(ei(t))|ei(t)|η − (Ki + ρ̂i)sign(si(t))

− γ1
sign(si(t))
Ci|si(t)|

+ fi(xi(t − θ ))− gi(yi(t))

+Fi(xi(t − θ ))α̂i(t)− Gi(yi(t))β̂i(t)

−

N∑
j=1

aij(t)0ej(t), (17)

where V (0) = 1
2

∑N
i=1 s

2
i (0) +

1
2

∑N
i=1(α̂i(0) − αi)2 +

1
2

∑N
i=1(β̂i(0)− βi))

2
+

1
2

∑N
i=1(ρ̂i(0)− ρ̄i)

2.

VOLUME 7, 2019 7087



G. Al-Mahbashi, M. S. M. Noorani: Finite-Time Lag Synchronization of Uncertain Complex Dynamical Networks

Remark 19: When the model does not contain unknown
parameters and external disturbances, then finite-time lag
synchronization of networks was discussed in [60] and [61]
by utilizing adaptive error-feedback control and intermittent
sliding mode control respectively.
Remark 20: When the network model has no external dis-

turbances and the propagation delay coupling τ (t) = 0,
then finite-time synchronization in drive-response complex
dynamical network was discussed in [57] by adaptive control.
Remark 21: In the existing literature, there are some

results concerning finite-time synchronization [55], [56],
[58]–[61]. However, to the best of our knowledge, there is
no result dealing with finite-time lag synchronization of net-
works with time-varying delay coupling, unknown parame-
ters, and external disturbances. In this paper, we show another
kind of effective control strategy for finite-time synchroniza-
tion of complex dynamic network. Obviously, our proposed
control can be extended to investigate finite-time synchro-
nization of general uncertain complex dynamical networks,
chaotic and hyperchaotic systems.
Remark 22: The control input in ui contains the

factor sign(si(t))
|si(t)|

,which may cause undesirable chattering. The
effective way in the application of sliding mode control to
overcome this problem is to replace the factor by

sign(si(t))
|si(t)| + δ

,

where δ is a small positive constant.

IV. NUMERICAL ANALYSIS
In this section, two numerical examples are given to demon-
strate the efficiency of the proposed control method obtained
in the previous section. In each examples, we consider the
networks one with external disturbances and one without
external disturbances. In principle, the proposed control can
be used to investigate finite-time synchronization for general
complex networks. That means our proposed control strat-
egy has no restrictions on the number of the network node.
We choose 5 nodes for ease of illustration and computation.
Example 23 (Synchronization With Delay Coupling): In

this example, the Chen chaotic system is considered as the
node of the drive dynamics, which is given by

ẋ =

 0
−x1x3
x1x2

+
 (x2 − x1) 0 0
−x1 x1 + x2 0
0 0 −x3

α1α2
α3


Take the Lü chaotic system as the node of the response

dynamics which is described by the following:

ẏ =

 0
−y1y3
y1y2

+
 (y2 − y1) 0 0

0 y2 0
0 0 −y3

 β1β2
β3


where the unknown parameter vector αi = [α1 α2 α3]T =
[35 28 3]T , βi = [β1 β2 β3]T = [36 20 3]T . We take
the propagation delay as τ (t) = 1 + 0.5sin(t), θ = 1.

FIGURE 1. Time evolution of the lag synchronization error with
time-varying coupling delay and external disturbances.

The inner coupling matrix 0 as the identity matrix and the
outer coupling matrix is given by

A =


−3 1 1 0 1
1 −4 1 1 1
1 0 −2 1 0
0 1 1 −4 1
1 0 1 1 −3


Case 1: When the models have external disturbances,

which are chosen as ωi(t) = [2 sin(t) cos(t) sin(2t) 2 sin(t)],
µi(t) = [cos(2t) sin(t) cos(t)]. The error initial condi-
tions are e1(0) = (−2,−1.86,−1.04)T , e2(0) = (−1.50,
−0.30, 0.55)T , e3(0) = (−1.22,−1.84, 1.82)T , e4(0) =
(0.36,−0.66,−3.16)T , e5(0) = (−0.22,−0.50,−2.034)T .
For the sake of simplicity of computation, the control gains
are chosen as Ci = 2,Ki = 80, pi = 180, η = 0.1,
γ = 0.5, ξ = 1. The bound vectors are chosen as ᾱ =
β̄ = 75, ρ = 18. By simple calculating (6), (11), we have
T ≤ T1 + T2 = 105.29 which meets the estimated upper
bound we proposed.

Using the controller (7) and adaptive update laws with
δ = 0.1, the lag synchronization error is revealed in Fig. 1.
It is showed that the lag synchronization error converge to
zero before T . The time evolution of unknown parameter
of α̂ and β̂ are presented in Fig. 2 and Fig. 3, respectively.
It observed that the the identified parameters α̃ and β̃ con-
verge to their real values, which means that the unknown
parameters are successfully estimated. These results illustrate
the effectiveness of the designed control (7) with adaptive
law (8)-(10) for uncertain complex dynamical networks with
time varying coupling delayed and external disturbances.
Case 2: When the networks do not have external distur-

bances (ωi(t) = µi(t) = 0), the error initial conditions
are e1(0) = (−1.91, 1.28,−0.25)T , e2(0) = (−0.67,−1.97,
−0.52)T , e3(0) = (−0.74, 2.71, 0.61)T , e4(0) = (−2.17,
2.11,−0.67)T , e5(0) = (1.06, 2.48,−1.17)T . The initial of
unknown parameters αi(0) = βi(0) = 1.
According to Corollary 17, the synchronization error con-

verge to the origin in finite-time before T = 104.6, which
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FIGURE 2. The estimated unknown parameter of α̂ when the networks
have time-varying delay coupling and disturbances.

FIGURE 3. The estimated unknown parameter of β̂ when the networks
have time-varying delay coupling and disturbances.

is depicted in Fig. 4. That means the lag synchronization is
realized. The estimated parameters of networks nodes are
successfully estimated which shown in Fig. 5 and Fig. 6
respectively. These results prove the efficiency of our
designed control (15) with adaptive law (8)-(10) for uncer-
tain complex dynamical networks with time-varying delay
coupling.
Example 24 (SynchronizationWith Non-Delay Coupling):

Take the Chen chaotic system as the node drive network.
The following Lorenz chaotic system selected as the node of
response network:

ẏ =

 0
−y1y3 − y2

y1y2

+
 (y2 − y1) 0 0

0 y1 0
0 0 −y3

 β1β2
β3


where the unknown parameter vector βi = [β1 β2 β3]T =

[10 28 8/3]T . The propagation delay and outer coupling
matrix are chosen as in the previous example. For the sake
of simplicity of computation, the control gains are chosen as
Ci = 1,Ki = 100, pi = 100, η = 0.1, γ = 1. The bound
vectors are chosen as ᾱ = β̄ = 75, ρ = 15.

FIGURE 4. Time evolution of the lag synchronization error with
time-varying delay coupling.

FIGURE 5. The estimated unknown parameter of α̂ when the networks
have time-varying delay coupling.

FIGURE 6. The estimated unknown parameter of β̂ when the networks
have time-varying delay coupling.

Case 1: When the models have external disturbances
which choose as in the previous example, the error initial
conditions are e1(0) = (−0.12, 0.78,= −0.50)T , e2(0) =
(1.70,−0.16,−0.45)T , e3(0) = (−0.02,−2.42,−2)T ,
e4(0) = (−1.88, 0.74, 0.37)T , e5(0) = (1.27,−0.1, 0.89)T .

VOLUME 7, 2019 7089



G. Al-Mahbashi, M. S. M. Noorani: Finite-Time Lag Synchronization of Uncertain Complex Dynamical Networks

FIGURE 7. Time evolution of the lag synchronization error with non-delay
coupling and external disturbances.

FIGURE 8. The estimated unknown parameter of α̂ when the networks
have non-delay coupling and external disturbances.

FIGURE 9. The estimated unknown parameter of β̂ when the networks
have non-delay coupling and external disturbances.

The estimation initial values of unknown parameter are cho-
sen randomly in [−1, 1].

In this numerical results, the time evolution of the synchro-
nization errors are depicted in Fig. 7. This figure displays the

FIGURE 10. Time evolution of the lag synchronization error with
non-delay coupling.

FIGURE 11. The estimated unknown parameter of α̂ when the networks
have non-delay coupling.

FIGURE 12. The estimated unknown parameter of β̂ when the networks
have non-delay coupling.

error states converge to zero before finite-time T ≤ T1+T2 =
87.996, which meets the estimated upper bound we proposed.
The estimation values of unknown parameter of α̂ and β̂ are
presented in Fig. 8 and Fig. 9, respectively which converge
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to their real values. These results show that the required
synchronization has been achievedwith our proposed control.
Case 2: When the external disturbances (ωi(t) =

µi(t) = 0), the error initial conditions are e1(0) =
(0.75,−0.55,−2.69)T , e2(0) = (−0.84,−0.80,−1.61)T ,
e3(0) = (1.90, 1.15, 2.26)T , e4(0) = (−2.38,−0.54, 1.38)T ,
e5(0) = (−1.26, 0.25, 1.80)T . The initial of unknown param-
eters are chosen randomly in [−1, 1].

The synchronization error is illustrated in Figure 10,
showing that the lag synchronization between the drive
and response networks is achieved in finite-time before
T ≤ 88.44. Fig. 11 and Fig. 12 show the estimated parameters
of nodes are successfully estimated. These results prove the
efficiency of our designed control for uncertain complex
dynamical networks with non-delay coupling.

V. CONCLUSION
In this paper, we have explored the problem of lag synchro-
nization in complex dynamical networks with time varying
delayed coupling, fully unknown parameters and external dis-
turbances within finite-time. Based on the Lyapunov stability
theory, sliding mode control and finite-time control, finite-
time adaptive sliding mode control and appropriate adaptive
laws were designed to realize lag synchronization. Further-
more, the unknown parameters were identified and many
criteria were obtained. In addition, the unknown bounded
disturbances were overcame by the proposed controllers.
Finally, numerical simulation results have been showed the
efficiency of the proposed method.
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