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ABSTRACT In this paper, we propose a methodology to design chaos-based communication systems, which
exploits the topological structure of 3-D chaotic attractors. The first step consists in defining a proper
partition of a Poincaré section of the attractor and the subsequent encoding of the chaotic trajectories.
Then, the evolution mechanism of the chaotic attractor, according to the dynamical restrictions imposed
by the chaotic flow, is represented by a state diagram, where each state represents a region of the Poincaré
section or a branch in the template of the chaotic attractor. The state transitions are associated with segments
of chaotic trajectories that connect the corresponding regions of the Poincaré section. The chaotic signals are
transmitted over both additive white Gaussian noise and Rayleigh flat fading channels, and a trellis structure
derived from the state diagram is used at the decoder to estimate the transmitted information sequence.
Finally, the bit error rate performance of the system is analyzed.

INDEX TERMS Chaotic attractors, chaos-based communications, chaos control, error probability, Poincaré
section, symbolic dynamics, topology of chaotic systems.

I. INTRODUCTION
Chaotic signals are generated by nonlinear dynamical sys-
tems and exhibit suitable characteristics for applications in
communications systems, such as decorrelation, non-periodic
behavior and broadband spectrum [1]. Moreover, chaotic
signals can be generated by electronic circuits with good ener-
getic efficiency [2]–[4]. Some applications of chaotic systems
occur in cryptography [5], random number generation [6],
watermark [7], communications [8], [9].

Several methods have been proposed to transmit digi-
tal information using chaotic waveforms, including chaos
control [10], synchronization of chaotic oscillators [11],
broadband coherent communication [12], symbolic dynamics
with reverse iteration [13]. Multiple access schemes have
been proposed using chaos shift keying (CSK), differen-
tial chaos shift keying (DSCK) [14], correlation delay shift
keying (CDSK) [15]. Improved DSCK and CDSK schemes
have been recently proposed in [16]–[18]. A cooperative
communication scheme with DCSK modulation is analyzed
in [19]. Other possibilities include chaos-coded modulation
[20]–[22] and the incorporation of powerful error correcting
codes with iterative decoding to improve the performance

of chaos-based communication systems [23]–[25]. It is pre-
sented in [26] a procedure to modulate information sym-
bols into chaotic waveforms generated by three-dimensional
chaotic attractors using chaos control. In this case, the estima-
tion of the transmitted information symbols is based on the
comparison of a single point of the chaotic trajectories to the
minimum of the Poincaré return map. A circuit implementa-
tion of an improved system that employs matched filters in
the demodulator is proposed in [27].

In this work, we propose the use of the topological structure
of three-dimensional chaotic attractors to design chaos-based
communication systems. The topological structure of these
attractors imposes dynamical constraints on the chaotic flow
that can be exploited to aggregate robustness to the commu-
nication system in noisy environments.

The proposed methodology consists in defining a proper
partition of a Poincaré section of the attractor such that the
regions of this section are labeled with distinct symbols and
the dynamical evolution of the chaotic flow is associated with
the symbolic dynamics of the chaotic trajectories. We show
how to employ the symbolic dynamics of the chaotic flow in
a performance-guided design of a state diagram used in the
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modulator and demodulator. Each state transition represents
segments of chaotic trajectories that connect the correspond-
ing regions of the Poincaré section or branches in the template
of the chaotic attractor. The state transitions are induced by
chaos control. The chaotic signals generated by a variable of
the chaotic system are transmitted over both additive white
Gaussian noise (AWGN) and Rayleigh flat fading channels
and the maximum likelihood estimation of the transmitted
sequence is performed by the Viterbi algorithm [28]. We ana-
lyze the performance of the proposed chaos-based commu-
nication systems over these channels using as a case study
two chaotic attractors: Rössler and Lorenz. We show that our
proposal performs better than the chaos-coded modulation
with the same decoding complexity.

The rest of this work is organized into six sections.
In Section II, we review some properties concerning
the topology of three-dimensional chaotic attractors.
In Section III, we detail the dynamical structure that emerges
from the partitioning of a Poincaré section of the Rössler
attractor and its representation as a state diagram or trel-
lis structure. The proposed methodology is applied to the
Lorenz attractor in Section IV. In Section V, we detail the
Rössler and Lorenz chaos-based communication systems.
The performance of these systems is analyzed in Section VI.
Performance comparisons to existing chaos-based systems
are conducted in this section. Finally, we discuss the conclu-
sions of this work in Section VII.

II. TOPOLOGICAL DESCRIPTION OF CHAOTIC
ATTRACTORS
This section reviews some topological properties of chaotic
attractors. More details are found in [1], [29], and [30].

A dynamical system is defined by a system of coupled ordi-
nary or partial differential equations. In the case of nonlinear
equations, the dynamical system can exhibit chaotic behavior.
The solutions of the differential equations, when represented
in the phase space, may have a complex structure, defining
sets called strange attractors, or chaotic attractors, which are
attractor sets with fractal dimension [1]. When immersed in a
three-dimensional space, the topological organization of the
solution curves of the chaotic system, the chaotic trajectories,
emerges as consequence of two basic mechanisms that gener-
ate the chaotic behavior: stretching and squeezing. These are
associated with the sensibility to initial conditions (stretch-
ing) and the recurrent and non-periodic behavior (squeezing).

The dynamical evolution of an N -dimensional chaotic
attractor can be described by successive crossings between
the chaotic trajectories and an (N − 1)-dimensional surface,
the Poincaré section, and the points associated with these
crossings are defined by the Poincaré return map of the sys-
tem [1]. A labeled partition of the Poincaré section induces an
encoding of the chaotic trajectories. Each chaotic trajectory
is mapped to a symbolic sequence that records the order
of visitation of the trajectory in the regions defined by the
partition. These successive crossings associate a continuous-
time dynamical system to a discrete-time system simplifying

the dynamical description while retaining the essential char-
acteristics of the chaotic flow.

The encoding of the chaotic trajectories is also useful to
analyze the topological characteristics of a chaotic attractor.
These are identified by the topological organization of the
unstable periodic orbits (UPO) [29] of the attractor, which
are chaotic trajectories with the property of returning arbi-
trarily close to their initial condition after some time interval.
The UPO are a dense set in the attractor, thus any chaotic
trajectory can be approximated by some UPO. The set of
UPO of a chaotic attractor can be represented in a geometrical
structure denoted knot holder or template [29]. Templates
are branched manifolds that summarize the topological prop-
erties of chaotic attractors and are useful to characterize
the behavior of the chaotic flow and its symbolic dynam-
ics defined by the encoding of sequences generated by the
Poincaré return map.

III. CHAOTIC MODULATION BASED ON
RÖSSLER ATTRACTOR
In this section, the proposed methodology is described for the
Rössler attractor.

A. THE RÖSSLER ATTRACTOR
The Rössler system is defined by the system of coupled
ordinary differential equations [31]

ẋ(t) = −y(t)− z(t)
ẏ(t) = x(t)+ ay(t)
ż(t) = b+ (x(t)− c)z(t)

(1)

where a, b and c are control parameters. In this work, we set
a = 0.423, b = 2 and c = 4 [32]. A convenient Poincaré
section for the Rössler attractor is a plane parallel to the
xz plane located at the y coordinate of the center of the
attractor, y = −0.53. Fig. 1 shows the Rössler attractor and
the considered Poincaré section (represented by the horizon-
tal line segment) in projection on the xy plane.

FIGURE 1. The Rössler attractor (left) and its Poincaré section (right) in
projection on the xy plane.

B. CHAOTIC TRAJECTORIES ENCODING
Let An be an alphabet with cardinality n. A binary partition
of the Poincaré section splits it into two regions with the
threshold defined by the minimum of the Poincaré return
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map [33], [34]. Each region is labeled with a distinct symbol
s ∈ A2 = {A,B}. Therefore, a chaotic trajectory is repre-
sented by a symbolic sequence s0s1s2 . . . , si ∈ A2, where
si is the symbol generated in the i-th crossing of the chaotic
trajectory in the corresponding region of the Poincaré section.

When n = 4, each region of the binary partition is split
into two new regions. The threshold of each new region is the
point that separates two distinct behaviors of the chaotic flow
in two successive crossings in the binary partition, the return
to the same region and the transition from one region to the
other one. We define the alphabet A4 = {A1,A2,B1,B2}

to label the four regions (n = 4) in such a way that the
region A (resp. B) for n = 2 becomes A1 and A2 (resp.
B1 and B2) for n = 4. Analogously, we can set n = 8 and
define A8 = {A11,A12,A21,A22,B11,B12,B21,B22}. The
partition of the Poincaré section for the Rössler attractor with
the corresponding labeling for n = 2 (alphabetA2) and n = 4
(alphabetA4) is shown in Fig. 2 and the respective template is
shown in Fig. 3. The construction of this template is detailed
in [29].

FIGURE 2. Partitioning of the Poincaré section for the Rössler attractor in
projection on the xy plane for n = 2 (left) and n = 4 (right).

FIGURE 3. Template representation of the Rössler attractor with the
regions defined by the partition of the Poincaré section for n = 2 and
n = 4.

In the template representation, each branch is labeled
according to the alphabet A2. The chaotic trajectories
belonging to branch A undergo torsion and stretching to

subsequently reach either branches A or B in successive
crossings of the Poincaré section. The chaotic trajectories
belonging to branch B also reach either branches A or B but
they do not undergo torsion. The splitting procedure defined
to refine the partition to n = 4 generates four branches
over A4. The symbols in A4 with subscript 1 correspond to
the subregions of the binary partition such that the chaotic
trajectories crossing a subregion transition from one region
to the other in the next crossing. Therefore, the label A1
indicates that a trajectory in the subregion A1 alternates from
A to B. Similarly, the label B1 indicates that a trajectory
in B1 alternates from B to A. The symbols in A4 with
subscript 2 correspond to the subregions such that the chaotic
trajectories return to the same region in the next crossing,
thus A2 indicates that the chaotic trajectories in the subregion
A2 return to A and B2 indicates that the chaotic trajectories
in the subregion B2 return to B in the next crossing. For
n = 8, the two subscripts determine the visited regions in two
consecutive crossings. For example, the label A11 indicates
that chaotic trajectories in the subregion A11 alternate to the
region B then alternate to the region A. Proceeding with these
labeling rules for all regions or branches, all transitions in the
template are determined.

The dynamical structure of the chaotic flow can be rep-
resented by a state diagram with n states, where each state
represents a branch of the template or a region of the Poincaré
section. The state transitions are defined by two successive
crossings of the chaotic flow in the section. As the regions for
each n are obtained for two possible behaviors of the chaotic
flow, each state has two divergent and two convergent edges.
The two edges that diverge from a state are labeled with a dis-
tinct binary symbol corresponding to an information symbol.
Fig. 4 shows the labeled state diagrams for the Rössler
attractor for n = 2, n = 4 and n = 8. The structure of the
state diagrams emerges from the topological characteristics of
the chaotic flow, which impose dynamical constraints on the
chaotic trajectories. The chaotic flow generates all sequences
over An only when n = 2, otherwise there are restrictions
in the occurrence of adjacent symbols whenever n > 2.
Therefore, the restrictions in the occurrence of sequences of
waveforms generated during the dynamical evolution of the
chaotic flow can be exploited in the design of chaos-based
communication systems.

C. CHAOTIC WAVEFORMS
The chaotic waveforms associated with the state transition
from state i to state j are segments of chaotic trajectories
associated with two consecutive crossings in the Poincaré
section from region i to region j, for i, j ∈ An. To generate
a chaotic trajectory, we choose an arbitrary point (x0, y0, z0)
in the basin of attraction of the chaotic attractor and let the
system evolve in time. After some time, the trajectory falls
into the chaotic attractor and remains in it. From now on the
system is ready to transmit information and this procedure
is equivalent to remove the transient behavior. Since we
choose points in the basin of attraction to start the system
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FIGURE 4. Labeled state diagrams for the Rössler attractor for n = 2 (a), n = 4 (b) and n = 8 (c).

evolution, the chaotic trajectories do not leave the attractor
nor collapse in fixed points.We denote the chaotic waveforms
generated in a state transition by transition curves. Each
initial condition corresponds to a realization of the transition
curves. The transition curves can be generated by any variable
of the chaotic system x, y or z, as well as by functions of
these variables. In order to exploit the characteristics of the
waveforms generated by all variables of the system, we also
consider the Euclidean distance between a point (x, y, z) of
the attractor to the origin of the coordinate system

ρ =

√
x2 + y2 + z2. (2)

The time interval between two successive crossings in the
Poincaré section (the duration of the transition curves) is not
constant due to the aperiodicity of the chaotic behavior. Since
a communication systemmust have a constant signaling inter-
val, we introduce the angular variable θ as the angle between
the Poincaré section and the vector obtained by connecting
the center of the attractor to a point of the chaotic trajectory.
This procedure ensures periodicity to the signals with an
angular period 2π . Fig. 5 shows a realization of the transition
curves on the xy plane for n = 4, ∀i, j ∈ A4. It is also shown
the angle θ associated with the angular period. Fig. 6 shows
the curves x(θ ) versus θ in one angular period for n = 4. We
observe from this figure that the transition curves associated
with state transitions that diverge from the same state (labeled
with distinct information symbols) are relatively close to each
other. Thus, we introduce two modifications to be employed
in the design of the communication system.

1) INVERSION OF TRANSITION CURVES
We introduce the inversion of the curves (multiplication
by −1) associated with bit 0. This procedure splits the set
of transition curves into two groups, one associated with bit 1
(not inverted) and the other associated with 0 (inverted). The
modified transition curves associated with state transitions
that diverge from (or converge to) the same state become
nearly antipodals so this procedure is in agreement with
the ideas introduced by Ungerboeck to design trellis coded
modulation systems [35].

FIGURE 5. A realization of the transition curves of the Rössler attractor
on the xy plane for n = 4. It is also shown the angle θ used to define the
angular period.

FIGURE 6. A realization of the transition curves of the Rössler attractor
x(θ) versus θ for n = 4.

2) AMPLIFICATION
The transition curves associated with transitions that diverge
from state B2 (B2B1 and B2B2) for the case n = 4 have lower
amplitude than the other ones, beingmore susceptible to noise
degradation. Therefore, we introduce a gain that amplifies
the signal whenever the system reaches the state B2. This
procedure increases the average energy of the system and
separates these curves. When n = 8 the gain is applied to
the transitions derived from the partition of the state B2, that
is, states B21 and B22. The system with n = 2 does not use
amplification.

It is worth noting that these modifications increase the
overall complexity of the system but in this case we trade
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complexity for performance. Now we detail how these proce-
dures are implemented in a communication system with the
Lorenz attractor.

IV. CHAOTIC MODULATION BASED ON LORENZ
ATTRACTOR
The Lorenz system is defined by the system of coupled
ordinary differential equations [36]

ẋ(t) = σ (y(t)− x(t))
ẏ(t) = x(t)(r − z(t))− y(t)
ż(t) = x(t)y(t)− βz(t).

(3)

The control parameters σ , ρ and β are set to σ = 10, r = 28
and β = 8/3 [36]. The attractor behavior is characterized
by reversions in the flow orientation. In projection on the
xz plane, the chaotic flow rotates clockwise when x < 0
and counter-clockwise when x > 0. A suitable Poincaré
section for this attractor should include crossings in both
x > 0 and x < 0 regions. A commonly used Poincaré
section is composed by two semi-planes parallels to the xy
plane and located at z = 27 [37]. A binary partition of this
section is defined by labeling each semi-plane with a distinct
symbol s ∈ A2. Fig. 7 shows the Lorenz attractor and its
Poincaré section in projection on the xz plane for n = 2
and the template is shown in Fig. 8. The construction of this
template is detailed in [38]. Another template representation
of the Lorenz attractor uses a single hole, like the Rössler
attractor template illustrated in Fig. 3 but without torsion. Its
construction is detailed in [29]. The labeling rules for the

FIGURE 7. The Lorenz attractor (left) and its projection on the xz plane
with the Poincaré section partition for n = 2 (right).

FIGURE 8. Template representation of the Lorenz attractor with the
regions defined by the partition of the Poincaré section for n = 2 and
n = 4.

Lorenz template is the same employed in Section III. The
state diagrams for the Lorenz attractor are the same as those
shown in Fig. 4 for the Rössler attractor.

To define an angular period we need to use two angles
associated with the planes of the Poincaré section. We define
θ1 for x < 0 and θ2 for x > 0. Therefore, the chaotic
trajectories are parameterized by

θ =

{
θ1, x ≤ 0
θ2, x > 0.

(4)

This procedure ensures periodicity of the transition curves
with angular period 2π . A realization of the transition curves
for n = 4 as well as the angles θ1 and θ2 are shown in Fig. 9.
The amplification procedure has no effect in increasing the
separation of the transition curves. Therefore, this modifi-
cation is not applied to the Lorenz-based communication
system. Moreover, inversions are implemented.

FIGURE 9. A realization of the transition curves of the Lorenz attractor on
the xz plane for n = 4. It is also shown the angles θ1 and θ2.

V. THE COMMUNICATION SYSTEM
The block diagram of the proposed communication system
is shown in Fig. 10. The binary information sequence is
b0b1b2 . . .. Each block is described in the following.

FIGURE 10. Block diagram of the communication system based on
three-dimensional chaotic attractors.

1) Chaotic Attractor: The chaotic attractor is the signal
source of the system. The chaotic signals can be generated by
any variable of the system x, y, z, or by ρ =

√
x2 + y2 + z2.

2) Chaos Control: The control block is coupled to the
signal source and receives the binary information sequence.
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This block induces the transitions in the state diagram, direct-
ing the chaotic trajectories to the regions that generate the
required transition [39]. For example, if we consider the
system with n = 2 in Fig. 4(a) and the trajectory crosses
the region A and the information bit to be transmitted is 1,
the control system directs the trajectory to the sub-interval of
the region A that generates the transition AB, which is labeled
by bit 1. Otherwise, when the chaotic trajectory crosses
the region in the required sub-interval, no control action is
needed.
3) Bipolar Modulator: The bipolar modulator transmits

the transition curves. These curves in one angular period 2π
are the transmitted signals s(t) in one signaling interval of
duration T . This block also receives the binary information
sequence and inverts the chaotic signals associated with the
bit 0 as well as amplifies the transition curves.

The encoding of the information bits in the chaotic trajec-
tories can be summarized in the following steps:
• Step 1: Take an initial condition in the basin of attraction
of the chaotic attractor and let the system evolve in time.

• Step 2: Employ the control system to keep the chaotic
trajectories close to the unstable periodic orbits that
cross the Poincaré section in a neighborhood of
the threshold point of each region defined by the
partitioning [39], [40].

• Step 3: Define one of the regions to be the initial state.
• Step 4: Take the current information bit to be transmit-
ted. If the chaotic trajectory follows the state transition
indicated by this bit, then the control system does not
modify the system evolution. Otherwise, the control
system modifies the chaotic trajectory to move it to the
left or right of the threshold point of the region of the
Poincaré section visited in the next crossing.

• Step 5: The variables of the chaotic system are combined
to form the transmitted signal s(t) in a signaling interval.

• Step 6 If the next state requires amplification, then the
chaotic signal is amplified when the chaotic trajectory
reaches the corresponding region.

• Step 7: If the information bit is 0, then the chaotic
signal is inverted when the state transition occurs and
the inversion lasts until the next transition.

• Step 8: Return to Step 4.
4) Channel: The signal s(t) is transmitted over a noisy

channel. In an AWGN channel, the noise n(t), with uniform
power spectral density N0/2 is added to the signal s(t), result-
ing in the received signal

r(t) = s(t)+ n(t). (5)

In a Rayleigh flat fading channel, the received signal is

r(t) = h(t) s(t) + n(t) (6)

where h(t) is a complex Gaussian process with zero-mean
and unit variance. Furthermore, the random variable |h(t)| has
the Rayleigh probability density function with unit second
moment. In fast fading, the fading coefficient h(t) is constant

during a signaling interval but changes independently in con-
secutive intervals.
5) Decoder: The decoder performs the maximum likeli-

hood estimation of the transmitted binary sequence using
the Viterbi algorithm [28]. It works on the trellis derived
from the state diagrams shown in Fig. 4. The complexity
of this algorithm for a trellis with n states with two edges
diverging from each state is linear in 2 n [41, Th. 7.2].
A typical transition curve associated with a state transition is
the mean curve obtained with several initial conditions in the
same region of the Poincaré section. Therefore, all possible
state transitions are associated in the decoder with the corre-
sponding typical transition curve. The metric increments in
the Viterbi algorithm are obtained with the typical transition
curves.

VI. PERFORMANCE ANALYSIS
In this section, we analyze the error performance of the
proposed schemes based on union bound techniques and the
distance spectrum over the AWGN [41, Ch. 6] and Rayleigh
fading channels [42, Ch. 12]. The decoder operates over a
trellis with n states with k = 1 information bits per trellis
interval.

A. UNION BOUND
The union bound on the first error event probability, Pfe(e),
is an important tool in the theoretical performance analysis of
trellis codes and is closed related to the bit error rate (BER),
and is bounded by [41, Ch. 6], [43]

Pfev(e) ≤
∑
c

P(c)
∑
e

P (c→ e) (7)

where e is the erroneous sequence that starts to diverge from
the transmitted sequence c at a fixed trellis interval and
remerges exactly once at some time later (pairwise simple
error event), and P (c→ e) is the pairwise error probability.
In particular, for the AWGN channel

P (c→ e) = Q

√ Ēs
2N0

d2(c, e)

 (8)

where d2(c, e) is the squared Euclidean distance (normal-
ized by the average energy Ēs) between c and e, and the
function Q(·) is defined as

Q (α) =
∫
∞

α

1
√
2π

e−
x2
2 dx.

For a first error event of length L, d2(c, e) =
∑L

k=1 |ck−ek |
2.

Therefore

Pfev(e) ≤
∑
c

P(c)
∑
e

Q

√d2(c, e) Ēs
2N0

 . (9)

Let the infinite set of pairs {(Bi, d2i )} be the distance spectrum
(the distances are in ascending order), where the smallest
distance is denoted by free distance (dfree) and Bi is the
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average number of bit errors on erroneous sequences with
distance di. The BER is then bounded by [41, Ch. 6]:

BER ≤
∑
i

1
k
BiQ

√d2i Ēs
2N0

 . (10)

The distance spectrum is typically found from the transfer
function T (x, y) of the trellis code

T (x, y) =
∞∑

d=dfree

∞∑
b=1

cb,d xb yd
2

(11)

where cb,d is the average number of single error events with
information Hamming distance b and Euclidean distance d .
The calculation of the transfer function for trellis codes is

detailed in [41], [44], and [45]. By applying the inequality

Q

√d2i Ēs
2N0

 < e
−d2i

Ēs
4N0 (12)

the BER is written as

BER ≤
1
k
∂ T (x, y)
∂x

|

x=1,y=e
−

Ēs
4N0

. (13)

We now consider the fading channel, where the fading
variables associated to a first error event (|h1|, · · · , |hL |)
are independent and identically distributed Rayleigh random
variables. Thus

P (c→ e) = E

Q
√√√√ Ēs

2N0

∑
c,e

|hk |2|ek − ck |2

 (14)

whereE[·] denotes expected value. Using the alternative form
for the Q function known as Craig’s formula [42]

Q(x) =
1
π

∫ π/2

0
e−

x2

2 sin2 θ dθ (15)

we obtain [42, Ch. 12]

P (c→ e) =
∏
k

sin2 θ

sin2 θ + Ēs
4N0
|ek − ck |2

.

Let the transfer function be defined as

T (x, θ) =
∑
c

P(c)
∑
e

∏
k

xbk
sin2 θ

sin2 θ + Ēs
4N0
|ek − ck |2

(16)

where bk is the number of bit errors in the k-th interval of the
first error event. The calculation of T (x, θ) can be performed
using standard techniques proposed in [41], [44], and [45].
Therefore,

BER <
1
k
1
π

∫ π/2

0

[
∂

∂x
T (x, θ)|x=1

]
dθ. (17)

B. NUMERICAL RESULTS
We apply the union bounds (13) and (17) to evaluate the BER
of the proposed communication system. The SNR is defined
as

SNR = Ēs/N0 (18)

where Ēs is the average energy of the typical transition
curves. Firstly, we compare the BER performance of systems
employing the variable ρ and the other individual variables
and find that better results are achieved with the variable ρ for
the two attractors considered in this work. Therefore, we only
consider systemswith this variable in this subsection.We also
investigate the optimal gain that amplifies some transition
curves (as discussed in Subsection III-C) that minimizes that
BER for a given SNR. This gain is approximately 3.5 for the
range of SNR considered.

Figs. 11 and 12 present the union bound on the BER (solid
curves) for the Rössler and Lorenz based communication
systems, respectively, with two (n = 2), four (n = 4), and
eight (n = 8) states over the AWGN and Rayleigh channels.

FIGURE 11. Union bound on BER versus SNR (solid curves) for the
Rössler attractor communication systems with two, four and eight states
over the AWGN and Rayleigh flat fading channels. Simulations are shown
in dashed curves. The chaotic signals are generated by the variable ρ.

FIGURE 12. Union bound on BER versus SNR (solid curves) for the Lorenz
attractor communication systems with two, four and eight states over the
AWGN and Rayleigh flat fading channels. Simulations are shown in
dashed curves. The chaotic signals are generated by the variable ρ.
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Simulation results are shown in dashed curves. The derived
upper bounds are quite effective in predicting the perfor-
mance of the proposed systems and are in a good agree-
ment with simulation results in the low BER region (BER
below 10−6). A comparison of the curves of these figures
reveals that, for the AWGN channel, the Lorenz system with
n = 2 outperforms the corresponding Rössler system. When
n = 4 and n = 8 the performance of the Lorenz systems
is better for high SNR. For the Rayleigh fading channel,
the Rössler system achieves better performance for the three
values of n considered. The trade-off between complexity (by
increasing n) and BER is shown in these figures.
Fig. 13 compares the performance of the proposed scheme

with that of the chaos trellis coded modulation proposed in
[21] and [22]. The latter schemes combine a convolutional
code with n states and a chaotic map at the transmitter and
the decoder uses the Viterbi algorithm over a trellis with n
states. It is well known that the complexity of this algorithm is
proportional to the number of states. The performance of the
Rössler and Lorenz systems with 8 states is better than that
of the system in [21] with 256 states. However, the system
in [21] with 512 states performs better than the proposed
schemes for a BER below 10−6 with substantially more
states, and consequently with higher decoding complexity.
It is analyzed in [22] a chaos trellis coded modulation with
a convolutional code with 32 states combined with a chaotic
map, the multi tent map (mTM) and the multi Bernoulli shift
map (mBSM). The scheme in [22] with 32 states and the
mBSM map outperforms the proposed systems with 8 states.
The curve of the non-chaotic system composed of a convolu-
tional code with 8 states and a BPSK modulation (marked
with label CC+BPSK) is also shown for reference pur-
poses. A BER comparison for the Rayleigh channel is shown
in Fig. 14. The scheme with 32 states and the mBSM map
provides the best results. Table 1 summarizes the complexity
versus performance tradeoff displayed in these figures, where
the SNR (in dB) required to achieve a givenBER (we consider

FIGURE 13. BER comparison of the Rössler and Lorenz systems with
eight states (n = 8), the chaos trellis coded modulation system with
256 and 512 states [21], and the multi tent map (mTM) and multi
Bernoulli shift map (mBSM) with 32 states [22]. The label CC+BPSK
stands for a convolutional code with BPSK modulation. AWGN channel.

FIGURE 14. BER comparison of the Rössler and Lorenz systems with
eight states (n = 8) and the chaos trellis coded modulation system with
the multi tent map (mTM) and multi Bernoulli shift map (mBSM) with
32 states [22]. Rayleigh channel.

TABLE 1. SNR values (in dB) for chaotic communication systems over
AWGN and Rayleigh fading channels to achieve BER = 10−6.

BER = 10−6) is shown for the AWGN and Rayleigh fading
channels. For example, for the AWGN channel, the mBSM
scheme saves 0.8 dB compared to the Lorenz attractor with
n = 8 at the expense of an increase in the number of states.

C. ENCODING OF MULTIPLE BITS
The partitioning procedure described in the previous sections
implies two possible transitions from each state and the tran-
sitions curves, constructed from the variable ρ, carry one
information bit.

The encoding of multiple bits per chaotic waveform
improves the spectral efficiency of the communication sys-
tem [46]. In this case, k bits are mapped into 2k distinct
transition curves generated by the chaotic attractor at each
signaling interval. Therefore, a state diagram for this scheme
has 2k transitions diverging from each state. To accomplish
this goal, it is possible to combine the three individual vari-
ables of the chaotic attractor (along with their inversions),
x, y and z, to define all transition curves. To illustrate this
procedure, we detail the design of a communication system
based on the Rössler attractor with four states and k = 2 and
k = 3.
When k = 2, the system requires four transition curves for

each state transition to encode the sequences {00, 01, 10, 11}.
Fig. 15 shows the state diagram and a possible labeling of
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FIGURE 15. Labeled state diagram for the Rössler attractor for n = 4 and
k = 2.

the state transitions. We employ antipodal curves in parallel
transitions and choose individual variables that maximize
the distance between the transition curves diverging from
and converging to each state. For example, in state A1 the
mapping is

00 −→ xA1B1
10 −→ −xA1B1
01 −→ yA1B2
11 −→ −yA1B2 .

When k = 3, it is necessary to combine the individual
variables. Again, from a distance analysis, we choose chaotic
signals generated by x, y, x + y and y + z. Employing these
four signals and their inversions, the eight required transition
curves at each state are defined. For example, a mapping in
state A1 is

000 −→ xA1B1
001 −→ −xA1B1
010 −→ yA1B2
011 −→ −yA1B2
100 −→ (x + y)A1B1
101 −→ −(x + y)A1B1
110 −→ (y+ z)A1B2
111 −→ −(y+ z)A1B2 .

FIGURE 16. BER versus SNR for the Rössler attractor communication
system with four states and k = 1, k = 2 and k = 3 over AWGN and
Rayleigh fading channels.

Fig. 16 shows the performance of the system with k = 1
(using variable ρ), k = 2 and k = 3 over AWGN and
Rayleigh fading channels. In the AWGN channel, the case
k = 1 shows a performance gain of approximately 1.2 dB
and 3 dB for a BER 10−5 in comparison to k = 2 and
k = 3, respectively. The encoding of higher number of bits
per waveform is possible if we use another combinations of
the individual variables.

VII. CONCLUSIONS
In this work, we proposed amethodology to design communi-
cation systems based on three-dimensional chaotic attractors
and detailed the construction of the system for the Rössler and
Lorenz attractors. A state diagram models the structure of the
symbolic dynamics that represents the dynamical evolution
of the chaotic flow and the transitions curves are segments of
chaotic trajectories that connect two states of the diagram.
We also proposed procedures to modify the chaotic wave-
forms generated by the chaotic attractors in order to obtain
performance gains at the cost of increasing complexity. We
analyzed the performance of the proposed systems over
AWGN and Rayleigh fading channels. An interesting future
direction is to employ capacity approaching error correction
codes, like turbo and LDPC codes, to improve the perfor-
mance of the proposed system.
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