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ABSTRACT This paper presents a content retargeting and depth adaptation method for the stereoscopic
image. Our method allows the user to specify the retargeting scenarios to enhance the user’s visual
experience. Toward this end, we proposed a warping framework that takes content retargeting, depth
adaptation, and interactive editing into account simultaneously for stereoscopic images. From the viewpoint
of accuracy, comfortability, and controllability, we exploit the complementary relationship among image
quality, depth quality, and important content and propose a grid optimization framework to fuse the three
indictors. The experimental results demonstrate that our method achieves a preferable tradeoff among
accuracy, comfortability, and controllability of information presentation in retargeting, obtaining satisfactory
visual experience for users.

INDEX TERMS Stereoscopic display, content retargeting, depth adaptation, viewing experience.

I. INTRODUCTION
With the rapid development of stereoscopic displays from the
television to the mobile devices, especially with the boom-
ing virtual reality (VR) researches and applications in the
recent years, stereoscopic image/video editing is becoming
important in providing more natural viewing experiences for
the users on different displays [1]–[3]. However, stereoscopic
images with fixed resolutions are unable to provide fully
natural visual cues and comfortable viewing experiences on
different display resolutions. Stereoscopic image retargeting
is able to satisfy the requirements in offering comfortable 3D
viewing experience.

2D image retargeting has drawn wide attentions over the
recent years, and many methods have been developed, which
can be broadly classified into two categories: discrete meth-
ods [4]–[6] and continuous methods [7]–[9]. Compared with
2D case, 3D image retargeting is a challenging issue, which
not only delivers image quality, but also the impressive 3D
depth perception. Therefore, directly applying 2D resizing
methods on the left and right images is a straightforward
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but not a feasible solution. These years have witnessed great
efforts in stereoscopic image retargeting, including cropping
[10]–[12], seam carving [13]–[15], warping based [16]–[18]
methods. However, disparity/depth preservation constraint
is utilized in these stereoscopic image retargeting methods,
deviating from themotivation of image retargeting to adapt on
different display devices. Therefore, only resizing the spatial
resolution with depth preservation constraint is not sufficient
to account for user’s visual experience.

To tackle these challenges, two special requirements for
stereoscopic retargeting, i.e., geometric deformation and
depth adaption, are introduced to maximize the user’s expe-
rience. Also, it is critical to demonstrate important content
at a proper scale in the resized image. Therefore, accuracy,
comfortability and controllability are three important indica-
tors considered in this work to balance the factors affecting
3D visual experience. Here, accuracy is to minimize the
geometric deformation, comfortability is to ensure the proper
depth perception, and controllability is to allow the user to
distribute the content in a proper scale and convey important
information freely. As illustrated by the example in Fig.1, our
method applies image quality energy to retarget the stereo-
scopic image, thus avoiding structure degradation (Fig.1(a)),
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FIGURE 1. Image retargeting generated by different indictors in our
method.

and uses stereoscopic image quality energy to adjust the
depth range (Fig.1(b)). Our method also applies a cropping
window to maintain a balance between the important con-
tent and overall completeness in generating the retargeted
content (Fig.1(c)). Therefore, from the perspective of infor-
mation comprehensiveness (also related to the user’s visual
experience), combination of various indicators can help to
integrate the advantages of each component and compensate
the drawbacks with each other.

In this paper, we use user controllable retargeting scenarios
to enhance user’s visual experience in stereoscopic 3D dis-
play. To match such requirement, the controllable retargeting
scenarios include depth range, viewing distance and cropping
window. We obtain content retargeting and depth adapta-
tion according to three retargeting operators: image quality,
depth quality, and important content. Firstly, image quality
warping operation distributes deformation across an image
non-homogeneously according to the visual importance of
the grids. Secondly, depth quality warping operation helps
to adapt the depth range as well as the projected shape of
the grids. Moreover, important content warping operation
is to display important content at a proper size and depth
range, which aims at providing more space for user to edit
important information. The three operators are fused as total
energy constraints to optimize the grid deformation and depth
adaption process. By this way, the proposed optimization
procedure targets to balance the various factors affecting 3D
visual experience. The main contributions are summarized as
follows:

1) We propose an optimization framework for stereoscopic
image retargeting based on energy constraints of image qual-
ity, depth quality, and important content, which provide a
valuable tool for content retargeting, depth adaptation and
interactive editing of stereoscopic images simultaneously.

2) We integrate various user controllable retargeting sce-
narios, including allowable depth range, viewing distance
and cropping window, into the stereoscopic image retargeting
framework. The grid coordinates and the perceived depths are
simultaneously optimized to address the retargeting scenar-
ios. There is very little previous work using these scenarios.

3) We present a novel system for interactive editing,
in which user can edit the size and depth range for the
important content within the cropping window. To ensure the
completeness of the retargeted content, the system is opti-
mized with other energy constraints in a unified optimization
framework.

In the remainder of this paper, we first review the related
work in Section II, detail ourmethod in Section III, and finally
present results in Section IV and discussion in Section V.

II. RELATED WORK
As discussed, 2D stereoscopic image retargeting can be
classified into discrete methods and continuous methods.
Overview of state-of-the-art 2D image retargeting methods
can refer to [19]. With the same categories for stereoscopic
image retargeting, cropping [10]–[12] and seam carving
[13]–[15], [20]–[22] are well-known discrete approaches.
In cropping, a cropping window or critical region is deter-
mined to preserve the aesthetic value [10], or maximize
the visually important content [11], [12]. The advantage of
cropping methods is that the content outside the cropping
window are weakened or even removed while highlighting
the clipped content. In seam carving, continuous or discon-
tinuous seams are iteratively carved or inserted to reach the
desired size. As typical works in stereoscopic image seam
carving, Utsugi et al. [13] generated different corresponding
seams to maintain consistency and used occluded seams to
change the consistency. Basha et al. [14] optimized seam
caving by taking the visibility relations between pixels in the
image pair into account, and obtained geometrically consis-
tent results. Lei et al. [15] used pixel fusion technique to adap-
tively retarget stereo images with flexible aspect ratios while
preserving the depth. Besides, different 3D saliency models
were proposed to guide seam carving [20]–[22]. However,
although this technique has high flexibility in removing pix-
els, it will cause visual distortion in/between the left and right
images.

Compared with the above methods that discretely remove
seams or crop borders of an image, continuous methods
optimize warping using several deformation and other con-
straints. Chang et al. [16] used single-layer warping-based
retargeting algorithm to interactive stereoscopic image edit-
ing. The method retains the disparity of the sparse feature
points with disparity consistency constraint. However, due
to the lack of object deformation and accurate stereo corre-
spondences, the shapes and structures may be distorted after
retargeting. Lee et al. [17] proposed amultiple-layer warping-
based retargeting approach. Their method warps each layer
by its own mesh deformation and composites all layers
together to form the resized images. The method suffers from
the issues of accurate object extraction and object occlusion.
Li et al. [18] presented a depth-preserving warping-based
stereoscopic image retargeting framework that simultane-
ously preserves the shape of salient objects and the depth
of 3D scenes. Lin et al. [23] utilized the matched objects
between the left and right images to generate an object-based
significance map and preserve object consistency. Other rele-
vant works can be found in [24]–[28]. However, most of these
methods over-preserved the disparity/depth information.

Recently, besides the above stereoscopic image retargeting
methods, many efforts have been made in stereoscopic dis-
parity/depth editing, such as perspective manipulation [29],
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FIGURE 2. Overview of our user controllable stereoscopic image retargeting approach.

stereoscopic composition [3], and disparity mapping [30].
Focused on editing disparity information, Lang et al. [30]
proposed a series of disparity mapping operators for
stereoscopic images and videos to change the disparity
ranges. Yan et al. [31] proposed a linear depth mapping
method through warping to adjust the depth range of a
stereoscopic video according to the viewing configuration.
Wang et al. [32] proposed a mapping optimization method to
adjust the disparity to minimize discomfort also by warping-
based manipulation. Yan et al. [33] proposed a content-aware
stereoscopicmeshwarpingmodel to determines a scaling fac-
tor of salient region by disparity scaling factor. Part et al. [34]
adjusted the 3D depth of an object via virtual fronto-
parallel planar projection in the 3D space. Besides, disparity
remapping functions are optimized to control the disparity
range [35], [36].

In this work, motivated by the work [16] that simulta-
neously considers image retargeting and depth adaptation,
and the work [37] that incorporates cropping energy into
the optimization, we further integrate the cues from image
quality, stereoscopic quality and important content to achieve
content retargeting, depth adaptation and interactive editing
simultaneously. Since Chang’s work still prefers retaining
the disparity of the corresponding sparse feature points, the
perceived depth outside the feature regions are more likely to
be distorted, while ourmethod canwell eliminate the problem
bymulti-cue fusion tomaximize the user’s experience. Essen-
tially, our method belongs to stereoscopic image editing with
the ultimate goal to provide an efficient editor for 3D media.

III. USER CONTROLLABLE STEREOSCOPIC
IMAGE RETARGETING
Fig. 2 shows the framework of the stereoscopic image retar-
geting approach, which mainly consists of three functional
modules: pre-processing module, warping module and image
generation module. The first module is used to generate dis-
parity map and significance map to determine which regions
are informative and responsible for interactive selections

of cropping window, scaling factors and viewing distance.
The second module is to optimize the grid deformation
and depth adaption based on energy constraints of image
quality, stereoscopic quality, and important content. Mini-
mizing the energy function results in new coordinates and
depths of grid vertices, and consequently the retargeted left
image is rendered by mapping original image into a new
grid structure. At the last module, both left and right images
will be resized to its target scale. Different with state-of-
the-art stereoscopic image retargeting methods that preserve
the original disparity/depth information after retargeting, our
method optimizes grid’s coordinates and depth ranges simul-
taneously to match the target displays and user’s interaction
requirements.

A. PROBLEM FORMULATION
Unlike retargeting in 2D images which only consider the
spatial coordinates, stereoscopic retargeting is nontrival due
to the added depth perception. Let V = {Vk , k = 1, · · · ,N }
be the vertex set of the grid mesh, in which each mesh Vk =

{v1k , v
2
k , v

3
k , v

4
k} is created from four vertexes v1k , v

2
k , v

3
k and

v4k (N is the number of meshes in the left image). The vertex
set is also defined as V = {vi, i = 1, · · · ,M} (M is the
number of vertexes of all meshes). The edge set of all vertexes
is described as E = {ei,j}. The depth set of all vertexes is
defined as Z = {Zi, i = 1, · · · ,M}, in which Zi denotes the
depth value of each vertex. As discussed below, we calculate
the perceived depth instead of disparity to incorporate the
specific viewing configuration because the user perceives the
depth on the 3D space instead of on the image plane. The goal
of stereoscopic image retargeting motivated in this work is
to change the dimensions of a stereoscopic image pair with
size w × h to a desired size ŵ × ĥ, which 1) maintains
good shape preservation for those spatially important content;
2) adapts new viewing configuration with adjustable depth;
and 3) leaves the space for user to edit the important content
for interactive applications. Based on these considerations,
we formulate stereoscopic image resizing as an optimization
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problem to find a set of deformed meshes V̂ and adjusted
depths Ẑ, which minimize the following objective functions:

E(V̂, Ẑ) = EQ(V̂)+ λSES (V̂, Ẑ)+ λIEI (V̂, Ẑ) (1)

where EQ(V̂) is the image quality energy, ES (V̂, Ẑ) is the
stereoscopic quality energy, EI (V̂, Ẑ) is the important con-
tent energy, and λD and λI are the weights for the corre-
sponding energy terms. These energy terms well explain the
above three requirements for stereoscopic image retargeting.
In what follows, we will discuss the energy terms in detail.

B. IMAGE QUALITY ENERGY
Refer to the existing warping-based retargeting methods
[8], [9], we also evaluate quality from two aspects: shape
distortion and line bending. The first one measures the dis-
similarity between the deformed and its original shapes to
retain the geometry structure, and the second one measures
the angle between the deformed and its original edges to
minimize the bending of the grid edges. Therefore, the image
quality energy EQ is defined as

EQ(V̂) = ESD(V̂)+ λLBELB(V̂) (2)

where ESD is the shape distortion energy, ELB is the line
bending energy, and λLB is the weight for ELB.
Since we employ grid-based warping to preserve the visu-

ally important content with small deformation while allow
large deformation for those unimportant content, refer to [9],
we adopt a similarity transformation to evaluate the shape
distortion energy in resizing. For eachmeshwith four vertices
(e.g., Vk ), the shape distortion energy is defined as

ESD(k) =
4∑
i=1

∥∥∥ρk (vik )− v̂ik
∥∥∥2 (3)

where ρk represents the similarity transformation for each
grid mesh. The similarity transformation (only containing
scale and translation) can be formulated as:

ρk (vik ) =
[
sx 0
0 sy

][
x ik
yik

]
+

[
tx
ty

]
(4)

With (4), minimization of (3) is equivalent to solving a
linear least-squares problem AP = b, where

Ak =


x1k 0 1 0
0 y1k 0 1
...

...
...

...

x4k 0 1 0
0 y4k 0 0

 (5)

b̃k =
[
x̂1k ŷ1k · · · x̂4k ŷ4k

]T (6)

It is straightforward to obtain the similarity transform
matrix with the form as follows:

Pk = (AT
k Ak )−1AT

k b̂k (7)

It should be noted that the rotation factor in the similarity
transformation is ignored, because only the horizontal camera

array is considered in the retargeted image. Ideally, if a mesh
undergoes a similarity transformation, the expected position
b̃k = AkPk should be identical to b̂k (i.e., the position of vk
after deformation). Thus, the shape distortion energy can be

calculated by summing
∥∥∥b̃k − b̂k

∥∥∥2 for all meshes as follows:

ESD(V̂) =
∑
Vk∈V

S(k)·
∥∥∥b̃k − b̂k

∥∥∥2 (8)

where S(k) is the significance value of mesh k , which is
computed using the 3D saliency detection approach in our
previous work [38]. The goal of the importance weighting is
to preserve shapes in those high-significance objects (with
high weight). To avoid undue deformation, the significance
value is normalized to [0, 1]. Thus, by involving the sig-
nificance values, minimizing ESD will preserve the shape
of important content while distribute more distortion to the
unimportant content.
Refer to [7], to minimize the bending of the mesh edges,

we define a line bending energy by measuring the angle
between the deformed edge and its original edge. Let
ei,j = vi − vj and êi,j = v̂i − v̂j as edges, the angle between
ei,j and êi,j is approximated by

ELB(êi,j) =
∥∥(v̂i − v̂j)− se(vi − vj)

∥∥2 (9)

where se is a scale parameter. Refer to the solution in (7),
minimization of (9) yields a linear least-squares solution as

1(êi,j) =
∥∥∥ei,j(êTi,jei,j)−1eTi,jêi,j − êi,j

∥∥∥2 (10)

Let Cei,j = ei,j(ê
T
i,jei,j)

−1eTi,j − I, the line bending energy
for all meshes is defined as

ELB(V̂) =
∑

<vi,vj>∈E

∥∥∥∥Cei,j

[
1 0 −1 0
0 1 0 −1

] [
v̂i
v̂j

]∥∥∥∥2
(11)

C. DEPTH QUALITY ENERGY
As depth ranges of different display devices will be not
the same, the goal of depth adaptation here is to adapt the
shape and perspective of the retargeted content. According
to perspective projection, the scale of a stereoscopic object
depends on the depth. Thus, when there are large depth
changes due to depth adaption, the scale of the object must
be adjusted according to the adapted depths to match such
changes. Instead of preserving the original depth/disparity
information usually in the previous works [16]–[18], we seek
to derive the relationship between the shape scaling and the
perceived depth so that we can scale the object adaptively
according to the target depth. The relationship between the
perceived depth and the disparity is determined as follows:

Zp =
de

de + (xLp − xRp )
· LD (12)

where xLp and xRp are the projections of a point p on the left
and right images, and dp = xLp − xRp denotes the disparity.
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LD is the viewing distance from the viewers to the screen, and
de is the interocular distance between the viewer’s two eyes.
Since depth perception will be affected by different viewing
distances and display devices if displaying the retargeted
content on different displays, we focus on controlling the
perceived depth instead of the disparity for better 3D viewing
in this paper. Here, we use the stereo matching algorithm
in [39] to estimate the disparity.

Since the convergence/accommodation limitations on
depth range for different display devices will be not the
same, to provide proper depth perception on different display
types and resolutions, user favorite depth range (influenced
by retinal disparity limits and viewing distance) is defined to
adjust the depth range to avoid accommodation-convergence
conflict. Considering the factors of viewing distance and
display device, the target depth range for a particular viewing
configuration can be determined as follows:

Ẑmax =
deL̂D

de − η1L̂D
, Ẑmin =

deL̂D
de − η2L̂D

(13)

where η1 and η2 denote the negative and positive retinal
disparity limits, respectively, and L̂D denotes the new viewing
distance. These factors are highly related to the viewing
configuration for the new retargeted content. Then, the trans-
formation can be formulated as:

Ẑvi =
Ẑmax − Ẑmin

Zmax − Zmin
· (Zvi − Zmin)+ Ẑmin

= sz · Zvi + tz (14)

Obviously, (sz, tz) denotes the scale and translation factors
for depth, which is similar with the definition of similar-
ity transform in Eq. (4). In fact, by changing the viewing
distance, the disparity (depth) between the left and right
images will be changed. To match such viewing configura-
tion, the shape of an object should be scaled correspond-
ingly, e.g., large size for small viewing distance. Given
the relationship, we calculated the perceived depths {Zvi}
and {Ẑvi} for all the vertices of the meshes before and
after depth adaption. The scaling factor for size changing is
defined by

kvi =
Zvi
Ẑvi

(15)

It is obvious that the retinal disparity limits and viewing
distance determine the scaling factor. If we retarget a 3D
content produced for larger screens and display it on a small
screen, the value of kvi is typically larger than 1. In this case,
the size of an object should be down-scaled to adapt the target
depth. To adjust the depth in a more nature way, the size of a
mesh should be changed along with the depth [40]. Thus, the
edge of themeshes should be adjusted synchronouslywith the
depth of the meshes. For each edge in the mesh, the expected
scaling factor keij is given by (kvi + kvj )/2. Hence, we have
the depth-dependent scaling factor to control the overall depth
quality, which is composed of two shape scaling and depth

control terms:

ES (V̂, Ẑ) = ESC (V̂)+ EDC (Ẑ)

=

∑
(vi,vj)∈E

∥∥(v̂i − v̂j)− keij (vi − vj)
∥∥2

+ λDC ·
∑
vi∈V

ω(Zvi ) ·
∥∥∥Ẑvi − (sz · Z vi + tz)

∥∥∥2
(16)

where λDC denotes the weight for depth control term. Here,
instead of directly computing the depth distortion energy,
the influence of viewing distance is integrated into the depth
distortion energy, so that the scene near the screen will have
large space to adjust its depth, which is defined as:

ω(Zvi ) = exp

( ∣∣Zvi − LD∣∣
Zmax − Zmin

)
(17)

D. IMPORTANT CONTENT ENERGY
With only the image quality and depth quality energy terms,
the optimal solution can be found to preserve the shape and
depth constraints. However, in many interactive applications,
the users expect to freely select the viewing content, and
adjust the size and depth range interactively [41]. There-
fore, we incorporate a new important content energy term,
which provides more space for user to selectively present
important content for interactive applications. The important
content energy should satisfy the following two requirements:
1) other information of the image outside the selected impor-
tant content should also be preserved for the completeness
of content retargeting; 2) this term should be naturally inte-
grated into the warping framework, i.e., it should be not
isolatedwith the above global image quality and depth quality
optimization.

To achieve the above goal, we draw a spatial crop-
ping window as important content selected with the high-
est significance value. Of course, the users can manually
select the important content based on users’ own preference.
For the meshes located within the window, they will not
follow the same scaling factors in the above image quality and
depth quality energy terms, but are assigned user specified
scaling factors for this important content. Let xi,j denotes the
horizontal coordinate of a mesh vertex in the i-th row and
the j-th column, and Zi,j denotes the corresponding depth of
the mesh vertex. Only considering the scaling on the hori-
zontal and depth directions, we introduce two user specified
scaling factors (s′x and s

′
z) to construct the energy term, which

is composed of two object scaling and depth scaling terms:

EI (V̂, Ẑ) = EOS (V̂)+ EDS (Ẑ)

=

∑
(vi,vj)∈ER

∥∥(x̂i,j+1 − x̂i,j)− s′x(xi,j+1 − xi,j)∥∥2
+ λDS ·

∑
vi∈VR

∥∥∥Ẑvi − s′zZvi∥∥∥2 (18)
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where λDS is the weight for depth scaling term, and ER and
VR means the set of edges and meshes on the selected region,
respectively. Particularly, if s′x = 1, this term ensures the
important content to have the same size with the original
object, and to display with sufficient space. Larger s′x and s

′
z

will yield stronger 3D viewing of the selected content. The
essence of the optimization is to effectively distribute the
distortions across different regions nomatter inside or outside
the important content. Therefore, EC is also resolved by a
global solution.

Since user’s input and interaction is an important function
in the framework, especially in the above important content
energy term, the user can specify a window to define an
object. For image retargeting, the user is prompted to pro-
vide the target scaling factors s′x and s′z for the specified
object in the x and z directions respectively. By doing so,
the user can choose what he is interested in and display
it with different freedom within the retargeted image. With
larger horizontal scaling factors, the non-important contents
will be discarded or encouraged larger distortion due to the
global optimization essence. For the image containing multi-
ple visually important regions, selection of different clipping
windows will provide different descriptions for the scene.

E. OPTIMIZATION
The three energy terms are necessary to achieve satisfying
retargeting results. As analyzed above, EQ(V̂) is used to
control the shape of the global meshes, ES (V̂, Ẑ) is used to
constrain the depth range and scale of the global meshes, and
EI (V̂, Ẑ) is used to determine the size and depth range for the
user-specified important content. Minimizing the total energy
function corresponds to solving a least-squares linear system
(AP = b), and a set of deformed vertices V̂ and retargeted
depths Ẑ for all vertices can be found. Then, the adjusted
depth is converted back to obtain the retargeted disparity as

d̂i = de ·
(
1−

LD
Ẑi

)
(19)

Based on the original and the retargeted disparities,
V and V̂ are projected to the right image, obtaining the orig-
inal meshes VR and the deformed meshes V̂R, respectively.
Thus, by establishing the mapping relationships between V
and V̂, and between VR and V̂R respectively, we can map
the left and right images to the target resolution while pre-
serving the shapes and adjusting the depth range of impor-
tant content in global and local semantics. Different with
[16]–[18] that optimize the left and right images simultane-
ously, we use depth information from left image to construct
the mesh set for the right image. However, if a mesh can-
not find the correspondence in the other image (belonging
to occluded/disoccluded regions), the adjacent meshes are
extended to preserve the region’s width in constraining the
local warping function.

In the experiment, we find that even though we can resolve
the solution only with EQ(V̂), as shown in Fig.1(a), without
ES (V̂, Ẑ), the depth range cannot be properly adjusted, which

makes the performance of depth adaptation is limited, while
without EI (V̂, Ẑ), the user interaction is not considered, thus
the selected content is not changed in the retargeting result.
We have tried many different weights for the energy com-
bination in Eq. (1), and the results shows some differences.
In general, we should place enough emphasis on EI (V̂, Ẑ) to
produce prominent stereoscopic vision for the user-specified
content, and too small value λI can make the term weak.

IV. EXPERIMENTAL RESULTS AND ANALYSES
In this section, we evaluate the performance of the pro-
pose method with other methods on the stereoscopic images
with different depth ranges. We collect several stereoscopic
images with large depth ranges from IVY Lab Stereo 3D
Image Database for Disparity Remapping [42], and with rel-
atively small depth ranges from PSU Stereo Saliency Bench-
mark [43]. To evaluate important content, all these testing
images contain independent salient objects. The representa-
tive images are shown in Fig. 3.

FIGURE 3. The selected testing images in the experiment.

In the experiment, we set the interocular distance
de = 65mm, the viewing distance LD = 1200mm, and
the disparity limits η1 = −1 and η2 = 1. The parameters
LD and (η1, η2) are adjustable and slight changes above or
below the values will have certain effects on the retargeting
performance. Also, there are other adjustable parameters,
such as λLB, λDC , λDS , λS , λI , s′x and s′z. Through com-
prehensively comparison from accuracy, comfortability and
controllability, we set λLB = 1.25, λDC = 0.25, λDS =
0.025, λS = 1.5 and λI = 1.25 to achieve satisfying results,
and s′x = 1, s′z = 1 to simply preserve the original size and
depth for the important content as much as possible. Since
many parameters are adjustable in our method, our results
may be not remarkable in a single indictor (e.g., accuracy,
comfortability or controllability) for some testing images,
but it provides a distinctive solution for content retargeting,
depth adaptation and interactive editing simultaneously to
maximize the user’s experience.

A. QUALITATIVE COMPARISON WITH OTHER METHODS
We compare our method with three state-of-the-art stereo-
scopic image retargeting methods, including single-layer
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FIGURE 4. Results on testing image #7. From top to bottom: left images, the retargeted stereoscopic images (shown in red-cyan
anaglyph), and the disparity maps (shown in pseudo-color map). (a) Original image. (b) Ours. (c) SLWAR. (d) GCSSC. (e) VASSC.

warping-based retargeting approach (SLWAR) [16], geo-
metrically consistent stereoscopic seam carving approach
(GCSSC) [14], and visual attention guided stereoscopic seam
carving (VASSC) approach [20] (our previous work). A qual-
itative comparison of the retargeting results on two stereo-
scopic images with relatively small depth range are presented
in Figs. 4-5. All images are shrunk by 40%. From the figure,
we find that the seam carving based retargeting methods
(GCSSC and VASSC) will lead to subtle shape deformation,
e.g., the edge of the foreground signboard and the background
archway in Figs. 4 (d) and (e), and the legs of the sculpture
in Figs. 5 (d) and (e). For the SLWARmethod, due to disparity
preservation and warping optimization essence, the objects
are retargeted to a small sizewith original depth range. In con-
trast, since the depth quality energy and important energy are
simultaneously considered, our method not only preserves
the original size of the important object (from the viewpoint
of the retargeted image, the size of the object is expanded),
but also enhances the depth sensation for those test image
pairs with small depth range (the depth range is adaptively
expanded). The phenomenon is very obvious observed from
the disparity maps in Figs. 4-5.

In addition, we also illustrate the retargeting results on
two stereoscopic images with large depth range in Figs. 6-7
(the stereoscopic images are visually uncomfortable). Similar
with the above conclusion, the GCSSC and VASSC methods

will deform the shapes of cup in Figs. 6 (d) and (e) and
kettle in Figs. 7 (d) and (e). More importantly, the retargeting
results still have large depth range outside the CVZ, lead-
ing to poor visual comfort experience. The SLWAR method
will result in small object size and large depth range for
the testing images in Figs. 6-7. In conclusion, the seam
carving methods may lead to shape deformation due to
irregular seams, and the warping-based method may lead to
object size reduction. All these methods enforce directly or
indirectly disparity/depth preservation constraint. The pro-
posed method takes the depth quality energy and impor-
tant energy into account, and achieves better user’s visual
experience.

B. THE INFLUENCE OF VIEWING CONFIGURATION
From the perspective of depth adaptation, if a retargeted
stereoscopic image is displayed on a small screen, its viewing
distance should be reduced correspondingly. In our depth
quality energy, we control the depth in the 3D space to allow
user to edit the viewing distance. In Fig. 8, we set three
viewing distances (D = 800, 1000 and 1200) for four scaling
ratios (50%, 40%, 30%, and 20%), respectively. We can see
that, by adding the viewing distance, the depth difference
between objects is slightly changed, i.e., the relative depth
distance between objects is increased. This phenomenon is
understandable because with the increased viewing distance,
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(a) (c) (d) (e)(b)

FIGURE 5. Results on testing image #8. From top to bottom: left images, the retargeted stereoscopic images (shown in red-cyan
anaglyph), and the disparity maps (shown in pseudo-color map). (a) Original image. (b) Ours. (c) SLWAR. (d) GCSSC. (e) VASSC.

(a) (b) (d) (e)(c)

FIGURE 6. Results on testing image #3. From top to bottom: left images, the retargeted stereoscopic images (shown in red-cyan
anaglyph), and the disparity maps (shown in pseudo-color map). (a) Original image. (b) Ours. (c) SLWAR. (d) GCSSC. (e) VASSC.

the viewing perspective is also increased accordingly. In the
experiment, since the range of the selected viewing distances
is not very large, their influences on depth perception in

the result are not obvious. Normally, the viewing distance is
set to three times the height of display. Thus, if we display
the retargeted stereoscopic images on different displays, the
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FIGURE 7. Results on testing image #2. From top to bottom: left images, the retargeted stereoscopic images (shown in red-cyan
anaglyph), and the disparity maps (shown in pseudo-color map). (a) Original image. (b) Ours. (c) SLWAR. (d) GCSSC. (e) VASSC.

FIGURE 8. Results of different viewing distances for shrinking the image width by: 50%, 40%, 30% and 20%.

viewing distance should be carefully adjusted to provide a
better depth adaptation.

C. THE INFLUENCE OF DIFFERENT ENERGY TERMS
In addition, to better demonstrate the impact of each energy
term in the proposed retargeting framework, we design the

following four schemes for comparison. There are three
major energy terms EQ, ES and EI in our formulation, includ-
ing six sub-energy terms. We design the following schemes
listed in Table 1, denoted by Scheme-1, Scheme-2, Scheme-3
and Proposed scheme. The same EQ is included in these
schemes, and other optional component (e.g., shape scaling,
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FIGURE 9. The retargeting results with different energy combination schemes. (a) Original image. (b) Scheme-1. (c) Scheme-2.
(d) Scheme-3. (e) Proposed.

depth control, object scaling or depth scaling) is added to
construct these schemes. The retargeting results are shown
in Fig. 8. Three important conclusions can be drawn from
the results: 1) without EOS (V̂), the objects are retargeted
to a small size; 2) compared with Scheme-2 and Scheme-3
with or without EDS (Ẑ), the local depth scaling will affect
the global depth layout; 3) compared with Scheme-3 and
Proposed scheme with or without ESC (V̂), by integrating the
influence of the perceived depth, the size of an object is
adaptively scaled, to avoid the important content missing as
shown clearly in the last row of Fig. 8. Therefore, we can
conclude that cooperation of these energy terms will provide
more natural subjective perception for users.

D. USER STUDY
We also perform user study to assess our algorithms. 20 par-
ticipants were participated in our user studies. We conduct
subjective experiment on a Samsung UA65F9000 65 inch
Ultra HD 3D-LED TV with 3D shutter glasses. We per-
form paired comparisons between the retargeted results
obtained by our method and one of the comparative methods:
SLWAR [16], GCSSC [14] and VASSC [20]. In the test,

TABLE 1. List of the schemes compared in this study.

9 stereoscopic image pairs in Fig. 3 are randomly chosen for
this test. Each participant is asked to choose one retargeted
result preferred to other according to the overall visual expe-
rience in terms of accuracy, comfortability and controllability,
and performs 27 comparisons in each iteration. The user study
results are reported in Table 2. These comparison results con-
firm the strong preference of our method over other methods.
Specifically, our method receives 64.4% votes when com-
pared to SLWAR, 73.9% votes when compared to GCSSC,
and 79.4% votes when compared to VASSA. The preference
is much more remarkable for those #1, #2, #3 and #4 testing
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TABLE 2. The User’s preference results of subjective paired comparisons.

FIGURE 10. Failure cases of the proposed method.

images with large depth range. In general, participants favor
our results over those of existing stereoscopic retargeting
methods (e.g., SLWAR,GCSSC, andVASSC) due to ignoring
user’s experiences.

E. LIMITATIONS
The proposed approach has several limitations. First, when
the captured scene contains slanted texture at the left-
most or rightmost side, example shown in Fig. 10 (a), our
method does not work well. Due to the depth discontinuity
between the corresponding and occluded regions (still using
the original depth values for the occluded regions), there
is significant ghost in the connection area, even though we
extend the adjacent meshes to cover the occluded regions.

In addition, for the scene included multiple objects, if the
selected important content is adjusted with a large scaling
factors s′x , it can lead to visual content missing in the retar-
geted image. Fig. 10 (b) shows such an example, where
other two peoples on the left and right sides are discarded
for the case of small scaling ratio. However, our method
often works well for simple scene that do not contain mul-
tiple salient objects or strong textures at the background
(e.g. in Fig. 10(c)).

Finally, our method relied on the weights to balance the
distortions among the salient and important regions in a
global image, and also to balance the local and global depth
distributions. The same weight setting in fact cannot well for
all interactive selections from drawing window, scaling fac-
tors and viewing distance. Therefore, it is needed to specify
such weight setting, and more advanced weighting can be
potentially employed for creating more accurate results.

V. CONCLUSIONS
In this paper, we present a content retargeting and depth
adaptation method for stereoscopic image. By exploiting the
complementarity relationship among image quality, depth
quality and important content, we propose a unified grid
optimization framework to fuse the three energy constraints.
Besides, various user controllable retargeting scenarios are
integrated to guide the optimization procedure. As a result,
our system yields a retargeted result with high visual experi-
ence for users and shows a strong flexibility to process users’
requirement, achieving a better trade-off among accuracy,
comfortability and controllability for information presenta-
tion. As future work, we plan to consider additional aes-
thetics, object features, and more intelligent display-adaptive
content retargeting [44]. We also plan to extend this frame-
work to enable new applications, such as stereoscopic image
stitching [45] and disparity manipulation [46].
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