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ABSTRACT Nodes in the wireless sensor networks are battery operated, and thus, the efficient use of
the node’s energy during wireless communication is pivotal for the long battery life. This paper addresses
the challenges in energy-efficient data aggregation and transmission scheduling for each node by using
time division multiple access (TDMA). We introduce multi-channel TDMA scheduling algorithms with
the objective of minimizing the total energy consumption in the network. The proposed algorithms utilize
multiple radio channels to bestow efficient scheduling while eliminating collisions and overhearing. First,
we formulate an integer linear programming (ILP) algorithm that finds the minimum bound for the network’s
energy consumption. Then, we propose a near-optimal heuristic algorithm based on backtracking, which
uses memoization to spurn the suboptimal schedules. Subsequently, we propose a computationally efficient
heuristic algorithm by using Langford subset generation. The algorithm reduces the energy consumption in
each timeslot while avoiding revisiting the same timeslot. We conducted extensive simulations to evaluate
three proposed algorithms. The simulation results demonstrate that the proposed heuristic algorithms
provide performance comparable to the optimum results of the ILP algorithm and reduce the magnitude
of computation time.

INDEX TERMS Wireless sensor network, Internet of Things, meter reading, scheduling algorithm.

I. INTRODUCTION
Wireless sensor networks are changing the traditional way of
data gathering [1]. Traditional devices can be replaced by the
battery powered wireless sensors [2]. They capture data from
the environment and then transmit the captured data to the
sink node through multi-hop communication. The sink node
accumulates the data from all the nodes and forwards to the
control server via a wire-line network for further processing
and analysis. In periodic data gathering applications such
as automatic metering infrastructure (AMI), the nodes wake
up and capture the data in each period [3]. Additionally,
the nodes are expected to function continuously for the long
time (2-10 years). Hence, in the case of drainage, the battery is
replaced. However, each of the WSN nodes should consume
minimum energy so that the batteries last for a longer period
of time, in order to minimize the number of replacements.
Moreover, all the nodes in the network should also not be
drained at the same time since the network administrator
cannot replace them simultaneously.

Nodes consume energy during sensing, computation, and
communication. In this paper, we focus only on energy con-
sumed in the communication process. Tominimize the energy
consumption in the communication, WSN protocols should
address the following problems [4]:

A. COLLISIONS
Collision raises extra reception cost in the destination node
and unnecessary retransmission cost in the source node. Col-
lisions can be classified into two types. The first type is the
inter-network collisions, which occur when a node receives
the packets concurrently from two or more transmitters of
the same network. Collisions of this type can be avoided by
deterministic scheduling such as TDMA timeslot assignment.
In addition, such collisions can be also avoided when the con-
current communications use different radio frequency (RF)
channels. The second type is the intra-network collisions,
which occur due to interference from the other networks or
devices using the same RF channel. Use of carrier sensing at
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the start of the TDMA timeslot before transmitting can help
eliminate collisions of this category.

B. OVERHEARING
Unicast packets are transmitted to a single destination. Due
to the broadcast nature of the wireless radio, however, all
one-hop neighbors (within wireless range) of the source node
will hear the transmitted packet if their transceiver is in
receiving mode. The nodes, with the exception of the tar-
get receivers, drop the overheard packets. The overhearing
problem can be alleviated by switching off the non-targeted
nodes’ transceivers. This can reduce a significant portion
of the energy consumption [5]. The TDMA based protocol
can serve as an effective solution for eliminating overhearing
by assigning timeslots for transmitting and receiving data
packets. However, TDMA still cannot eliminate overhearing
during waiting in the idle mode between receiving timeslots
and the transmitting timeslot. Each node can switch off its
transceiver once its transmission in the assigned timeslot is
completed.

C. PROTOCOL OVERHEAD
Each of the physical, medium access control (MAC), and
network layers append their header as well as trailer informa-
tion [6] in every transmitted packet. In the case of secure com-
munication, security protocol further augments the size of the
packet substantially [7]. In the AMI applications, the size of
the sensing data is often small. Thus, the protocol overhead
is usually larger than the data generated by the sensor node.
Data aggregation [8] can reduce the protocol overhead with
respect to per packet data transmission and the number of
transmitted packets. That results in reducing the total energy
consumption in the network. Therefore, we propose a new
aggregation protocol. In the proposed protocol, each node
appends the data received from its subtrees with its own
sensing data and construct a single packet, which increases
the size.

D. IDLE LISTENING
A node in the idle mode is ready to receive but not currently
receiving. Such a node consumes as much energy as a node
that is receiving a packet [9]. Therefore, switching off the
transceiver during the idle mode is quite essential to reduce
unnecessary energy consumption. Since the transceiver’s
startup (sleep to active) energy is high [9], its frequency
should be minimal. In the proposed convergence network for
theAMI, each sensor nodewakes up to receive the data packet
from its child nodes. Since leaf nodes do not receive data from
any nodes, they directly wake up at their transmission times-
lot. Nodes other than leaf nodes, after receiving, subsequently
aggregate the received data and also append their own sensing
data. After finishing the transmission of the final aggregated
packet, the nodes immediately switch off their transceivers.
The above process is repeated in each data collection period.

As a result, the proposed algorithms reduce the
energy consumption of the transceiver by addressing the

above problems. In this paper, we propose scheduling algo-
rithms that assign a timeslot andRF channel to each node. The
algorithms take the aggregation spanning tree as the input and
produce a contention-free/TDMA multi-channel schedule.
In the proposed algorithms, a data packet is aggregated in
each node and forwarded to the sink node in a multi-hop
fashion. The algorithms are designed for energy efficient
data gathering applications and thus enable the networks to
prolong the battery replacement time. The main contributions
of this paper are as follows:
• Conventional TDMA MAC protocols require frequent
re-synchronization, which is a noteworthy battery drain-
ing operation. Nodes experience time drift due to fre-
quency offset between clocks, if not re-synchronized.
The proposed protocol defines a new TDMA slot
that does not need frequent re-synchronization since
it uses the synchronization margin, as explained in
section III.A.

• In section III.B, this paper defines a new aggrega-
tion protocol, that reduces the protocol overhead, while
ensuring the raw data generated by each sensor node is
delivered to the sink node.

• We devise an integer linear programming (ILP) formu-
lation that determines an optimum solution for the data
gathering from all the wireless sensor nodes in a period.
The objective of the ILP equations are to minimize
energy consumption. This is explained in section III.D.

• Calculating an ILP solution requires high computational
power for large networks. Therefore, we present heuris-
tic algorithms: First a memoization based backtracking
algorithm, which is nearly as optimal as the ILP solution.
Later we present a Langford-subset based algorithm,
which is best suited for the sensor network applications
due to high computational power. Section IV describes
the heuristic algorithms in detail.

• We analyze the bounds of computational complexity for
the ILP solution (see section III.E) as well as for both
the heuristic algorithms (see section IV).

Section V.A outlines setup and parameters used in the sim-
ulation. Section V.B shows extensive simulations to analyze
computational complexity, energy consumption and latency
of the network. Additionally, simulations also present the
effectiveness of aggregation protocol. To end, Section VI dis-
cusses the conclusion and future work on TDMA scheduling
for periodic data gathering applications.

II. RELATED WORK
TDMA scheduling with data aggregation has been studied
by [8] and [10]–[14]. Upadhyayula et al. [8] proposed a
tree-based scheduling protocol with the known compression
(aggregation) factor γ or data growth factor α(= 1 − γ ).
Their protocol chooses the timeslot and code division mul-
tiple access (CDMA) code for transmission of each node’s
sensing data. The authors examined their protocol for three
different aggregation ratios (0%, 50% and 100%) by using
single channel. Our proposed protocol, on the other hand,
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presents scheduling algorithms that usemultiple RF channels.
Incel et al. [10] classified the data gathering schemes as raw
data forwarding and aggregated forwarding. The authors have
proposed multi-channel scheduling algorithms based on two
aggregation protocols, one-shot raw-data convergecast and
periodic aggregated convergecast. In the raw data forwarding,
each node’s generated data is forwarded in an individual
packet to the sink node, without any aggregation. On the other
hand, in the periodic aggregated convergecast, each node
generates the same size data after aggregating the data from
its child nodes by using spatial correlation [15]. The protocol
needs multiple data gathering periods to refresh the data from
all the nodes. However, our target application requires raw
sensing data, thus cannot utilize the spatial correlation based
aggregated convergecasting.

Minimum latency scheduling with the latency bound of
O(24D + 61 + 16) is proposed by Yu et al. [11], where
D is the diameter of the network and 1 is the maximum
degree of the nodes in the network. The authors have assumed
in-network data aggregation, which is same as periodic aggre-
gated forwarding [10]. They used only a single channel,
unlike our proposed algorithms of multiple RF channels.
Similar to [11], Erzin and Pyatkin [12] have also pro-
posed in-network aggregation scheduling using a single chan-
nel. However, the authors have considered only the special
cases of rectangular, triangular, and hexagonal grid networks.
Annamalai et al. [13] have proposed an in-network aggre-
gation heuristic algorithm, called the convergecasting tree
construction and channel allocation algorithm (CTCCAA),
which schedules collision-free data gathering. For the data
collection from all the nodes within a period itself, the authors
have allocated the parent node with a higher timeslot than
the timeslots of the child nodes. The authors have used direct
sequence spread spectrum (DSSS) codes instead of multiple
RF channels. Therefore, the CTCCAA can be used in our
target application with the framework changes. By using RF
channels instead of DSSS code and data-appending forward-
ing instead of in-network aggregation, we have implemented
the CTCCAA to compare the results with our proposed
algorithms.

Akila et al. [14] presented an efficient TDMA scheduling
algorithm by reducing the number of transmitted packets
using merging of the same destination packets. Nodes con-
tinue to merge until the size of appended packet reaches
the maximum size or maximum waiting is elapsed. Though,
the merge operation is performed only for non-real time
packets. Since, all the packets are destined to the same
destination (sink node) and sensing data is not real time
data. This algorithm is best fit for performance comparison.
However, we have tailored the algorithm to use multiple
channels and denoted by TDMA scheduling based on data
merging (TSDM).

In our previouswork, we have proposed TDMAscheduling
algorithmswith aggregation [16]–[18]. In [16], we introduced
binary linear programming (BLP) formulation that schedules
data forwarding with multiple RF channels, in which nodes

wake up simultaneously, receive, then transmit their aggre-
gated packet, and switch back to sleep mode. In [17], we for-
mulated an ILP algorithm for the data aggregation scheduling
in periodic data gathering to minimize energy consumption.
The ILP algorithm uses multiple RF channels for concurrent
transmissions in the wireless interference range. While the
ILP formulation provides the optimum solution, the com-
plexity grows rapidly with the size of the network. Hence,
we proposed a heuristic algorithm, linear time scheduling
algorithm (LTSA) in [18]. The LTSA uses the number of
hops to the sink node as the cost metric. Nodes in the queue
are stored based on the hop count, hence the computational
complexity of the LTSA is linear. The proposed paper is an
extension of the ILP algorithm introduced in [17]. It enhances
the ILP algorithm with a realistic energy consumption model.
In this paper, we provide proof of the ILP algorithm attaining
the lower bound of energy consumption. In addition, we pro-
pose two heuristic algorithms: the first one is aimed for a
suboptimal solution close to the ILP algorithm, while the sec-
ond one is targeted for the low computational complexity.
We evaluate the theoretical upper bounds of computational
complexity for both the algorithms, as well as compare their
efficiency using simulation results.

III. PRELIMINARY
A. TIMESLOT INFORMATION
In the proposed method, the time division multiple
access (TDMA) protocol divides the time frame of a data
gathering period into a set of short timeslots of fixed length.
Each node of the network is assigned a timeslot and it
periodically transmits an aggregated data packet to the parent
node in the assigned timeslot.

FIGURE 1. Division of time frame into timeslots, and the Tx and Rx’s
operation modes for a timeslot.

As shown in Fig. 1, the similar timeslot is used for the
Tx operation in the transmitting node, while it is used for
the Rx operation in the corresponding receiving (parent)
node. The timeslot begins with a channel switch time, which
is the short time reserved for switching the channel to a
new channel allocated to the transmission. In the channel
switch time, a device can neither transmit nor receive any
packet. In addition to the channel switch time, Tx operation
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is comprised of synchronization margin time (Tsync), carrier
sensing time (CST), Tx data interval (time required to trans-
mit themaximum size data packet), and RxAck interval (time
required to receive an acknowledgment packet back from
parent).

The synchronization margin time accounts for the fact that
two communicating nodes may not be absolutely synchro-
nized in time due to clock offset between them.

The receiver node can receive data; however, the transmit-
ter does not transmit in Tsync. As a result, even if the TDMA
protocol requires a tight synchronization, the proposed pro-
tocol can sustain up to 3× synchronization-margin

2 time synchro-
nization error [19], which decreases the need for frequent
re-synchronization.

In the CST, the transmitting node senses the RF channel
condition by detecting radio signals to avoid the packet colli-
sion from other networks in the vicinity. If the node detects an
on-going communication (medium busy), it does not transmit
the packet in the given period. Similar to the synchronization
margin, the receiving node can receive the packet in the CST
as well.

On the other hand, in the Rx operation, the channel switch
time is followed by Rx data interval (for receiving maximum
size data packet and also for compensating the synchroniza-
tion margin time in the Tx node), interframe space (IFS), and
Tx Ack interval (for transmitting an acknowledgment). The
receiver node switches to receivingmode and ready to receive
just after channel switch time. Thus, it can receive data at
any point in the Rx data interval time. Based on the current
time offset between the transmitting node and the receiving
node, synchronization margin time is automatically adjusted
in the Rx data interval (may split in two parts, one at the start
and another at the end). The IFS is the time delay required
between the end of packet transmission and the start of the
acknowledgment transmission. This includes packet process-
ing latency in the physical andMAC layers as well as channel
sensing and signal propagation delay. Latency is measured
from the time of the very first leaf node’s transmission to the
time of the sink node’s last child’s transmission.

B. DATA-APPENDING FORWARDING
Incel et al. [10] discussed aggregation protocols for two
extreme cases of no data compression (raw-data forwarding)
and full data compression (aggregated forwarding). The raw
data forwarding relays data packets generated by each node
individually. In contrast, in aggregated forwarding, the root
node aggregates the data from each node in the subtree into
the same size packet. Then it sends only one aggregated
packet from the subtree’s root node. The aggregated forward-
ing is applied when the data have a strong spatial correla-
tion [15] or the goal is to gather summarized information,
such as the maximum, minimum, or average. In this paper,
we propose a new aggregation protocol. In the proposed
protocol, the root node of each subtree appends the sens-
ing data received from each node in the subtree with its
own data.

FIGURE 2. The number of packet transmissions for each node: (a) when
raw-data forwarding is used, (b) when the proposed periodic aggregation
is used.

In this paper, we consider AMI networks, where the indi-
vidual sensing data is small in size. In general, it is well
known that the transmission accounts for a substantially
larger portion of the energy consumption than reception or
data processing energy [9]. Fig. 2 compares the number of
transmit packets for two aggregation algorithms. Fig. 2(a)
illustrates a raw-data forwarding aggregation and Fig. 2(b)
shows the proposed data-appending forwarding aggregation.
In Fig. 2(a), each node’s sensing data is transmitted in an
individual packet. In the given example, node 1 transmits
6 packets. In contrast, in Fig. 2(b), node 1 aggregates the data
from all the nodes in its subtree and transmits only one aggre-
gated packet. While the size of aggregated packet increases
with the number of nodes, it can still be transmitted in the
Tx data interval defined in Fig. 1. The proposed aggregation,
therefore, can eliminate the header overhead for 5 packets
in Fig. 2(b) for node 1.

In the proposed protocol, a routing protocol [20] allocates
the parent node, such that it satisfies the following constraints,
• Let each node generate a sensing data of size k, and
the size of the header is h. Table 1. Specify the values
used for all the parameters used in the paper. Then the
total data size of an aggregated packet for any node v is
computed by Eq. (1).

dataTxv = (h+ k)+
∑
∀ node∈ subtree(v)

k (1)

• As expressed in Eq. (2), the size of the aggregated
packet should not exceed the maximum packet size L,
which can be transmitted in the Tx Data interval of one
timeslot.

dataTxv ≤ L (2)

For example, Node 5 and Node 6 in the Fig. 2(b) transmit
data of size h + k, which are received by Node 3. After
aggregation at Node 3, the size of data transmitted by it to
the Node 1 becomes h + 3k. Similarly, Node 1 transmits a
data of size h+6k to the sink node, which should be less than
or equal to L.

C. SENSOR NETWORK MODEL
This section describes the network topology considered in
this paper. The network consists of N homogenous wire-
less sensor nodes distributed randomly over a target area.
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TABLE 1. Simulation parameters.

Each WSN node can communicate with the other nodes in
the wireless range. Sensors are equipped with a battery of
ETotal initial energy. The nodes attempt to extend its battery
life by consuming minimum energy from ETotal in each data
gathering period. Hence, the proposed algorithms determine
the transmission schedule of timeslot and RF channel for the
minimum energy consumption in the network.

NETWORK ARCHITECTURE
In this paper, WSN is represented by a directed graph G =
(V,E). Here, V represents the set of N wireless sensor nodes
including the sink node. Each sensor node vi, except the sink
node vs, periodically generates data of size k. E is the set
of directed edges (vi, vj), where vi is the child node and vj
the parent node. Direction of the edge vi → vj denotes
the direction of the data forwarding. The edges constitute
a data forwarding spanning tree with the sink node as root.
We assume that the industrial, scientific, and medical (ISM)
band supports multiple radio frequencies for the concurrent
communications without interference. Assigning RF chan-
nels to a set of concurrent communications is NP-Hard [21].
Hence, the proposed protocols assume that the network is
available with the maximum of S RF channels.

In the proposed protocol each node vi wakes up at the
first of its children’s timeslot to receive data and switch
off the transceiver after its transmission timeslot. How-
ever, if any node does not have children then, it will wake
up directly in its timeslot. The proposed scheduling algo-
rithm allocates the timeslots such that the network con-
sumes the minimum energy in one period of data collection.

FIGURE 3. Routing graph of a network with 25 sensor nodes generated by
Wiser simulator.

Additionally, for each node, it also determines the RF channel
used for transmission. Whenever a parent node vj wants to
receive the data from the child node vi, vj switches its channel
to vi’s allocated RF channel at vi’s timeslot. An example
directed graph G = (V,E) of 25 nodes network is illus-
trated in Fig. 3. We assume that the sink node possesses the
routing information and executes the scheduling algorithms.
The algorithms determine the schedule of the timeslot and RF
channel for each node. Afterwards, the sink node broadcasts
the schedule and each node stores the schedules of itself and
its child nodes.

D. INTEGER LINEAR PROGRAMMING (ILP) ALGORITHM
In the proposed protocol, each sensor node vi is entailed
to receive data from vi’s all child nodes before transmitting
to vi’s parent node. Hence, node vi wakes up early enough to
receive the data from its earliest timeslot child node. vi then
receives from the other child nodes one at a time or wait in
the idle mode till its’ transmission timeslot. Once the data is
received from all the child node, vi aggregate the received
data with its own data. It then transmits the aggregated data
packet to its parent node in its allocated timeslot using the
allocated RF channel. Multiple pairs of nodes can communi-
cate concurrently in the same timeslot, if they use different RF
channels. Concurrent communication minimizes the latency
of data collection as well as the idle waiting time.

PROBLEM FORMULATION
The objective of the proposed integer linear program-
ming (ILP) formulation is to minimize the sum of energy con-
sumption of each node in the network. ILP algorithm deduces
a set of tuples,

(
Tv1 ,Cv1

)
,
(
Tv2 ,Cv2

)
, . . . , (TvN ,CvN ) for

each of N nodes in the directed graph G = (V,E). Here, Tvi is
the timeslot and Cvi is the RF channel allocated to node vi for
data transmission to its parent.
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In the beginning of each transmission, the transmitter stays
in the idle mode for synchronization margin time (Tsync)
and CST. After that the transmitter sends the aggregated
data packet to the receiver and receives an acknowledg-
ment (Ack) packet back from the receiver. Thus, the total
energy consumed by transmitting node v can be expressed
by Eq. (3).

ETxv = Tsync × EIdle + dataTxv × ETx + dataAck × ERx

(3)

In the Eq. (3), EIdle is the energy consumed by the transceiver
in the idle mode (transceiver is in receive mode and waiting
to receive data but not receiving) in unit time.

ETx and ERx are the energy consumed by the transceiver to
transmit and receive one bit, respectively. Parameter dataTxv
is same as defined in Eq. (1) and dataAck is the data size of
the acknowledgement packet.

After changing channel in CST, the receiver node is ready
to receive the packet. Additionally, the receiver node v also
wait in the idle mode for the Tsync, which can occur at the
start, end or split in both the places of receiving packet. Once
node receives the data packet, it sends an acknowledgement
packet back after the IFS time. Node v receives data from
all its child nodes before it transmits the aggregated data
packet. Hence the total energy consumption for any node v
while receiving data from all children can be represented
by Eq. (4).

ERxv =
∑

β∈child(v)

(Tsync × EIdle + dataTxβ × ERx

+ dataAck × ETx) (4)

Here dataTxβ represent the size of the data transmitted by the
node v’s child β. Eq. (4) calculates the energy consumed by
the node v to receive data packet from all child nodes.

Each node v wakes up to receive the data from its ear-
liest scheduled child. Afterwards, node v waits in the idle
mode, while not receiving from other child nodes or until its
transmitting timeslot. Node v, therefore, consumes a sizable
portion of its energy during the ideal listening. The energy
consumed by node v in the idle mode is expressed by Eq. (5).

EIdlev = Tslot × EIdle

×

Tv −min
(
Tβ |∀β∈child(v)

)
−

∑
β∈child(v)

1

 (5)

where Tslot is the length of one timeslot and quantity inside
the parenthesis of Eq. (5) represents the number of timeslots
in the idle mode for node v in one period. In which, Tv is the
node v’s timeslot. Term min

(
Tβ |∀β∈child(v)

)
finds the earliest

timeslot among the timeslots Tβ of each child node β of
node v, which is same as the node v’s wakeup timeslot. Since
receiving energy is already calculated in Eq. (4), the last
term,

∑
β∈child(v) 1 subtracts the number of timeslots used in

receiving data from the child nodes.

After transmitting the aggregated data packet, the
transceiver goes to sleep mode (consumes negligible energy)
hence, the total energy consumed by node v in one data
gathering period is calculated by Eq. (6).

Ev = ETxv + ERxv + EIdlev (6)

The objective of the ILP can be transcribed to minimizing
the sum of energy consumption for all the nodes, which is
expressed by Eq. (7).

Minimize:
∑
v∈V

Ev (7)

The constraints of the ILP algorithm are expressed in the
following inequalities Eq. (8) - (12).

a: DATA AGGREGATION AND ROUTING CONSTRAINTS
The aggregated packets are transmitted from the nodes to
their parent node after receiving packets from their child
nodes. Hence the timeslot allocated to a parent node must
be after the timeslots of all its child nodes. For example,
in Fig. 3 the value of the timeslot for node V12 must be larger
than the values of timeslots for its child nodes V8 and V24.
The constraint can be translated to ‘‘for all the directed edges
in the graph, the parent node should be allocated at a higher
timeslot than the child nodes’’. Eq. (8) ensures that for each
directed edge em : vi → vj in the graph G = (V,E),
the parent node vj can collect data from its child nodes vi
before transmitting.

∀em: vi→vj∈ETvj − Tvi > 0 (8)

b: HALF DUPLEX SINGLE RADIO CONSTRAINT
Having multiple radios causes extra power consumption and
escalates the cost. In the addressed application, each node
is equipped with a single transceiver. A node cannot receive
the data from its multiple children concurrently hence, child
nodes must have different timeslots. In other words, any two
children should not be allocated with the same timeslot. For
example, in Fig. 3, nodeV12 has two child nodesV8 andV24.
Nodes V8 and V24 should be allocated to different timeslots,
so that their parent node V12 can receive data from both
the nodes successfully without collision. The generalized
formula for single radio constraint is expressed by Eq. (9).
It describes that for any node vi all the inbound edges (indicat-
ing the child nodes of vi) should not share the same timeslots.

∀vi∈V
(
∀a,bTva 6= Tvb |((em : va→ vi) ∩ (en : vb→ vi)

∩em, en ∈ E)) (9)

In addition, the wireless transceivers operate in the half-
duplex communication mode. Thus, a node cannot transmit
and receive simultaneously. The constraint for half-duplex is
already addressed by the constraint Eq. (8), which ensures
that the node’s transmission timeslot is allocated after its child
nodes’ timeslots.
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c: MAXIMUM RF CHANNELS CONSTRAINT
The ISM band supports multiple radio frequencies called
channels. Among all the channels, we consider the set of
channels that are exclusive to others and allowmultiple trans-
mitters to communicate in these channels without interfer-
ence. Therefore, the network can allocate the same timeslot
to the maximum of S nodes for concurrent communication.
Where, S is the maximum number of available RF channels.

FIGURE 4. Gantt chart of schedule allocation by ILP algorithm for a
25 nodes network of Fig. 3, sink node is represented by S.

Fig. 4 illustrates an example scheduling result for the net-
work of Fig. 3 in a form of Gantt chart using 4 RF channels.
In Fig. 4, we can observe that the number of nodes allocated
to each timeslot is less than S = 4. It requires 10 timeslots to
satisfy S = 4.

Eq. (10) illustrates the constraint for the maximum RF
channels.

∀l∈ 0...N−1

∑
vi∈V

(
Tvi == l

) ≤ S (10)

In Eq. (10), timeslot value l varies between 0 to N− 1, where
N is the number of nodes. The value of the RF channel can
vary between 1 to S, the maximum available channels.

Consequently, the basic constraints on the integer variable
tuple (Tvi ,Cvi ) are expressed in Eq. (11) and Eq. (12).

0 ≤ Tvi ≤ N− 1 (11)

1 ≤ Cvi ≤ S (12)

Here, Tvi denote the timeslot allocated to node vi, while Cvi
is the channel assigned to node vi.

The energy consumption in the transmission, reception and
idle mode is mentioned in Table 1, which also mention the
length of one timeslot. The example allocation of Fig. 4 (ILP
algorithm) consumes 81.03 mJ energy and takes 330 ms time
in each data gathering period.

E. ASYMPTOTIC ANALYSIS OF ILP ALGORITHM
Lemma 1. For a directed graph G = (V,E) representing a
network of N nodes, theminimum latency of data aggregation
and forwarding is

⌊
N−1
S

⌋
+ (S − 1) timeslots, while the

minimum energy consumption is expressed by Eq. (13) and

the computational complexity is bounded by O(N
N2
S ).

O (E) = �
(
N 2
× k
S
+ N × h+ N × dataAck + S

)
(13)

Proof:We assume that each scheduled node is represented
by a 1 × 1 square domino as shown in the Fig. 5. The first
1 specifies that one timeslot is needed for transmitting an
aggregated data packet from each node and the second 1
denotes that a RF channel is used in that transmission. Hence,
we can illustrate the scheduling problem by placing the domi-
nos of 1×1 for each node in a box of width S. The height
of the box is the data aggregation latency for the network.
To satisfies the data aggregation and routing constraints,
Eq. (8) - (12), each parent domino is placed above all its
children node’s dominos.

FIGURE 5. Scheduling of the nodes in the box of size S by 1 × 1 domino
packing for the minimum latency.

The minimum height can be obtained, when the box is
completely packed by the square dominos. Since, in each
timeslot, a maximum of S nodes can be scheduled, the net-
work requires S branches with

⌊
N−1
S

⌋
nodes in each branch

(Since sink does not transmit). Due to single radio constraint,
the top-layer (one hop to the sink node) dominos should be
placed in different heights (timeslots) to transmit the data
to the sink node. Hence, the last S − 1 nodes (without sink
node) are placed in S− 1 different timeslots. Hence, the total
minimum latency is

⌊
N−1
S

⌋
+ (S − 1) timeslots.

For simplicitywithout sacrificing the generality, we assume
that all nodes generate sensing data of size k, which is
aggregated at every hop in each branch S. Leaf nodes in the
network has only its own data of size k. Since every node have
one child, the aggregated data size for the subsequent node’s
in the branch increases linearly. Till the aggregated data of
size

⌊
N−1
S

⌋
for the last node. The size of the aggregated data
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transmitted in each branch is given by Eq. (14).

k+ 2× k+ 3× k+ . . . . . . . . . . . .+
⌊
N − 1
S

⌋
× k (14)

Eq. (14) can be summed to Eq. (15).⌊
N−1
S

⌋
×

(⌊
N−1
S

⌋
+ 1

)
2

k (15)

The above process is repeated for all S branches, so the total
data transmitted in the network is given by Eq. (16).⌊

N−1
S

⌋
×

(⌊
N−1
S

⌋
+ 1

)
2

k × (S − 1) (16)

Asymptotic notation of Eq. (16) can be expressed as Eq. (17).

O (E) = �
(
N 2
× k
S

)
(17)

Additionally, each packet adds a header of size h, and the
data packets are acknowledged by an individual Ack packet of
size dataAck. Therefore, the total power consumption is given
by Eq. (18).

O (E) = �
(
N 2
× k
S
+ N × h+ N × dataAck

)
(18)

The dominos in the top layer corresponding to the last hop
are placed in S different timeslots. This makes the nodes
in the top layer wait in the idle mode. Hence, all S nodes
consume extra energy due to the idle timeslots before trans-
mission. Hence the total minimum energy consumption for
the network is given by Eq. (19).

O (E) = �
(
N 2
× k
S
+ N × h+ N × dataAck + S

)
(19)

In each timeslot (indicated by layers in the box of Fig. 5),
the ILP algorithm finds the subsets of all the combinations of
S nodes or less from the set of N nodes, which satisfy the
constraints. The algorithm, then calculates the solution for
all possible allocations of timeslot and RF channel. In the
end, the algorithm finds the solution for minimum energy
consumption by comparing the energy consumption in each
solution. The problem of finding minimum energy consump-
tion schedule is similar to the classical NQueen Problem [22].
Hence, the computational complexity of the placement of
dominos in a box with minimum energy consumption can be
expressed as Eq. (20) and solved through Eq. (21) and (22).

T (N) =
(
N
S

)
× T (N− S) (20)

T (N) =
(
N
S

)
×

(
N− S
S

)
× . . .×

(
1
1

)
(21)

T (N) = O
(
N

N2
S

)
(22)

The computational complexity of finding a minimum energy

scheduling ILP solution is O(N
N2
S ).

IV. HEURISTIC ALGORITHMS
The ILP algorithm introduced in Section III.D presents the
optimum solution for the directed graph G = (V,E). Due
to its excessive computational complexity demonstrated in
section III.E for the large networks, the ILP solution is
impractical for general applications with large networks.
Hence in this section, we propose two suboptimal heuristic
algorithms, and analyze their performance.

Inputs to the algorithms are G = (V,E), directed routing
graph of the network and S, the maximum number of avail-
able channels. The algorithms return a transmission sched-
ule Schedule [T] [S] for each sensor node. Here, each value
Schedule [i] [j] represents the node allocated with ith timeslot
and jth channel.

To collect the sensing data at the sink (root) node from
all the nodes in one period, the timeslots of the child nodes
should be allocated before the timeslot of their parent node.
Hence the algorithms commence by allocating the schedule
from the leaf nodes towards the sink node in a bottom-up
approach in the network.

A. BACKTRACKING ALGORITHM FOR CHANNEL
AND TIMESLOT ALLOCATION (BACAT)
The scheduling algorithm introduced in this subsection
explores all the feasible solutions by using backtracking. The
algorithm is called Backtracking Algorithm for Channel and
Timeslot Allocation (BACAT). It obtains an allocation solu-
tion with a minimal energy consumption, that is nearly equiv-
alent to the ILP solution in terms of energy consumption.
By employingmemoization [23, p. 387], the algorithm prunes
out the part of the backtracking tree that apparently does
not lead to a least energy consumption solution. Algorithm 1
depicts a pseudo-code of BACAT.

BACAT maintains the least energy solution in
Schedule [T] [S] found after recursive function calls till
now. Whereas, the current instance of the backtracking tree
schedule is stored in CurrSolu[T][S]. For memoization, the
algorithm stores the cost metric of the current instance of
schedule in ESolu. The least energy cost metric corresponding
to Schedule [T] [S] is stored in Emin. The cost metric is
calculated based on the sum of the transmitting, receiving
and idle energy consumption for each node in the network,
which is described in the Eq. (23).

cost =
∑

∀v∈(V−S)

ETxv + ERxv + EIdlev (23)

The values ETxv , ERxv and EIdlev in the Eq. (23) are the energy
consumption of node v in transmission, reception, and idle
mode respectively in a period, which are same as Eq. (6) in
Section III.D.

In each solution, the algorithm obtains a schedule of times-
lot and channel allocation to all the nodes until the algorithm
reaches to the sink node. After reaching to the sink node,
if the current solution has a smaller cost metric than the
previous best solution (ESolu < Emin), the algorithm stores
both cost ESolu and scheduling result CurrSolu[T][S] into Emin
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Algorithm 1 Backtracking Algorithm for Channel and
Timeslot Allocation (BACAT)
Input and notation
1. Directed Graph G = (V ,E)
2. S−Maximum number of Channels
3. Emin− The minimum energy solution found till now
4. Schedule[T ][S] − 2D array to store result,

Schedule[i][j], denotes the node’s allocation to
transmit the aggregated packet at timeslot i by using
wireless channel j

5. ESolu− Energy consumed in the current solution
6. CurrSolu[T ][S]− Current scheduling solution by ESolu

energy consumption
7. QReady−Queue of the nodes ready to be scheduled in

the next timeslot
8. QIdle− Queue of the nodes waiting in Idle mode in

the current timeslot
9. timeslot− Current timeslot of execution
Output
1. The transmission schedule Schedule [T ] [S] for each

node in V
#INITIALIZATION
1. Emin←∞
2. ESolu← 0
3. QReady← Enqueue(v ∈ V |v.children == 0)
4. QIdle← ∅
5. timeslot ← 0

#RECURSIVE FUNCTION
1. SCHEDULESLOT
2. (timeslot, S,ESolu,Emin,CurrSolu [] [S] ,

Schedule [] [S] ,QReady,QIdle
)

3. ret-value = false
4. if QReady == ∅
5. if ESolu < Emin
6. Emin = ESolu
7. Schedule = CurrSolu
8. ret-value = true
9. else ret-value = false
10. end if
11. else if ESolu ≥ Emin
12. ret-value = false
13. else
14. while CurrSolu [timeslot] = Select_Schedule_

node(QReady) 6= SINK
15. for v← ∀ CurrSolu [timeslot]
16. QReady→ Dequeue(v)
17. QIdle→ Dequeue(v)
18. ESolu+ = v.ETx + v.parent.ERx
19. QIdle← Enqueue (v.parent)
20. QReady← Enqueue (v.parent)
21. end for
22. for u← ∀QIdle
23. for v← ∀ CurrSolu [timeslot]
24. if v.parent = u
25. break
26. end if

Algorithm 1 (Continued.) Backtracking Algorithm for
Channel and Timeslot Allocation (BACAT)
27. end for
28. ESolu+ = EIdle
29. end for
30. ret-value = ret-value |SCHEDULE_SLOT

(timeslot + 1,ESolu,Emin,CurrSolu[] [S] Schedule,
[] [S] ,QReady,QIdle)

31. for u← ∀QIdle
32. for v← ∀ CurrSolu [timeslot]
33. if v.parent = u
34. break
35. end if
36. end for
37. ESolu− = EIdle
38. end for
39. for v← ∀ CurrSolu [timeslot]
40. QReady→ Dequeue(v.parent)
41. QIdle→ Dequeue(v.parent)
42. ESolu− = v.ETx + v.parent.ERx
43. QIdle← Enqueue(v)
44. QReady← Enqueue(v)
45. for end
46. end while
47. return ret-value
48. end if

and Schedule [T] [S], respectively. This signifies that the cur-
rent solution is guaranteed to provide a lesser cost solution
than all the previous solutions explored. If, at the intermediate
stage of the solution, the cost metric is higher than the current
least energy solution (ESolu ≥ Emin). The algorithm does not
proceed with that solution, instead it backtracks to the last
timeslot.

BACAT first enqueues all the leaf nodes (v ∈

V|v.children == 0) into queue QReady, which stores the
nodes ready to get scheduled with conditions: (1) the leaf
nodes (do not have child nodes), (2) the nodes whose
child nodes are already scheduled. BACAT algorithm starts
by calling the recursive function from the timeslot 0.
The input to the recursive function is two queues: QReady
and QIdle. Initially QIdle, starts as an empty queue, since the
leaf nodes do not have children, so they wake up immediately
in their transmitting timeslot’s. In each timeslot, the algo-
rithm considers all possible subsets of nodes satisfying the
application constraints (Eq. (8) - (12) in ILP formulation
in section III.D). The maximum size of the subset is given
by S. For each subset scheduled in the current timeslot, the
algorithm recursively executes the allocation of the rest of
the unscheduled nodes for the next timeslots. In the end, the
algorithm returns the least energy schedule Schedule [T] [S].
For example, in the network of Fig. 3, BACAT starts

by enqueuing the leaf nodes V5, V18, V1, V6, V7, V10,
V3, V20, V21 and V9 to QReady queue for timeslot T0.
QIdle, the queue for idle nodes is empty. In timeslot T0,
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BACAT finds all possible subset of nodes that satisfy the
maximum channel constraint S = 4. Such subsets are
(V3, V9, V6, V7), (V6, V7, V5, V18) etc. For each sub-
set, the algorithm calculates the cost and execute the recur-
sive function SCHEDULE_SLOT for timeslot T1 with the
updated parameters. If subset (V3, V9, V6, V7) is chosen for
timeslot T0, the algorithm adds parents of scheduled node to
the queue QReady.

The updated queue QReady contains nodes V5, V18, V1,
V23, V11, V10, V17, V20, V21 and V22. The parents of
the scheduled nodes, V17, V22, V23, V11 are also updated
to queue QIdle. In the timeslot T1, if the new cost is higher
than the previous least cost (initial least cost is ∞) value,
BACAT backtracks to timeslot T0 and explores other subsets.
If, the new cost is lower than the previous optimal cost,
BACAT is executed in the timeslot T1, in the same way as
in the timeslot T0.The same process is repeated for the rest
of the timeslots. Fig. 6 shows the BACAT’s scheduling result
for the network of Fig. 3 in a form of Grantt chart by using
4 RF channels. Individual mode’s energy consumption and
length of one timeslot are specified in Table 1. The energy
consumption for BACAT (Fig. 6) is 86.25 mJ, the energy
consumption for ILP (Fig. 4) is 81.03 mJ. Both algorithms
require 10 timeslots and correspondingly results to 330 ms
latency.

FIGURE 6. Gantt chart of BACAT schedule allocation for the network
in Fig. 3.

The computational complexity of BACAT is expressed by
the sum of two components: 1) The computation complexity
for the current timeslot, and 2) The complexity for all recur-
sive calls. Eq. (24) denotes this computational complexity for
BACAT algorithm.

T (N) = N2
+

N
S
× T (N− S) (24)

By using the recursion tree method [23, p. 88], the recursive
expression of Eq. (24) can be expanded to Eq. (25).

T (N) = N2
+

N
S
(N− S)2 +

N
S
×

N− S
S

(N− 2S)2

+ . . .+
N
S
×

N− S
S
× . . .×

N− (N− S)
S

× S2

(25)

T (N) = O(N
N
S ) (26)

The upper bound of the complexity can be found by the sub-
stitution method [23, p. 83], which is expressed by Eq. (26).

The Eq. (26) provides the worst-case complexity, where
none of the backtracking trees are pruned by BACAT. For
medium or large size networks, BACAT prunes out a sig-
nificant part of the backtracking tree. Even with the prun-
ing, the computational complexity of BACAT still shows a
tendency of exponential growth.

B. TIMESLOT-OPTIMAIZATION BASED
SCHEDULING ALGORITHM (TOSA)
While the computational complexity of BACAT algo-
rithm is substantially lower than ILP due to BACAT’s
efficient backtracking and pruning. Its complexity can be
prohibitive for very large networks. To further reduce the
complexity, this subsection introduces another heuristic
algorithm called Timeslot-Optimization based Scheduling
Algorithm (TOSA). The algorithm gives polynomial time
computational complexity. TOSA generates a Langford sub-
set [24] of maximum size S based on the lexicographical
order [25] in each timeslot. The algorithm first computes
all the subsets and then checks the application constraints
(Eq. (8) - (12) in ILP formulation in section III.D) by using
lexicographical order. Among all the lexicographical subsets,
a Langford subset is defined as the subset with minimum cost.
The cost metric is expressed by Eq. (27).

cost =
∑

∀v∈L_Subset(V)

ETxv + ERxv + EIdlev (27)

L_Subset in Eq. (27) indicates a lexicographical subset and
the other variables are same as Eq. (23).

The pseudo-code of TOSA is described in Algorithm 2.
TOSA starts from the leaf nodes (v ∈ V|v.children == 0) by
enqueueing them to QReady in the same way as BACAT.
TOSA calculates the cost in line 14 in Algorithm 2 for each

of the subsets. It selects the Langford subset with minimum
cost (Emin) schedule in each timeslot. It then continues to
choose the schedule for rest of the nodes in the subsequent
timeslots but does not revisit the same timeslot. Thus, it is
computationally inexpensive, however, its solution is local
optimal.

To describe the operation of TOSA, we use the same
example network of Fig. 3. For timeslot T0, in the same way
as BACAT, TOSA starts with adding leaf nodes V5, V18, V1,
V6, V7, V10, V3, V20, V21, and V9 to QReady, while setting
QIdle as an empty queue. TOSA then finds the lexicographical
subsets such as (6, 5, 7, 18), (5, 18, 20, 10) etc. The algorithm
computes the cost for each subset based on Eq. (27), and
the lowest cost subset (5, 18, 20, 10), the Langford subset,
is allocated to T0. TOSA then adds the parents of allocated
nodes to QIdle and QReady. It then proceeds to next timeslots
for rest of the nodes in QReady. Fig. 7 shows the Grantt chart
of TOSA’s scheduling for the network in Fig. 3. The result
shows 94.25 mJ of energy consumption, which is higher than
the ILP’s 81.03 mJ and BACAT’s 86.25 mJ.While the latency
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Algorithm 2 Timeslot-Optimization Scheduling Algorithm
(TOSA)
Input and notation
1. Directed Graph G = (V ,E)
2. S :Maximum number of RF Channels
3. Emin : The minimum energy consumed in the current

timeslot
4. Schedule[][S] : 2D array to store result,

Schedule[i][j], denotes the node which transmits
packet at timeslot i by using wireless channel j

5. QReady : Queue of the nodes ready to be scheduled in
the next timeslot

6. QIdle :Queue of the nodes waiting in Idle mode in the
current timeslot

Output
1. The transmission schedule Schedule [] [S] for each

node in V
Algorithm
7. QReady← Enqueue(v ∈ V |v.children == 0)
8. QIdle← ∅
9. timeslot ← 0
10. while QReady.dequeue () 6= SINK
11. sch_nodes[S]← ∅
12. Emin←∞
13. while sch_nodes = select_schedule_nodes(

QReady
)
6= ∅

14. E ← 0
15. for v← ∀sch_nodes[S]
16. E+ = v.ETx + v.parent.ERx
17. end for
18. for u← ∀QIdle
19. for v← ∀sch_nodes[S]
20. if u = v||u = v.parent
21. Break
22. end if
23. end for
24. E+ = EIdle
25. end for
26. if Emin > E
27. Emin← E
28. Schedule [timeslot] = sch_nodes
29. end if
30. end while
31. for v← ∀sch_nodes[S]
32. QReady→ Dequeue(v)
33. QIdle→ Dequeue(v)
34. QIdle→ Enqueue(v.parent)
35. end for
36. timeslot ++
37. end while

of TOSA 297 ms is lower than both the ILP and BACAT’s
330 ms in one data gathering period.

The computational complexity T (N) of TOSA can be
estimated by the sum of two components: 1) The complexity

FIGURE 7. Gantt chart of TOSA schedule for the network in Fig. 3.

of Langford subset generation in the current timeslot from
N nodes, and 2) The complexity of allocating the rest of N−S
nodes in the next timeslots. Hence, T (N) is given by Eq. (28).

T (N) = N2
+ T (N− S) (28)

T (N) = N2
+ (N− S)2 + (N− 2S)2 + . . .+ (2S)2 + S2

(29)

T (N) = O

(
N2

S

)
(30)

The Eq. (28) can be expanded to Eq. (29) by using the
recursion tree method of [23, p. 88]. The solution of Eq. (29)
can be found by the substitution method [23, p. 83], which
is expressed by Eq. (30). TOSA’s complexity of Eq. (30)
increases quadratically with the network size N, whereas
BACAT’s complexity of Eq. (26) grows exponentially with N,
a substantial reduction in the computational complexity.

V. SIMULATION
A. SIMULATION SETUP
To quantify the performance of the proposed algorithms,
we consider example networks of various sizes. The nodes
in the networks are randomly placed in the sensing area
of 1000m × 1000m, with the sink node at the center. Each
network is converted to an aggregation tree network by the
energy-balanced aggregation routing algorithm [20]. The tree
for each network is then provided to the scheduling algo-
rithms. We have implemented the routing algorithm in our
C++ simulator called Wiser.

Considering a wireless metering application, in this work,
we assume that each sensor node generates sensing data of
4 bytes, followed by a node identifier of 2 bytes (source
node’s address). Hence, every node generates payload data of
k = 6 bytes in total to forward to the sink node. In addition to
the payload (sensing data), each packet carries a header and
a trailer data of 16 bytes.

1) SENSOR NETWORK TESTBED
In order to evaluate the proposed algorithms in the field
experiment setup, we implemented a small testbed network
of 20 wireless water meter sensors (including sink node),
in a single wireless range. Each sensor node comprises state

11420 VOLUME 7, 2019



S. Kumar, H. Kim: Energy Efficient Scheduling in WSNs for Periodic Data Gathering

FIGURE 8. Sensor network testbed. (a) Top view of wireless water meter
sensor. (b) Front view of the sensor. (c) Testbed network of
20 nodes (including sink).

of art IoT (Internet of Things) chipMKW01Z128 [26], which
includes wireless transceiver and MCU. The sensor node and
network are shown in Fig.8. For the robust performance,
sensors are operated at system clock of 32 MHz, FSK mod-
ulation, and a data rate of 76.8 kbps. Table 1 summarizes
the operating parameters of the sensor networks. The same
parameters are used in our simulation experiments for realis-
tic energy consumption estimation. The network in Fig.8(c)
generates the aggregation routing tree using routing algorithm
in [20] for scheduling result gathering.

We have implemented our proposed scheduling algo-
rithms: (1) the ILP-based algorithm, (2) BACAT, and
(3) TOSA.

2) IMPLEMENTATION OF ILP-BASED ALGORITHM
For each example network,Wiser automatically generates the
ILP algorithm of Eq. (7) - (12) from the directed graph of
tree network and the number of maximum available channels.
The ILP formulas are then solved by CPLEX [27], an integer
linear equation solving tool from IBM. We conducted exper-
iments with the ILP-based algorithm for the networks up to
50 nodes for 4, 6 and 8 RF channels since, ILP algorithm
demands excessive computation time for the networks of
larger than 50 nodes.

3) IMPLEMENTATION OF BACAT AND TOSA ALGORITHMS
Like the ILP based algorithm, the two heuristic algorithms
also take tree network and the number of available chan-
nels as input. In contrast to the ILP algorithm, the heuristic
algorithms do not experience excessive computation time for

the large networks. Thus, we simulated the heuristic algo-
rithms with the networks up to 100 nodes. The algorithms are
evaluated for three different number of RF channels, 4, 6 and
8 channels.

4) IMPLEMENTATION OF PREVIOUS ALGORITHMS
To compare the performance of the proposed algorithms,
we also implemented two previous algorithms LTSA [18],
modified CTCCAA [13] and TSDM [14] into the Wiser
Simulator. LTSA is the linear-time scheduling algorithm that
we had proposed in [18]. It employs a local search algorithm
to allocate S nodes in each timeslot from T0 in a way that
satisfies the constraints of Eq (8) - (12). Fig. 9 illustrates
a scheduling result of LTSA for the example network of
Fig. 3 (25 nodes) in a form of Gantt chart. While its linear
search process provides high speed, LTSA does not satisfy
our minimum energy consumption goal as the simulation
results in section V.B.

FIGURE 9. Gantt chart of LTSA TDMA schedule for the network in Fig.3.

FIGURE 10. Gantt chart of CTCCAA TDMA schedule for the network
in Fig. 3.

CTCCAA [13] is a previous algorithm called an in-network
aggregation-based collision free data aggregation algorithm.
While the original algorithm of CTCCAA used spread spec-
trum codes, we implemented it using multiple RF channels
to conduct a fair comparison of its performance with the
proposed algorithms. Hence, we call our implementation
a modified CTCCAA. For details of CTCCAA, refer to
Section II. Fig. 10 shows a scheduling result of the modified
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CTCCAA for the network of Fig. 3. Since CTCCAA targets
reducing the latency, it tends to result in higher energy con-
sumption as demonstrated in section V.B. Another previous
algorithm, TSDM is an aggregation TDMA algorithm based
on data merging, the full details are exhibited in the related
work (Section II).

B. SIMULATION RESULTS
This section investigates the performance of the three pro-
posed algorithms namely, ILP, BACAT, and TOSA. These
algorithms are compared with the previous algorithms LTSA,
modified CTCCAA and TSDM, which are best suited for
the comparison since they use TDMA timeslot with data
aggregation. We conducted an extensive set of simulations
for example networks with 10 to 100 nodes for 4, 6 and
8 channels. Each simulation result is obtained by taking the
average of three measurements for each network size from
different random networks. Random networks are generated
by changing the seed of random number generator in Wiser.
The algorithms are evaluated for computational complexity,
energy consumption, latency of the network. In the end,
we examined the different aggregation algorithms.

1) EVALUATION OF COMPUTATIONAL COMPLEXITY
The computational complexity of the proposed algorithms
ILP, BACAT and TOSA are derived in section III.E,
section IV.A and section IV.B respectively. In this subsection,
the computational complexities of the previous algorithms
LTSA,CTCCAAandTSDMare analyzed and comparedwith
the proposed algorithms.

Based on the number of hops to the sink node as cost met-
ric, LTSA assigns the maximum of S nodes in each timeslot.
This step has a complexity of O(N). However, LTSA checks
the constraints for each candidate node with the other nodes
already allocated in the current timeslot, which requires a
maximum of S comparisons. Therefore, the total computa-
tional complexity for LTSA is O(N× S).
Unlike the other algorithms, modified CTCCAA starts

from allocating schedule to the sink node first. It sorts a queue
CurrentList based on the number of child nodes, which leads
to the complexity of O(N × logN). Then, an RF channel
is selected based on the aggregated list of the neighbors
and child nodes. The algorithm selects the channel that is
least used among all the RF channels. This operation gives
complexity of O(N2

× logN). In the end, the algorithm
selects the timeslot. Then data forwarding timeslot for each
node is calculated by subtracting the allocated timeslot from
the maximum allocated timeslot. This step adds additional
complexity of O(N2). Hence, modified CTCCAA has a total
complexity of O

(
N× logN+ N2

× logN+ N2)
= O(N2

×

logN).
The modified TSDM algorithm starts by checking for the

leaf nodes, then for the leaf node it allocates two queues
otherwise three. This step takes O(N) time. Later, for each
N nodes, it allocates timeslot by comparing energy con-
sumption by all possible combination of arranging subtrees

(chooses minimum energy merging of data from sub-
trees). However, it does not revisit the subtree individually.
Additionally, it checks the unused channel in the selected
timeslot for transmission of non-real time packets, which
takes O

(
N2
× S

)
time. Hence, the total time complexity is

O
(
N+ N2

× S
)
= O

(
N2
× S

)
.

FIGURE 11. Result of the computation complexity of algorithms with
respect to the number of nodes in the network with 4 RF channels.

Fig. 11 compares the computational complexity of all the
algorithms with respect to the number of nodes, by using
4 RF channels. The computational complexity in Fig. 11 is
represented in the logarithmic scale (log(T(N)) because the
computational complexity of the ILP-based algorithm esca-
lates rapidly with the network size. It exceeds 10300 compu-
tations even for a small network of only 28 nodes. In con-
trast, BACAT performs with substantially lower complexity.
It also shows that LTSA has the minimum computation time
due to its linear search process. The proposed algorithm
TOSA performs faster than CTCCAA and TSDM, unlike ILP
and BACAT.

2) EVALUATION OF ENERGY CONSUMPTION
With extensive simulations, we estimated energy consump-
tion for the networks of various size from 10 to 100 nodes.
Fig. 12(a), Fig. 12(b), and Fig. 12(c) compares the energy
consumption under the constraint of 4, 6, and 8 RF channels,
respectively. Node starts with initial energy of ETotal. The
energy of each network is calculated as the sum of the energy
drained by all the nodes (from initial energy) in the transmis-
sion, reception, and Idle modes in one data gathering period.
Energy consumption metrics for algorithms ILP, BACAT and
TOSA are given by Eq. (7), (23) and (27) respectively.

After completing the transmission of the aggregated data
packet, each sensor node transitions to the sleep mode for
the rest of the time until the next data gathering period. The
energy consumed in the sleep mode is negligible and hence
ignored.

The results evince that the ILP-based algorithm consumes
the least energy. Its energy consumption increases linearly
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FIGURE 12. Energy consumption with respect to the network size in a
data gathering period by using, (a) 4 channels (b) 6 channels
(c) 8 channels.

with the network size. On the other hand, in the case of
heuristic algorithms, the rate of increase of energy consump-
tion is polynomial in nature. The results also exhibit that the
energy consumption of BACAT is the lowest among all the
heuristic algorithms and it is nearly commensurate with ILP.
Since it determines the most efficient schedule among a large
set of possible solutions using efficient backtracking. While
the performance of TOSA is comparable with BACAT for
the small size networks. BACAT outperforms for the large
networks, which results in the energy saving of up to 20% in
a data gathering period. The modified CTCCAA and TSDM
algorithms consumes notably higher energy than all the other
algorithms. The energy consumption of the CTCCAA grows
rapidly with the size of the network, which is attributed from

the inefficient operation of idlemode. In CTCCAA, even after
a node finished its transmission, it waits for the other nodes to
finish their transmission before switching to the sleep mode.
As the network grows, the energy consumption of idle mode
increases more rapidly is a critical drawback of CTCCAA.
The TSDM performs better than CTCCAA since, unlike
CTCCAA, it does not wait for other nodes to finish. However,
it consumes more energy because, it optimizes the timeslot
only while merging data from the subset trees. While TOSA
and LTSA consume more energy than ILP and BACAT, their
energy consumption is lower than TSDM and CTCCAA.
Since TOSA optimizes the energy consumption of all the
nodes in each timeslot, it consumes lesser energy than LTSA,
which only optimizes each node’s individual energy while
minimizing the number of hops to the sink. Fig. 13 evinces
the energy consumption of each algorithm for a network of
50 nodes with 4, 6 and 8 RF channels. The results exhibit that
the energy consumption decreases with the increase of the
number of RF channels. However, a decrease in the energy
consumption is more significant in case of TOSA.

FIGURE 13. Comparison of consumed energy in a network of 50 nodes
for each algorithm for a various number of channels.

FIGURE 14. Energy consumption with respect to the number of nodes in
the network for various bound on channels used for TOSA algorithm.

Hence, Fig. 14 compares the energy consumption of TOSA
for 4, 6 and 8 RF channels with respect to the network
size. The result of TOSA shows that the energy consumption
decreases byminimum of 15%with an increase in the number
of channels by 2.
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FIGURE 15. Latency with respect to the number of nodes in the network
in one data gathering period with (a) 4 channels, (b) 6 channels,
(c) 8 channels.

3) EVALUATION OF LATENCY
The latency is defined as the time taken by a network to
forward sensing data from all the nodes to the sink node.
In other words, it is measured from the time of very first
leaf node’s transmission to the time of the sink node’s last
child’s transmission. Hence, the latency is the integermultiple
of the length of one timeslot which is calculated as 33ms in
our experiment. Fig. 15(a), Fig. 15(b) and Fig 15(c) show
the latency measurement for the networks of various size
with 4, 6 and 8 RF channels, respectively. It can be observed
that the modified CTCCAA shows the short latency, since its
objective is to optimize the latency. In CTCCAA, the nodes
tend towake up to receive or transmit data as early as possible.
However, the nodes often wait longer in the idle mode to

aggregate and transmit, which lead to high energy consump-
tion. The latency of BACAT is longer than CTCCAA, since
it optimizes the total energy consumption in the network.
As a result, it minimizes the wait time in the idle timeslots,
and hence gives significant energy saving compared with
modified CTCCAA.

However, TSDM algorithm exhibits the maximum latency
because if the level 2 packet is already transmitted, the data
from the subtree waits for the next slot. Fig. 16 shows the
comparison of latency for each algorithm for the network
with 50 nodes over 4, 6 and 8 number of RF channels. The
result signifies that by increasing the number of RF channels,
the algorithms can reduce the total latency.

FIGURE 16. Latency for each algorithm for a 50 nodes network for
various bound on RF channels used.

FIGURE 17. Results of 20 nodes testbed network by using 4 channels.

4) EVALUATION OF TESTBED NETWORK
Fig. 17 exhibits and compare the results of energy consump-
tion and latency for testbed network of 20 nodes. The results
of testbed network show the similar results as simulation
network. ILP consumes the minimum energy, however its
latency is higher than TOSA algorithm, which has lower time
complexity.

5) EVALUATION OF AGGREGATION ALGORITHMS
Fig. 18 compares the energy consumed by the three data
forwarding methods: raw-data forwarding, aggregated for-
warding, and our proposed, data-appending forwarding in
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FIGURE 18. Energy consumption for aggregated forwarding, raw-data
forwarding and proposed data-appending forwarding in one period of
data collection.

one period. It uses the TOSA algorithm with the simulation
setup defined in section V.A. AMI applications require each
sensor’s raw data reading for billing and analysis hence,
the aggregated forwarding is not an appropriate solution,
although it consumes the lowest energy. On the other hand,
the raw-data forwarding consumes the highest energy since
it forwards each node’s sensing data in an individual packet
without aggregation. The proposed, data-appending forward-
ing algorithm consumes the lesser energy than raw-data for-
warding and still transmit the raw data to the sink node.
It appends raw data from all the nodes in the subtree of a node
in one packet.

VI. CONCLUSION AND FUTURE WORK
In this paper, contention-free TDMA scheduling algorithms
for data gathering applications are proposed. The proposed
algorithms minimize the energy consumption of the network
in each period. To alleviate collisions and support concur-
rent communications, we utilize multiple RF channels. The
paper proposed three algorithms: an optimum ILP algorithm,
a near optimal heuristic algorithm BACAT, and computa-
tionally efficient heuristic algorithm TOSA, and compared
their results. The ILP algorithm produces the most energy
efficient schedule at the cost of exponentially increasing
computational complexity.Whereas, the heuristic algorithms,
BACAT and TOSA, offer computationally efficient schedul-
ing operation, although they provide sub-optimum schedules
for data gathering. We implemented the three scheduling
algorithms and conducted an extensive set of simulations. Our
experiments demonstrated that TOSA provide 21% shorter
latency than BACAT, while its computation time is polyno-
mial, which is extremely faster than the exponential compu-
tation time of ILP and BACAT algorithms. Therefore, TOSA
algorithm results to be the best suited for WSN applications
because of the lowest computational complexity at a small
cost in energy consumption and latency.
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