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ABSTRACT The edge computing network refers to a new paradigm of edge-side big data computing
networks, which integrates networks, computing, storage, and business core capabilities. It is close to users,
the Internet of Things (IoT), or data source side. The edge computing network is generated by the common
development of cloud computing and the IoT. The core is the massive uplink monitoring collection and
downlink decision-making control big data generated by intelligent sensing devices, solving the problem of
low data computing efficiency and performance under the centralized cloud computing model. Compared
with traditional cloud computing networks, the edge computing network has more abundant terminal types,
more frequent data real-time interaction, more complex transmission network technology systems, and more
intelligent and interconnected business systems. Moreover, this situation is aggravated with the mobile edge
computing, e.g., model proximity service increasingly prevalent in daily life. However, the ubiquitous and
open features of edge computing networks expose network security risks to all parts of the system, facing
severe security protection challenges. To solve the linkage disposal and minimum cost response of complex
attacks, we propose an attack linkage disposal decision-making method for edge computing network systems
based on attribute attack graphs. A simplified attribute attack graph is constructed through the network
security alarm association and false-alarm determination, and formal correlation analysis is performed on the
causal relationship of the alarm information. On this basis, the linkage defense strategy decision computing is
transformed into theminimum dominance set solution of the attribute attack graph. Finally, a linkage disposal
strategy execution point decision algorithm based on the greedy algorithm is designed, which constructs a
set of attack linkage disposal decision-making technologies with optimal defense cost. It provides a powerful
guarantee for timely and effectively active defense.

INDEX TERMS Edge computing network, complex attack detection, attribute attack graph, linkage defense.

I. INTRODUCTION
In the edge computing network, the edge computing service
system forms an edge distributed computing system with
full-time domain airspace interconnection on the edge side
with the sinking of computing power. The service system
is interconnected with the main station service system in
real time as well, leading to a large overall scale and com-
plex structure. It thus exhibits mixed multi-scale dynamic
characteristics and complex network characteristics. In the

era of big data, user data is inevitable to be exposed to
the public, which leads to the threats of privacy invasion.
Therefore, many privacy protection methods were proposed
to defend the data attacks [1]–[3]. However, a large number
of network security monitoring alarm data is still generated in
the system domain of the edge computing network [4]. Taking
the electric power domain as an example, 10 TB of network
security event big data is generated every day. These alarm
data for the network attack event has big data characteristics
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(e.g., massive, diverse, heterogeneous, and dynamic
changes) [5]. For one hand, analyzing and processing the net-
work attack events effectively and efficiently are the difficult
challenges. On the other hand, because of the existence of
complex multi-point network attacks, network alarm infor-
mation has causal logical relevance (e.g., mobile proximity
service), and how to mine complex attack processes for
minimum cost defense is also a difficult problem [6]–[8].
Currently, network security defense technologies based on
alarm correlation and attack graphs are important methods
for complex attack handling [9]. The alarm correlation tech-
nology is mainly applied to the discovery of multi-point and
multi-step attackmodes and provides an execution point deci-
sion mechanism for network linkage processing [10], [11].
In terms of alarm relationship extraction, the attack graph
enumerates all possible attack paths and forms an attack
sequence based on the comprehensive analysis of the vulner-
ability of each node in the network from the perspective of
the attacker, thus providing alarm mapping and association
analysis rules. At the same time, there are a large number
of redundant alarms in the attack data. The network attack
based on the alarm association and the attack graph has a
state explosion problem. How to calculate the optimal attack
linkage processing strategy for large-scale edge computing
networks is an NP hard problem [12], [13].

To this end, this paper further proposes a joint action strat-
egy decision generation method. It is based on the attribute
attack graph of edge computing networks [14]. First, we asso-
ciate the alarms based on the attribute association method to
generate the reduced attribute attack graph. Second, for the
attribute space explosion problem caused by the redundant
alarm, the redundant alarm optimization processing method
based on k-means analysis is proposed. The state space of
the graph is further reduced. On this basis, the linkage treat-
ment strategy calculation is transformed into the minimum
dominance set of the attribute attack graph, and the decision-
making space of the linkage processing strategy is refined.
Then the decision-making algorithm based on the greedy
algorithm is designed to determine the minimum cost linkage
disposal strategy for large-scale systems of edge computing
networks, effectively reducing the complexity and difficulty
of this problem. Finally, the experimental results verify the

effectiveness of the attack linkage strategy generation method
based on the attribute attack graph and minimum dominance
set. It is proved that the method can be applied to the min-
imum cost linkage processing of security events in the edge
computing network environment. Figure 1 shows the relevant
content of this study.

The rest of the paper is organized as follows: Section 2
introduces the research progress of related techniques of
attribute attack graphs. Section 3 gives the attribute attack
graphs and dominating set formal description definitions
for complex attack linkage processing, and gives a method
for refining linkage handling problems. In the section 4,
the linkage processing decision model is given, and the edge
computing network attack is modeled and analyzed through
alarm correlation. The attribute attack graph construction and
state space reduction algorithm are given. Section 5 proposes
a network security linkage processing enforcement point and
security policy generation algorithm based on attribute attack
graph minimum dominance set (MDS) and offensive and
defensive income. Section 6 verifies the effectiveness of the
algorithm through simulation experiments. Section 7 summa-
rizes the paper and gives relevant conclusions.

II. RELATED RESEARCH
At present, complex attack detection and defense technolo-
gies based on alarm correlation and attack analysis have
received much attention in the security situation where com-
plex attacks such as attack detection and threat assess-
ment (APT) continue to evolve. For the first time, Swiler has
proposed the graph model based attack in which the attack of
adversary is supposed to an edge, and each node represents
a network state [48]. The administrator can determine the
key nodes of the network by calculating the probability of
a successful attack. This attack graph is known as a state
attack graph [15], [16]. The state attack graph technology
is often used for network security situational awareness and
assessment. Liu [17] proposed a method based on state attack
graph for the APT in his dissertation. In this work, the state
attack graph is used to correlate large-scale alarms as well
as to conduct a multi-step attack situation threat assessment.
Musa [18] proposed a network security attack graph analysis
method for complex network environments. By combining

FIGURE 1. Technical framework for linkage decision-making of edge computing network systems.
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large-scale alarm information and vulnerability information,
an attack graph based on risk level assessment is generated to
achieve network security assessment. Sheyner [19] proposed
a network security event alarm correlation analysis method
combining situational map and attack graph to analyze the
network security risk situation. Chen et al. [20] proposed a
network security metric based on the number of attack paths.
Roschke et al. [21] proposed a network security metric based
on the mean length of attack paths. Saurabh and Sairam [22]
also proposed their own security metrics. However, the eval-
uation of network security is not significant, and it is not
good to assist network administrators in making decisions.
The advantage of the state attack graph is that it is easy for
managers to intuitively understand the entire process of the
attack to implement security defense. However, as the scale
of the network is prone to state explosion problems, in order
to solve this problem, Alhomidi and Reed [23] proposed a
‘‘monotonic hypothesis’’, which assumes that the target of
the attack is developing in the direction of increasing attack
power. That is, the attack capability that has been obtained is
not repeatedly obtained, so the problem of attack correlation
analysis in the case of a large number of false alarms and
redundant alarms in the network cannot be solved.

In recent years, around the variants of the attack graph,
the constructions of the attack graph and its various appli-
cations have produced a lot of research results [24]. For
edge computing networks with large network scales, using
attribute attack graphs for vulnerability analysis is a bet-
ter way than using state attack graphs. Although there are
some defects in visually understanding the attack trajectory,
it can effectively solve the state explosion problems. On the
basis of this, Noel and Jajodia [25] proposed an attribute
attack graph model. There are two types of nodes in the
attribute attack graph, one is the network security element
and the other is the specific vulnerability point. Through such
abstraction, it can effectively compress the scale of the attack
graph. Wang et al. [26] proposed a network security defense
method based on a minimal key set. But these methods do not
take into account the complex relationship between attacks
and network configuration elements. Li [27] also proposed
a series of cybersecurity defense methods that destroy the
initial conditions. However, thesemethods have the following
shortcomings [15], [28], [29]: i) exponential solution space;
ii) no cost consideration when selecting initial conditions
to be destroyed; iii) no vulnerability fixes can be taken as
network security defenses strategy. In order to solve the above
problems, this paper proposes an edge computing network
attack linkage decision-making technology using alarm cor-
relation and attribute attack graphs.

III. ATTRIBUTE ATTACK MAP FOR LINKAGE PROCESSING
A. DEFINITION OF ATTRIBUTE ATTACK GRAPH FOR
LINKAGE HANDLING
Aiming at the large-scale, complex and multi-point net-
work attacks in the edge computing network, usually a

reasonable edge computing terminal intrusion detection ser-
vice is deployed in the edge computing network to implement
distributed linkage intrusion detection. In this context, for the
complex network attack alarm event handling problem gen-
erated by the edge computing network, this paper introduces
attribute attack graph technology to link alarms.
Definition 1 (Atomic Attack Node:) It represents a single-

step attack in the network, called an atomic attack node Vatom.
Definition 2 (Attribute Node:) Attribute node V pre

i and
V post
i respectively represent the atomic attack node Vatom

successful implementation of the premise attribute node and
the consequence attribute node.

In the attribute attack graph, premise attribute nodes and
consequence attribute nodes can be collectively referred to as
attribute nodes. In addition, the attribute node can be further
subdivided according to the network attack process. That
is, in the attack process, there is a special attribute node,
which is both the consequence attribute node of the atomic
attack node V i

atom and the premise attribute node of the V j
atom,

which becomes the intermediate process attribute node of
the network attack. In addition, there is another attribute
node in the attribute attack graph. Such attribute nodes exist
only as premise attribute nodes, and not as the consequence
attribute node of any atomic attack. Such nodes are called the
initial attribute nodes of the attribute attack graph. According
to the idea of active defense, any atomic attack cannot be
implemented without the premise of the cyber-attack, and
any subsequent associated attacks are not successfully imple-
mented. Therefore, the initial attribute node becomes the key
object of the active defense of cyber-attacks. In the network
security defense work, the elimination of the initial attribute
node can avoid a large part of the network attacks.

According to the graph theory, the initial attribute node is
the most primitive condition of the attack, and its inbound
edge is 0, and the outbound edge is greater than 1, so the
initial attribute node has an in-degree of 0 and an out-degree
is greater than or equal to 1 [30]. Similarly, an atomic attack
node must have at least one prerequisite for successful imple-
mentation, so its entry degree is at least 1, and the degree of
exit is 1. The consequence attribute node has an in-degree of
at least 1. The details are shown in Table 1:

TABLE 1. Node accessibility condition.

Definition 3 (The Edge of the Attribute Attack Graph):
Eatom represents the attack process of the atomic attack, which
can be divided into the premise attribute edge Eatom(V

pre
i →

V i
atom) and the consequence attribute edge Eatom(V i

atom →

V post
i ).
Definition 4 (Attribute Attack Graph): The attribute attack

graph is defined as a directional and unweighted graph.
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Given a point set (V pre
i ,V i

atom,V post
i ) and an edge set

((V pre
i → V i

atom), (V
i
atom→ V post

i )), the attribute attack graph
can be defined as AG = (V ,E), where V represents the point
set of the attribute attack graph, including the atomic attack
node, premise attribute node, and consequence attribute node.
E represents the edge set of the attribute attack graph, includ-
ing the premise edge and the consequence edge.

The edge in the attribute attack graph may only point from
the attribute node to the atomic attack node, or from the
atomic attack node to the attribute node, and may not point to
the attribute node from the attribute node, or the atomic attack
node points to the atomic attack node, so the attribute attack
graph can be treated as a weighted and directed bipartite
graph. Furthermore, the nodes in the attribute attack graph can
be divided into two sets: the atomic attack nodes represented
by Vatom form a set, and the attribute node Vattribute constitutes
a set.

B. SOLVING THE OPTIMAL EXECUTION POINT OF
LINKAGE PROCESSING BASED ON ATTRIBUTE
ATTACK GRAPH
According to the definition of the attribute attack graph, the
relationship between the initial attribute node and the atomic
attack node in the network is a many-to-many relationship.
Note that, in some cases, the atomic attack can only be per-
formed when all of the premise attribute nodes of the atomic
attack node are satisfied.

At the same time, there is also a situation in which an initial
atomic attack can be performed when an initial attribute node
can be successfully utilized. Given an initial set of attribute
nodes Vattribute = (V a

attribute,V
b
attribute,V

c
attribute), assume that

the initial attribute node V a
attribute is the premise attribute node

of all atomic attack nodes, and V b
attribute,V

c
attribute is only the

premise attribute node of the partial atomic attack nodes.
In this case, the initial attribute node V a

attribute is called the
optimal defense execution point. Because only the attribute
node D needs to be securely reinforced, the defense against
many atomic attacks can be implemented.

Therefore, in the complex network environment of the
edge computing network, the advantage of introducing the
attack graph technology for linkage defense processing is
that it can use the graph to perform causal logical associa-
tion of different alarm events, which can effectively find a
complex multi-step attack. What’s more, finding the initial
attribute node in the attribute attack graph for targeted defense
processing can greatly reduce the defense cost of the edge
computing network. The following paper provides a formal
description of the solution to the optimal defense enforcement
point:
Definition 5 (Dominating Set): This is represented by DS.

In the attribute attack graph AG = (V ,E), the node set S ⊆ V
is a dominating set of G.
Definition 6 (Minimal Dominating Sets): This is denoted

by DS
′

min, and DS
′

min is a minimal dominating set if and only
for any DS ∈ DS

′

min, DS is no longer a dominating set.

Definition 7 (Minimum Dominance Set): This is repre-
sented by DSmin, which is the minimum dominating set with
the smallest base.

In this way, the optimal network linkage processing
execution point selection problem is converted to solving the
minimum dominating set formed by the initial attribute node
set.

The main idea of solving the optimal network linkage
processing execution point is to regard the attribute attack
graph as a directed bipartite graph. Then decide what to
do in the face of cyber-attacks by calculating the minimum
dominance set (MDS) of the attribute attack graph AG which
is composed of the initial attribute node. The resulting mini-
mum dominating node represents a set of key attributes that
cover all atomic attack nodes and can achieve effective cyber
security defenses if these attributes are disabled.

The solution of the optimal linkage processing execu-
tion point is converted into a classic set coverage prob-
lem [31], [32]. Because each initial attribute node in the
attribute attack graph AG can cover one or more atomic attack
nodes, it can be assumed that all m atom attack nodes in the
attribute attack graph G are divided into n subsets [33]. Each
of the n subsets corresponds to a specific initial attribute node.
One corresponds to a specific initial attribute node. The goal
of this paper is to calculate the optimal coverage set of all
atomic attack nodes in the attribute attack graph AG, which
can cover all atomic attack nodes in the attribute attack graph
and has the smallest number of initial attribute nodes.

Take a hypothetical target network as an example, and
regard its corresponding attribute attack graph as a bipartite
graph. As shown in Figure 2-a. The atomic attack node and
the initial attribute node are the most important nodes in
the attack graph, and the consequence attribute node is only
the result of a successful atomic attack. Because the goal of
this article is to calculate the MDS that can cover all atomic
attacks in the initial attribute node-set, all the consequence
attribute nodes in the bipartite graph can be removed. The
bipartite diagram obtained by the above operation is shown
in Figure 2-b. The figure only contains the initial attribute
node, the atomic attack node, and the directed edge from
the former to the latter. The MDS calculated in the resulting
bipartite graph gives the set of the initial attribute nodeswhich
overrides all atomic attacks in the attribute attack graph.

FIGURE 2. Bipartite graphs corresponding to the attribute attack graph.

VOLUME 7, 2019 12061



Q. Li et al.: Complex Attack Linkage Decision-Making in Edge Computing Networks

C. LINKAGE DISPOSITION OPTIMAL STRATEGY SOLUTION
After obtaining the solution for selecting the optimal execu-
tion point of the edge computing network linkage processing,
it is also necessary to solve the optimal strategy selection
problem of linkage processing for the optimal execution
point. From the perspective of network attack and defense,
the attacker’s attack action has certain randomness, so the
generation of security alarm information in the edge comput-
ing network is also random [34], [35]. In this paper, the gen-
eration of attribute attack graphs based on network security
alarms will also be affected by the alarm information. In the
minimal dominance of attribute attack graphs for linkage
handling, the attribute node and its associated attack hazard
have a certain probability distribution.

In order to achieve optimal defense against complex
attacks, it is necessary to select the defense strategy with
the maximal defense benefit. The probability of successful
implementation of the initial attribute node Vattribute and the
resulting overall hazard index distribution are represented by
ppre and upre. The overall hazard index can be obtained by
accumulating the hazards of the initial attribute nodes in the
minimum dominance set of the attribute attack graph. Define
the probability distribution pd and the defense gain ud of
cyber-attack defense strategy accordingly.

Given the minimum dominating set, the probability
distribution of the initial attribute nodes is assumed to be:

pipre= (p
i
pre1 , p

i
pre2 ,L p

i
prem ), 0≤piprej≤1,

m∑
j=1

piprej=1

(1)

The probability distribution of the defense party selecting
the defense strategy is:

pid = (pid1 , p
i
d2 ,L p

i
dn ), 0 ≤ pidk ≤ 1,

n∑
k=1

pidk = 1 (2)

Then the game income of both offense and defense is
expressed as:

pt ipre(p
i
pre, p

i
d ) =

m∑
j

piprej (
n∑
k

pidku
i
pre) (3)

pt id (p
i
pre, p

i
d ) =

n∑
k

pidk (
m∑
j

pipreju
i
d ) (4)

On this basis, the optimal linkage treatment strategy
(pi◦pre, p

i◦
d ) can be obtained by solving the Nash equilibrium

condition. That is, for ∀pid , there is:

pt id (p
i◦
pre, p

i◦
d ) ≥ pt

i
d (p

i◦
pre, p

i
d ) (5)

IV. ATTRIBUTE ATTACK GRAPH CONSTRUCTION BASED
ON ALARM ASSOCIATION AND STATE SPACE REDUCTION
Based on the above observation, this paper proposes that the
edge computing system attack linkage processing decision
model, which is shown in Figure 3. It is based on the attribute

FIGURE 3. Decision-making model of complex attack linkage treatment
strategy.

attack graph. It consists of five parts: trigger condition, strat-
egy decision engine, human-machine interface, strategy tem-
plate library, and strategy execution point.

A. NETWORK ATTACK LINKAGE DISPOSITION
DECISION MODEL
Among them, the triggering condition mainly includes the
linkage intrusion detection alarm information generated
by the edge computing terminal intrusion detection ser-
vice [36], [37]. However, the edge computing network also
involves real-time alarms of the intrusion detection device,
vulnerabilities in the scanner output, and threat informa-
tion provided by the network security official organization
or website [8], [38]. It is an important part of the active
defense of this paper to implement reasonable and optimized
security management measures for each type of attack alarm
information to improve the system security defense capabil-
ity. Therefore, the complex attack linkage decision-making
model proposed in this paper can also use firewall alarms,
IDS alarms, vulnerability information, etc. as strategy trigger
conditions. Referring to the alarm classification information
in Snort User Manual 2.9.9, the designed linkage strategy
decision model covers and includes not only the following
alarm types:

� Login attempt for default username and password
� Network scanning
� Denial of service
� Obtain administrator privileges
� Obtain normal user rights
� Trojan activity
� Buffer overflow
� SQL injection
� Path traversal
� Cross-site scripting
� Configuration error
� Information disclosure
� Boundary conditions are wrong
� Format string
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The strategy template library is used to store the knowledge
of security strategy and is stored by type of trigger condition
and provides input to the policy decision engine. The strategy
decision engine is the heart of the intelligent decision-making
model of the entire linkage strategy. The knowledge in the
strategy template library is invoked and instantiated accord-
ing to the trigger condition. The security linkage strategies
and their combinations are further applied to the attack graph
and assessing the vulnerability of the corresponding system
security. Finally, we get security linkage strategy and its
corresponding system security posture value to the security
administrator [39], [40].

The human-machine interface has two major functions:
i) Responsible for analyzing and confirming the enforce-
ability of the security strategy [41]. The main reason is the
impact of the implementation of the linkage strategy on
the system security vulnerability and the enforceability of
the strategy. ii) Add and modify knowledge in the strategy
template library as needed. The strategy enforcement point
is responsible for implementing the issued security policy,
mainly by modifying the rules of the firewall and the security
isolation device [42]–[44].

The decision-making goal of the linkage disposal strategy
is reflected in the improvement of the system security defense
resistance, that is, the risk of the vulnerability of the edge
computing system, i.e., as a whole this can be significantly
eliminated [45]. To this end, the paper designs a linkage dis-
position strategy decision engine based on the attribute attack
graph, and takes the security impact of the linkage disposition
strategy on the probability of the system’s global vulnerability
being exploited as the decision basis. The engine uses the
alarm information set corresponding to the trigger condi-
tion as input and associates the alarm information with the
attack source and the destination attribute to determine an
attack coverage asset node object, that is, the atomic attack
node of the attribute attack graph. At the same time, taking
the current security configuration information, vulnerability
information and vulnerability utilization policy information
as input, the causal relationship of the alarm information is
determined, thereby constructing an attribute attack graph.
The attribute attack graph state space is further reduced based

on the redundancy decision algorithm. Under the assumption
of the action set of the linkage disposition strategy, the linkage
disposition strategy is determined based on the minimum
dominance set and the game return equilibrium condition.
The linkage disposition strategy decision engine model is
shown in Figure 4.

B. ATTRIBUTE ATTACK GRAPH CONSTRUCTION BASED
ON ALARM ASSOCIATION
Currently, the generation of attribute attack graphs is mainly
based on the method of reasoning. The principle of attribute
attack graph generation based on reasoning is to first define
network topology information, inter-host connection infor-
mation, vulnerability information, and security rules accord-
ing to certain specifications, and describe atomic attacks with
formal rules, then use logical reasoning tools to infer the
entire attack scene to find all attack paths [46]. Currently used
inference tools mainly include attack graph generation tool
MulVAL. In this paper, the edge computing network attack
linkage processing decision algorithm based on the attribute
attack graph is proposed. Firstly, the atomic attack nodes
involved in the network attack event are obtained through
the association of alarm attributes. Secondly, the MulVAL-
based inference algorithm is used to determine the attack-
related attribute nodes. Therefore, the attribute attack graph
for the alarm defense is constructed efficiently. At the same
time, considering the existence of a large number of redun-
dant alarms in the alarm information, the attribute attack
graph faces the problem of space explosion. In this section,
a redundant alarm determination method based on K-means
clustering is proposed to effectively reduce the state space of
the attribute attack graph.

1) ATOMIC ATTACK NODE DETERMINATION
According to the definition of the attribute attack graph,
based on the attribute attack graph construction of the alarm
association, determining the atomic attack node becomes the
first step. For the network attack alarm information generated
in a specific network, the atomic attack node connection
graph Gatom = (Vatom,Eatom) is constructed to represent
the relationship between the intrusion source host and the

FIGURE 4. The model of linkage disposal strategy decision engine.
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victim host, where Vatom represents the set of network host
nodes involved in the alarm information, and Eatom represents
the set of inter-host attack events involved in the alert. The
host node set Vatom contains two kinds of nodes that one is
the intrusion source host node, and the other is the victim host
node. Suppose the intrusion source host node A invades the
attacked host node C by a certain attack means, and there is
an edge in the edge set E , and vaatom points to vcatom.

As shown in Figure 5, the white hollow dot is the host
node for the attack target, and the black solid dot is the host
node of the intrusion source. The larger white hollow dots in
the middle gather scattered edges connecting different nodes,
indicating that multiple intrusion source host nodes invade
the target host node through the network attack. There are
many densely concentrated boundaries at the bottom of the
figure, and one end of these edges originates from the same
host node, indicating that there are multiple network security
alarms between the host node and the terminal node.

FIGURE 5. Schematic diagram of alarm correlation.

Assume that the connection diagram of the atomic attack
node is constructed as Gatom = (Vatom,Eatom), Vatom ={
v1atom, v2atom,L, vnatom

}
,
the adjacency matrix is defined as:

Ac =

ac11 · · · ac1n
...

. . .
...

acn1 · · · acnn

 (6)

The number of edges between nodes in Eatom is also the
number of alarm events. If there are n edges in viatom to vjatom,
then acij = n.

2) ATTRIBUTE ATTACK GRAPH GENERATION
Figure 6 shows the connection between the atomic attack
node and the attribute node in the alarm event log for a period
of time. The black circle indicates the attribute node, and the
white circle indicates the atomic attack node. The thickness
of the black line between the connected atomic node and
the attribute node indicates the frequency of the associated

FIGURE 6. Schematic diagram of the node attribute determination of the
attribute attack graph.

alarm event. The thicker the black line denotes that the more
times the attack event alarm is generated.

Based on the above analysis, this section gives the follow-
ing edge calculation network attribute attack graph generation
algorithm based on alarm correlation:
Step 1: input Vatom set, Eatom set, vulnerable point set Vulf ,

and attack hazard set Attack .
Step 2: Add Vatom to the initial node status queue, marked

as ‘‘not traversed’’.
Step 3: If the state queue still has a state node vi that is not

traversed, find the state node vi that is not traversed. Obtain
the corresponding tuple of the attack source node set V source

i
and the victim host node-set V attack

i from them Eatom. Then
the state node vi is marked as ‘‘self-traversed’’ and proceeds
to the next step. Otherwise, step (7) is directly performed.
Step 4: For the V attack

i set, if there is a host node that is not
traversed, the outbound edge corresponding to the vi node in
Eatom, that is, the event hazard from the vi-initiated attack is
marked as the consequence attribute node V post

i . At the same
time, the vulnerability list Vulfi of the host node vi is obtained.
The MulVAL-based inference algorithm determines the vul-
nerability list of the nodes used to cause V post

i . And record
the host node as the initial attribute node V pre

i . Then add an
attribute node set V post

i between vi and V attack
i . Construct a

new edge set of vi → V post
i → V attack

i . At the same time,
construct the new premise attribute edge set off V pre

i → vi,
and proceed to the next step. Otherwise, repeat step (3).
Step 5: For the V source

i set, if there is a host node that is not
traversed, then match inbound edge corresponding to a node
vi in Eatom, that is, the harm of the event that A is attacked,
to the initial attribute node V pre

i traversed in the previous step.
If there is the same node, the corresponding attack event in
V source
i causes the corresponding initial attribute node inV pre

i .
Then delete the corresponding initial attribute node in V pre

i ,
delete the corresponding edge V pre

i → vi, and proceed to the
next step.
Step 6: Establish a complete attribute attack graph based

on the causal logical reasoning of the attack event.
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3) DEGREE CALCULATION OF NODES
In the attribute attack graph, the degree of the node indicates
how active a node is. Taking the host node as an example,
the degree of the node indicates the number of alarm events
that the host is attacked or launched. The outbound degree of
a node indicates the number of alarm events that the node
is used to implement the attack. The ingress degree of a
node indicates the number of alarms generated by the attack
that the node is subjected to, and the degree of the node is
calculated as follows:

The outbound degree of the node vi is:

di =
n∑
j=1

acij (7)

The ingress degree of the node is:

d
′

i =

n∑
j=1

acji (8)

According to the above explanation, in the actual situation
that there are many redundant alarms in the network, another
defect of the generated attribute attack graph is that the
monotonic hypothesis is not utilized, and it is easy to cause
more attack paths and wrong attack paths in the attack graph,
which makes the number of nodes large, and also causes the
state space explosion problem in the attribute attack graph
generation process.

C. ATTRIBUTE ATTACK GRAPH BASED ON REDUNDANT
ALARM CLUSTERING
According to the attribute attack graph construction method
proposed in Section 3, this paper firstly determines the atomic
attack node by the source and destination host of the network
attack alarm event and builds the set Eatom based on the set
of alarm events between the atomic attack nodes. However,
in the event network attack and defense confrontation, multi-
ple security alarms may be generated for the same security
device or different security devices at the events from the
same source or destination network. This makes the scale of
the alarm in the real network environment extremely large,
which also causes the problem of the attribute attack graph
construction method to explode in the state space. There are
a lot of redundant edges in the set Eatom.
In response to the above problems, it is necessary to iden-

tify and reduce the number of redundant alarms in the edge
computing network as much as possible. To this end, this
section uses the k-means clustering method to cluster the
alarm event set to obtain several alarm event subcategories.
For the subsequent decision strategy generation, each cluster
subclass is compressed and merged to reduce the redundant
edge of the attribute attack graph. The overall process flow
framework is shown in Figure 7.

Since we need to examine the distance between each alarm
event during the clustering process, we first need to vectorize
the alarm events. For a typical network security event alarm
log, the information fields usually include the generated

FIGURE 7. The overall process of the redundant alarm processing.

alarm time, the signature ID, the alarm priority, the protocol,
the source IP address, the source port, the destination IP
address, and the destination port. Because there are many
information fields involved, and the alarm formats of differ-
ent devices and different manufacturers are not consistent,
the advanced log formats of various devices are described as
follows.

For the field of alarm priority, alarm time, etc., which
can express its own degree or trend, you can directly use its
original value information as the feature vector. For a field
that does not have its own size, such as attack type, source IP,
and destination IP, you can classify and then vectorize the
attributes of the field. Taking the attack type as an example,
we classify according to the possible attack scenarios, and
sort according to the degree of harm, and for IP, divide the
vector according to the IP address range. In summary, the goal
is to convert the original alarm event record into a vector
form that can be calculated. The conversion process is shown
in Figure 8.

In order to effectively classify the original alarm events,
the K-means clustering method is first used to cluster the
original alarm event sets. Cluster analysis is a process of
dividing a large data set into multiple subsets. Each subclass
obtained by clustering is similar to each other, but the sub-
classes are different from each other. The processing flow
of the K-means algorithm is to randomly select k objects in
the original alarm event data set as the center of a cluster.
Then, for all remaining alarm events, calculate the distance
from other alarm events to the cluster center, and divide each
alarm event into the cluster class closest to it according to the
obtained distance. Then, the K-means algorithm iteratively
improves intra-cluster errors. For each cluster, use all alarm
events in the cluster to calculate a newmean, then use the new
mean like the new cluster center, and reassign all objects to
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FIGURE 8. Vectorization of alarm events.

the new closest cluster class. Iterate until the error within the
cluster class is less than a given value or no longer changes.
The specific clustering process is shown in Figure 9.

FIGURE 9. Alarm event clustering process.

V. OPTIMAL LINKAGE DISPOSITION STRATEGY
DECISION ALGORITHM IN EDGE
COMPUTING NETWORKS
After completing the attribute attack graph construction,
which is based on the alarm association, the state space
reduction and the redundant alarm determination, this section

Algorithm 1 Find-Strategy Algorithm
Input: AG = (V ,E)
Output: (pi◦pre, p

i◦
d )

1: Start
2: 〈V ,E〉 ← MST (AG)

// Identify all nodes and edges in an AG using the
minimum spanning tree algorithm

3: for all v ∈ V do
4: if (id(v) = 0 ∧ od(v) ≥ 1)
5: Mark node v as the initial attribute node
6: else if (id(u) ≥ 1 ∧ od(u) = 1)
7: Mark node v as the consequence attribute node
8: else
9: PostCondan
10: end if
11: end for
12: for all v ∈ Initial attribute node set do
13: ci← o(v)
14: end for
15: Calculated dominating set C = V n

i=1ci; where
n = |Initial attribute node|

16: MDS(AG)←GREEDY-SET-COVER(Exploit, C)
17: for all mds ∈ MDS(AG)
18: Calculate pt ipre, pt

i
d

19: Solve (pi◦pre, p
i◦
d )

20: end for
21: Output (p◦pre, p

◦
d )

22: end

proposes an algorithm for calculating the optimal linkage
processing, as shown in Algorithm 1. First, all the nodes in
the figure are identified and classified into the initial attribute
node set, the atomic attack node set, and the consequence
attribute node set according to the out-degree and in-degree
obtained by the FIND-STRATEGYalgorithm inAlgorithm 1.
On this basis, through the GREEDY-SET-COVER algorithm
shown in Algorithm 2, find a set which covers all atomic
attack nodes of the attack graph AG and has the minimum
number of initial attribute nodes, which is the final required
MDS set. Finally, the attack and defense income calculation
is performed for each subset of the MDS set, and the optimal
defense strategy is solved by Nash equilibrium conditions.

For the attribute attack graph AG = (V ,E) with
‘‘m’’ atomic attack nodes and ‘‘n’’ initial attribute nodes,
the time complexity of the GREEDY-SET-COVER algorithm
used in this paper is O (mm). In general, the collection
coverage problem is an optimization problem.

VI. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT SETTINGS
This section performs the analysis using the network environ-
ment shown in Figure 10. Host3 is the attacker’s target host,
and theMysql database service running on it is a key resource.
The attacker is a malicious entity whose goal is to gain root
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Algorithm 2 Greedy-Set-Cover Algorithm
Input: Collection cluster S(i) = Si(1 ≤ i ≤ n) is a subset

of the atomic attack node setε
Output: Coverage set D
1: Start
2: U ← ε

3: D← ∅
4: while U 6= ∅do
5: Select S(j) ∈ S that maximizes |S (j) ∩ U | where

j ≤ n
6: U − S(j)
7: D = D ∪ S(j)
8: S(i) = S(i)− S(j), 1 ≤ i ≤ n
9: end while
10: return D
11: end

FIGURE 10. Experimental environment settings.

privileges ofHost3. The firewall separates the target network
from the internet. The firewall configuration in the network
topology is shown in Table 2.

TABLE 2. Network firewall access control pules.

Table 3 shows the details of the utilization information
of the vulnerable points on each host node in the network.
Among them, the information of the vulnerability is from the
NVD database. The external network firewall in the network
only allows hosts on the external network to access services
on Host 0. Connections to any other host will be blocked.

TABLE 3. Utilization information of the vulnerable points.

The intranet host only allows communication according to the
access control rules in Table 2. ALL means that the source
host can access all services on the destination host. NONE
means that the source host will be blocked from accessing
any service of the destination host

B. ANALYSIS OF EXPERIMENTAL RESULTS
1) ANALYSIS OF REDUNDANT ALARM CLUSTERING RESULTS
In order to verify the effectiveness of the redundant alarm
clustering compression method proposed in this paper,
the alarm log data of Fujian Electric Power Company is
used for analysis. The log size is 26.8M and contains
469,010 records. The log format of this type is shown
in Table 4.

TABLE 4. Alarm log format.

The K-means clusteringmethod is used to cluster the alarm
data. The difference between different attributes may be very
large, and they may be measured by different units. In order
to eliminate the influence of the metric on the distance,
take 8 features for each record in the alarm log: Timestamp,
Description ID, Priority, Protocol, SrcIP, SrcPort, DstIP, Dst-
Port, then vectorize and standardize the records. The result of
partial data being vectorized is shown in Table 5.

We utilized the K-means method for clustering on the dig-
itized and normalized feature set. Moreover, we reduced and
visualized the clustering results using the t-SNEmethod [47],
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TABLE 5. The result of partial alarm data being vectorized.

FIGURE 11. Alarm data clustering results.

which is currently the best data reduction and visualization
method. Figure 11 shows that the clustering effect is efficient
after dimension reduction.

By performing k-means clustering, the relevant alarm
information is gathered into the same cluster subclass, and

the useless redundant alarm records are also grouped together.
On this basis, we compress and merge the alarm cluster sub-
classes. According to the experimental verification of the traf-
fic data of Fujian Electric Power Company in Figure 12 and
Figure 13, the overall redundant alarm compression rate can
reach more than 97.2%.

2) ANALYSIS OF THE RESULTS OF LINKAGE EXECUTION
OPTIMAL EXECUTION POINT DECISION
The attribute attack map generated according to the network
topology as shown in Figure10 and the access control rules as
shown in the table is as shown in Figure 14. The atomic attack
nodes are represented by ellipses, the initial attribute nodes
are represented by rectangles, and the consequence attribute
nodes are represented by plain text. The premise attribute
node and the consequence attribute node are connected ellip-
tically between each atomic attack. From Figure 14, there are
a total of 17 atomic attack nodes in the figure. If an atomic
attack is to be successfully implemented, its premise attribute
nodes must all be satisfied. The consequence attribute node
cannot be removed unless the actual cause (such as vulnera-
bility, unnecessary service/open port) that caused it has been
removed from the network. On the other hand, the initial

FIGURE 12. Alarm data aggregation compression result (a).
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FIGURE 13. Alarm data aggregation compression result (b).

FIGURE 14. Generated attribute attack graph.

attribute node can be removed independently when the
linkage decision is made.

By solving the minimum dominance set, the minimum
dominance set produced by the above attribute attack
graph is:

MDS = {Host0, IIS(0), ftp(0), ftp(0, 1), ssh(0, 1),

squid − proxy(0, 3), net − bios− ssn(0, 2),

LICQ(0, 3),LICQ(0, 3), squid − proxy(1, 3),

netbios− ssn(1, 2), ftp(2, 1), ssh(2, 1),

squid − proxy(2, 3),LICQ(2, 3)}

Prioritizing the destruction of one or more initial attribute
nodes prevents network attacks that require them as a pre-
requisite, thereby preventing critical resources from being

compromised. It is worth noting that the security adminis-
trator must consider the cost of these initial conditions when
making decisions.

3) ANALYSIS OF THE EFFECTIVENESS OF LINKAGE
DISPOSAL STRATEGY
To demonstrate the effectiveness of the proposed method
in defense, we analyze the proposed method based on two
aspects including, the intrusion success probability and the
intrusion time test. Figure 15 shows the comparison results
of the success rate of the intrusion edge computing network
using the proposed method, the Bayesian network method
and game method as the intrusion time increases.

Figure 15 shows that with the gradual increase of time,
the successful intrusion rate of the edge computing network is
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FIGURE 15. Comparison of the probability of successful invasion of three
methods.

gradually increased after adopting three methods. However,
the successful intrusion rate curve of the edge computing
network after using this method is significantly lower than the
other two methods, and it is always lower than the Bayesian
network method and the game method, which indicates that
the method can effectively prevent the intrusion behavior.

Figure 16 shows the comparison results of the success-
ful intrusion rate of the edge computing network using the
proposed method, the Bayesian network method and game
method as the intrusion rate increases. It depicts that with
the gradual increase of the intrusion rate, the successful
intrusion rate of the edge computing network is gradually
increased after using the three methods. But the intrusion
success rate curve of this method is the smallest, which is
significantly lower than the Bayesian networkmethod and the
game method. .It shows that the method can still maintain a
high defense capability when the intrusion rate is gradually
increased and the number of intrusion behaviors is gradually
increasing.

FIGURE 16. Comparison of the success rates of the three methods when
the intrusion rate is different.

The significance of the intrusion time test is that the shorter
the intrusion time, the more effective the generated attack and

defense map is when the intruder invades the edge computing
network. Figure 17 depicts the variation of the intrusion time
with system time after using the proposed method, Bayesian
method and game method.

FIGURE 17. The variation of the intrusion time with system time after
using three methods.

Figure 17 shows that, after using this method, the edge
computing network is invaded for the shortest time, which
is significantly lower than the Bayesian network method and
game method. It shows that the method is the most difficult
to break and the best defensive performance.

VII. CONCLUSION
To realize the rapid response and linkage processing of mas-
sive attack events in the edge computing network system
environment, this paper studies the complex attack link-
age decision-making method in edge computing networks
based on the attribute attack graph dominating set theory.
Firstly, the linkage processing model of the edge comput-
ing network system based on the attribute attack graph is
proposed. The attribute attack graph corresponding to the
target network is established through the alarm association.
The problem is transformed into solving the initial attribute
node set minimum dominance set (MDS) to calculate the
minimum network defense execution point set. The proposed
method can realize the whole network linkage processing
based on the minimum-scale node defense and can analyze
the best security defense target. At the same time, for the
problem of attribute attack graph space explosion caused
by redundant alarm, this paper proposes a redundant alarm
handling method based on k-means clustering, which reduces
the access space of the attribute attack graph node. Finally,
the simulation results confirm that the linkage decision algo-
rithm based on attribute attack graph can perform targeted
defense on the initial attribute nodes. Thus, it provides the
minimum cost defense scheme for complex attacks, and gives
a basis for security management personnel to evaluate and
control the network security risks. Network security admin-
istrators only need to pay attention to a small part of the initial
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set of attribute nodes to achieve efficient linkage handling of
network attacks. The method in this paper is also applicable
to the calculation of network attack linkage disposition deci-
sions of other interconnected systems.
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