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ABSTRACT With the rapid growth of multimedia data (e.g., image, audio, and video) on the Web,
the learning-based hashing techniques, such as deep supervised hashing, have proven to be very efficient
for large-scale multimedia search. The recent successes seen in the learning-based hashing methods are
largely due to the success of the deep learning-based hashing methods. However, there are some limitations
to the previous learning-based hashing methods (e.g., the learned hash codes containing repetitive and highly
correlated information). In this paper, we propose a novel learning-based hashing method, named deep
attention-guided hashing (DAgH). DAgH is implemented using two stream frameworks. The core idea is to
use the guided hash codes which are generated by the hashing network of the first stream framework (called
the first hashing network) to guide the training of the hashing network of the second stream framework
(called the second hashing network). Specifically, in the first network, it leverages an attention network and
hashing network to generate the attention-guided hash codes from the original images. The loss function
we propose contains two components: the semantic loss and the attention loss. The attention loss is used to
punish the attention network to obtain the salient region from pairs of images; in the second network, these
attention-guided hash codes are used to guide the training of the second hashing network (i.e., these codes
are treated as supervised labels to train the second network). By doing this, DAgH can make full use of the
most critical information contained in images to guide the second hashing network in order to learn efficient
hash codes in a true end-to-end fashion. Results from our experiments demonstrate that DAgH can generate
high-quality hash codes and it outperforms the current state-of-the-art methods on three benchmark datasets:
CIFAR-10, NUS-WIDE, and ImageNet.

INDEX TERMS Supervised learning-based hashing, attention-guided strategy.

I. INTRODUCTION
In recent years, the amount of multimedia data (text, image,
audio and video data) has been growing exponentially.
In order to solve the problems of huge storage requirements
and learning capacity in dealing with big data, hashing has
been the most popular technique for effective binary rep-
resentation in many tasks due to its fast retrieval and stor-
age efficiency. Generally speaking, the hashing technique,
a widely-studied solution to approximate nearest neighbor
search, aims to map the original high-dimensional features
to a low-dimensional representation, or a short code, called
hash code. Then, re-ranking these short codes (hash codes) in
response to each query task, requires only a few computations
of the Hamming distance operation for efficient multimedia
retrieval (i.e., the hashing technique can use a few Bytes
to encode one image of several MBytes or one video of

several GBytes). Due to the advantages above, hashing has
been applied to many large-scale image retrieval [1]–[4],
text-image cross-model retrieval [5], and person re-
identification tasks [6]. There are two categories of hashing:
data-independent and data-dependent hashing. In this paper,
we will build data-dependent hashing methods for gen-
erating high quality hash codes, which can capture the
potential image representations to achieve better perfor-
mance than data-independent hashing methods, e.g., Spectral
Hashing (SH) [7].

Data dependent methods can be further categorized into
supervised and unsupervised methods. Unsupervised meth-
ods retrieve the neighbors under some kinds of distance
metrics, e.g., Iterative Quantization (ITQ) [8]. Compared to
the unsupervised methods, supervised methods utilize the
semantic labels to improve performance. Many researchers
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have demonstrated that labels of datasets can improve the
quality of hash codes and achieve some success along this
direction, e.g., Supervised Hashing with Kernels (KSH) [9],
Distortion Minimization Hashing (DMS) [4], Minimal Loss
Hashing (MLS) [11], Order Preserving Hashing (OPH) [12],
Hamming Distance Metric Learning [13], Semantic Hash-
ing [14], Supervised Discrete Hashing (SDH) [15]. However,
the quality of hash codes generated is highly dependent on
the way feature selection is done, and these methods use
hand-crafted features for representation. The need to perform
manual feature selection has been a big limitation to the
success of these methods.

In the last few years, deep learning networks (e.g., convo-
lutional neural networks) have been shown to have powerful
feature extraction capabilities in image processing. They are
able to extract high-level features, which leads to attaining
much higher performance levels than using hand-crafted fea-
tures in many image tasks. To solve the limitations of tra-
ditional data-dependent hashing methods, this paper focuses
on a learning-based hashing method that adopts deep neural
networks as the nonlinear functions to enable end-to-end
learning of learnable representations and hash codes. These
learning-based methods [10], [16]–[18], which use pairwise
labels to jointly learn similarity-preserving representations
and optimize the pair-wise loss and quantization loss, have
exhibited high performance on many benchmark tests.

Although recent learning-based hashing methods have
achieved significant progress in multimedia retrieval, there
are some limitations of previous learning-based hashing
methods in generating long hash codes (say, more than
24 bits), e.g., the learned long hash codes contain repetitive
and highly correlated information. Any natural image will
contain some useless information, or some interference infor-
mation that is not relevant for a particular task. Images of
the same category may contain completely different back-
grounds, different categories of images may have similar
backgrounds, directly generating the hash codes by a stan-
dard learning-based method (as shown in Figure 1) will in
practice result in a higher possibility of having correlated
bits as the length of the hash codes increases. Then, highly
correlated bits have a large impact on retrieval performance
(i.e., the cost-performance ratio decreases with increase
in the length of the hash code). As an extreme example,
if 256-bit hash codes are positively and negatively completely
correlated, the performance will be similar to that of the
1-bit hash codes. To solve these limitations, in this paper,

FIGURE 1. The basic architecture of supervised learning-based hashing.

we deal with the salient regions and backgrounds of the
images separately. Specifically, the main idea of the paper is
to firstly adopt an attention network to generate the attention
images from the original images, (i.e, use visual attention
models to localize regions in an image to capture features
of the regions) and then use pairwise information to generate
the attention-guided hash codes from the attention images.
Secondly, we use these attention-guided hash codes to guide
the training of the second hashing network (i.e., these codes
are treated as supervised labels to train the second network).

The contributions of this work are summarized as follows:
1) The proposed DAgH model combines two stream

frameworks. The first stream framework consists of an
attention network and a hashing network (the first hash-
ing network). The role of the first stream framework is
to generate the attention-guided hash codes. A novel
method of using the semantic loss and attention loss to
train the first stream framework is proposed. The sec-
ond stream framework contains another hashing net-
work i.e. the second hashing network. This hashing
network is guided by the attention-guided hash codes
which were generated from the first stream framework.
The second stream framework is trained by the pro-
posed guide loss. To the best of our knowledge, this
is the first learning-based hashing method that uses its
own attention-guided hash codes to guide the training
of the original image hashing network.

2) In order to guarantee the quality of the final hash
codes and eliminate the quantization error, the DAgH
model uses a continuous activation function to ensure
that the first stream framework is a true end-to-end
network and a threshold activation function to ensure
that the second stream framework directly generates
the final hash codes. In the first stream framework,
we chose to use a continuous ATanh activation func-
tion for training because it’s easier to optimize than
using a sign function with no extra quantization loss.
As a result, it shows stronger capacity in learning high
quality attention-guided hash codes. When the second
stream framework is trained by the attention-guided
hash codes, we can use a sign activation function to
constrain the output of the second stream framework
for generating the binary codes directly. These opera-
tions trade off efficacy for efficiency.

The remainder of this paper is structured as follows.
In Section II, we briefly introduce the related works.
In Section III, we highlight the motivation of our method
and provide some theoretical analysis for its implementation.
In Section IV, we introduce our experimental results and
corresponding analysis and finally in Section V conclude the
paper.

II. RELATED WORK
A. HASHING
By representing multimedia data as binary codes and taking
advantage of fast query retrieval, hashing is a novel technique
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that can resolve the information retrieval problems in this
multimedia era. Wang et al. [21] have provided a comprehen-
sive literature survey that covers the most important methods
and latest advances in image retrieval.

We can divide the hashing methods into two categories:
data-independent and data-dependent methods. In the early
researches, Locality Sensitive Hashing (LSH) was one of the
data-independent methods used. LSH hashes input items so
that items that are similar have a high probability of being
mapped to the same ‘‘buckets’’ (the number of buckets being
much smaller than the universe of possible input items) [22].
LSH and several variants (e.g., kernel LSH [23] and p-norm
LSH [24]) are widely used for large-scale image retrieval.
However, there are many limitations of data-independent
methods, e.g., the efficiency is low and it requires longer hash
codes to attain high performance. Due to the limitations of
the data independent methods, current researchers focus on
using a variety of machine learning techniques to learn more
efficient hash functions based on a given dataset.

Data dependent methods can be further categorized
into supervised, semi-supervised and unsupervised methods.
Unsupervised hashing methods learn hash functions that
encode data points to binary codes by training from unlabeled
data. Typical learning criteria include minimize reconstruc-
tion error [25]–[28] and graph structure learning [29], [30].
Iterative Quantization (ITQ) is one of the unsupervised meth-
ods in which the projection matrix is optimized by iterative
projection and thresholds according to the given datasets [8].
Compared to the semi-supervised and unsupervised methods,
supervised methods utilize the semantic labels to improve
performance. Many researchers have proposed along this
direction and have achieved some success (They have demon-
strated that labels of datasets can improve the quality of hash
codes), e.g., Supervised Hashing with Kernels (KSH) [9],
Distortion Minimization Hashing (DMS) [4], Minimal Loss
Hashing (MLS) [11], Order Preserving Hashing (OPH) [12],
Hamming Distance Metric Learning [13], Semantic Hash-
ing [14], Supervised Discrete Hashing (SDH) [15]. The hash
codes are generated by minimizing the Hamming distance
between similar pairs and maximizing the Hamming distance
between dissimilar pairs.

Recently, deep convolutional neural networks have yielded
amazing results on many computer vision tasks, this success
has attracted the attention of researches of learning-based
hashing methods. Convolutional Neural Network Hash-
ing (CNNH) is one of the early works to use a learning-
based hashing method, which utilize two stages to learn
the image features and hash codes. Following this work,
many learning-based hashing techniques have been proposed,
e.g., Deep Semantic Ranking Hashing (DSRH) [31] which
learns the hash functions by preserving semantic similarity
between multi-label images. Deep Visual-Semantic Quan-
tization (DVSQ) [1] generates the compact hash codes by
optimizing an adaptive margin loss and a visual-semantic
quantization loss over multi-networks. Deep Supervised
Hashing (DSH) [32] designs a loss function to pull the outputs

of similar pairs of images together and pushes the dissimilar
ones far away. Its outputs are relaxed to real values to avoid
optimizing the non-differentiable loss function in Hamming
distance. Network In Network Hashing (NINH) [33] adopts
a triplet ranking loss to capture the relative similarities of
images. Deep Supervised Discrete Hashing (DSDH) [34]
uses both pairwise label and classification information to
learn the hash codes under a single steam framework.
Guo et al. [35] show that existing DSH can achieve good
results with short hash codes (e.g., 8 to 24 bits) but only lead
to marginal performance gain with long hash codes (e.g.,
128 bits). They try to divide a single network into many
sub-networks to generate hash codes respectively. Extensive
researches have taken advantage of deep learning techniques
to achieve great improvements compared to traditional data-
dependent hashing methods.

However, existing learning-based methods do not consider
the high correlation problem of long hash codes. Although
convolutional neural networks have powerful capabilities in
image feature extraction, they do not deal with the irrelevant
features in the image. When long hash codes need to be gen-
erated, the correlation problem of the hash codes cannot be
ignored. In this paper, we introduce a high-quality hash code
generation method, where an attention network is embedded
to mine salient regions for guiding the standard supervised
learning-based hashing framework.

B. SALIENT REGIONS LEARNING
The key challenge of learning high quality hash codes is
to locate the salient regions in images. Many methods for
locating salient regions have been proposed in recent years.
Previous methods of locating the salient regions can be cat-
egorized into traditional methods and deep learning based
methods.

Traditional methods include techniques such as [36]–[38]
locating the salient regions by unsupervised methods.
Following these works, some hashing methods locate salient
regions to improve performance in the unsupervised manner.
Shen et al. [39] proposed a cross-modal hashing method
which uses RPN [40] to detect salient regions. Then, the two
cross-modal networks are used to encode the region infor-
mation, the semantic dependencies and cues between the
words. DPH [41] uses GBVS [42] to count the scores for
each pixel. Then, a collection of salient regions are generated
based on increasing threshold scores. However, traditional
methods use ready-made models to locate salient regions
and therefore, when encountering a new dataset, there is no
guarantee that the learned salient regions are accurate.

Due to the success of deep learning, most of the methods
depend on powerful deep features, which have shown a
higher performance gain than hand-crafted features on image
classification [43]–[45], [47]. Zhao et al. [48] adopted sim-
ilarity labels to train part model for person re-identification.
Lin et al. [49] proposed a bilinear structure, which computes
the pairwise feature interactions by two-stream convolu-
tional neural networks to capture the different salient regions
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between input images and achieved high performance in bird
classification. RA-CNN [50] is a recurrent-attention convo-
lutional neural network, which can discover salient regions
and learn region-based features recursively. Motivated by
Fu et al. [50] and Jin [51], we adopt a novel attention network
to generate the attention image and use a hashing network to
learn the attention-guided hash codes. Then use the generated
attention-guided hash codes to guide the second hashing
network to learn the final hash codes.

III. DEEP ATTENTION-GUIDED HASHING
In this section, we first give the problem formulation, then
show the details of our proposedmethod, including the frame-
work, loss function and training strategy, and finally show its
extensions to out-of-sample data.

A. PROBLEM FORMULATION
In similarity retrieval systems, we are given a training set
X = {xi}Ni=1, each image represented by a d-dimensional
feature vector xi ∈ Rd , where X ∈ Rd×N . In supervised
learning-based hashing, the pairwise information S = {sij}1

is derived as:

sij =

{
1, if images xi and xj share same class label
0. otherwise

(1)

Supervised learning-based hashing method learn a non-
linear function f : 7→ b ∈ {−1, 1}K from an input space
Rd to Hamming space {−1, 1}K with deep neural network.

1Note that one image may belong to multiple categories.

This method generally contains three steps: 1) using a net-
work for learning deep features of each image xi, 2) using
a fully-connected hashing layer (fch) for transforming the
deep features into K -dimensional continuous representation
ωi ∈ RK , 3) using a sign function to quantize the con-
tinuous representation ωi into K -bit binary hash code bi ∈
{−1,+1}K . The similarity labels S = {sij} can be con-
structed from semantic labels of data points or relevance
feedback in real retrieval systems. In addition, the threshold
function sign(·) is an element-wise sign function defined as
follows:

sign(x) =

{
1, if x ≥ 0
−1. otherwise

(2)

B. NETWORK ARCHITECTURE
To address the limitations of previous learning-based hash-
ing methods, we propose a novel learning-based method.
Figure 2 shows the proposed DAgH model. Our method
includes two stream framework. The first stream contains an
attention network and a hashing network. The attention map
is the most critical part of our network, since it allows the
network to know which regions should be focused on. Then
the hashing network uses the attention images to generate the
attention-guided hash codes. Thereafter, in the second stream,
these attention-guided hash codes are treated as supervised
labels to train an image hashing network which can gener-
ate the final hash codes for the input images. The details
of all stream frameworks are described in the following
subsections.

FIGURE 2. The proposed architecture for deep attention-guided hashing (DAgH). DAgH consists of two stream frameworks: 1) the first stream framework
contains an attention network based on FCN-16 network for learning the attention image pair, the attention processing contains two stages. Then,
the hashing network uses AlexNet (or ResNet) for learning the attention-guided hash codes. The first stream framework consists of two loss functions:
the semantic loss and the attention loss, and uses a continuous ATanh activation function for training. 2) the second stream framework contains a
hashing network that adopts AlexNet for learning hash codes, it then uses the attention-guided hash codes for its supervised labels, and the final hash
codes are generated directly by the second stream framework using sign activation function. (Best viewed in color.)
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C. THE FIRST STREAM FRAMEWORK
As mentioned previously, this stream framework is a true
end-to-end deep model which includes an attention network,
i.e., Attention(·|2a), and a hashing network, i.e., Hash(·|21).
In this subsection, we will introduce the main processes of
the two networks and the details of the network training.

1) THE ATTENTION NETWORK
The role of the attention network is to find salient regions in
the original image that need to get attention. These regions
are the most representative of the theme of the image, so they
can be used for better salient region restoration, and for
the first hashing network to focus the assessment on. This
attention processing consists of two stages. In the first stage,
the proposed FCN-based attention network [62] is used to
map the original input image pair [xi, xj] to the preliminary
attention image pair [x̂i, x̂j]. Inspired by Jin [51], to build a
learnable attention network and guarantee that it generates
accurate attention images, we define a normalization function
to restrict the value of each pixel between 0 and 1:

normi(p, q) =
xi(p, q)−min(xi)
max(xi)−min(xi)

, (3)

where (p, q) denotes the location (p, q) in an image x, max(x)
denotes the maximum pixel value in an image x, min(x)
denotes the minimum pixel value in an image x.
In the second stage, the attention image pair [x̃i, x̃j] is com-

puted through a Hadamard product ⊗ of the original image
pair [xi, xj] and the normalization function of the preliminary
attention image pair [x̂i, x̂j]:

[x̃i, x̃j] = [xi, xj]⊗ norm[x̂i,x̂j](p, q). (4)

Then we can encode the attention image pair [x̃i, x̃j] by the
first hashing network. The attention network can be gradu-
ally fine-tuned their parameters through (10) to mine salient
regions automatically.

2) THE FIRST HASHING NETWORK
The generated attention image pair [x̃i, x̃j] as the input of the
first hashing network and the semantic information as the
pairwise label to train the first hashing network. After the first
hashing network is trained, the attention-guided hash code
Batt = {batti }

N
i=1 is calculated through the trained hashing

network:

batti = sign(Hash(x̃i|21)), (5)

where batti is the attention-guided hash code, 21 denotes the
parameters of the first hashing network,2 and x̃i=Attention
(xi|2a) is the attention image that is input into the first hash-
ing network and generated by the attention network,2a is the
parameters of the attention network.

2Note that, the ATanh activation function(the detail about the ATanh
activation function can be found in (11)) is used to train the first stream
framework (8) and the sign activation function is used as the final output
of the first stream framework.

The no-quantization loss training strategy of the first
stream framework is expatiated as follows:
Similarity Measure
For a pair of binary hash codes bi and bj, the relationship
between their Hamming distance distH and inner product
〈·, ·〉 is formulated as follows: distH = 1

2 (K − 〈bi, bj〉).
The larger the inner product of two hash codes, the smaller
the Hamming distance, and vice versa. Therefore, the inner
product through two hash codes is a reliable criterion for
evaluating the similarity between them.

In supervised learning-based hashing method, the
Maximum Likelihood (WL) estimation of the hash codes
B = [b1, b2, . . . , bN ] for all N images is:

logP(S|B) =
∏
sij∈S

logP(sij|B), (6)

where P(S|B) denotes the likelihood function. Given each
image pair with their similarity label ([xi, xj], sij), P(sij|bi, bj)
is the conditional probability of sij given the pair of corre-
sponding hash codes [bi, bj], which is naturally defined as
logistic function:

P(sij|bi, bj) =

{
σ (〈bi, bj〉), sij = 1
1− σ (〈bi, bj〉), sij = 0

(7)

where σ (x) = 1/(1+ e−x) is the sigmoid activation function,
〈bi, bj〉 = 1

2b
T
i bj.

Loss Function
Semantic Loss Considering the similarity measure,the fol-
lowing loss function is used to learn the hash codes:

Lsem = − logP(S|B) = −
∑
sij∈S

log(sij|B)

= −

∑
sij∈S

(sij〈bi, bj〉 − log(1+ exp(〈bi, bj〉))), (8)

where bi = sign(ωi), which converts the K -dimensional rep-
resentation ωi to exactly binary hash codes.3 Equation (8) is
the negative log likelihood loss function, which represents the
Hamming distance of two similar images that are as small as
possible, and the Hamming distance of two dissimilar images
that are as large as possible. Then, we define an attention loss
to train the attention network to capture some salient regions
of the image.

3) ATTENTION LOSS
In training the attention network, we denote the contin-
uous representation pair of fch layer (also called binary-
like codes) as [ωi, ωj]. Then we obtain the optimal hash
code pair [bi, bj] from the continuous representation pair
[ωi, ωj]. Given [bi, bj] ∈ {−1, 1}k , the cosine similarity
between the continuous representation pair can be defined as

cos(ωi, ωj) =
ωTi ωj

||ωi||2||ωj||2
, which is in the range of (−1, 1).

3Note that, Equation (8) need to first learn the continuous representa-
tion ωi, which are quantized to binary values in a separated operation using
sign function, this will result in quantization errors.
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Therefore, we use cos(ωi,ωj)+1
2 to restrict the similarity value

to (0, 1). The attention loss is written as below:

Latt =
∑
i,j

||Sij −
cos(ωi, ωj)+ 1

2
||2

+

∑
i,j

max(0, λ− ||Sij −
cos(ωi, ωj)+ 1

2
||2), (9)

where λ > 0 is a margin parameter. The attention loss will
punish the attention network to make it better capture the
salient regions.

Overall, combining Equation (8) and (9), the loss of the
first stream framework can be written as:

min
2a,21

Lsem + νLatt , (10)

where 2a,21 are the first stream framework parameters
efficiently optimized using standard back-propagation with
automatic differentiation techniques.
End-to-End Learning
In many of the recent hashing methods [8], [15], [16], [32],
[34], [51]–[54], quantization error is an important part of their
optimization process, which will directly result in retrieval
quality. These hashing methods first need to learn continuous
representations (binary-like codes) through sigmoid and tanh
functions, then, the binary-like codes are binarized into hash
codes in a separate operation of sign thresholding. Therefore,
the gap between the binary-like codes and hash codes is called
the quantization error. For examples, in [51], the quantization
error is defined asLreg =

∑
i ||ωi−bi||1, in ITQ [8], the quan-

tization error is defined as LITQ = ||ωi − bi||2, where bi =
sign(ωi) ∈ {1,−1}K . Although the optimization methods
propose to reduce the quantization error, the activations of the
fch layer are still not binary. This is because a sign function is
non-smooth and non-convex, and therefore has no gradient
(i.e., the gradient of sign function is zero for all non-zero
inputs, which makes the classical back-propagation infeasi-
ble for training deep networks.). Cao et al. [55] proposed
a justifiable approach based on the continuation of the tanh
function, which approaches the sign function with the scale
parameter β in its limit: limβ→∞ tanh(βx) = sign(x), they
prove the convergence of this optimization when adopting a
sequence of increasing values of β during training. However,
in order to ensure that the continuous tanh function is differ-
ential everywhere that can be optimized via standard back-
propagation, a regularization term should be considered [56].
Such activation function is named as Adaptive Tanh (ATanh):

bi = tanh(βωi)+ ε ||
1
β
||
2
2, (11)

where ε is the regularization constant. The second term
of (11) is a regularization term. The regularization term is a
penalty to the standard tanh(βxi), when β gradually increases,
the ATanh function approaches the sign function and has the
reliable-ability to generate hash codes. When β → ∞,
the optimization problem will converge to the original deep

learning to hash problem in (8) with sign(x) activation func-
tion. We follow the empirical parameters setting and first set
the parameter β0 = 1 as the initialization. At each epoch T ,
we increase β and fine-tune the first stream framework of
DAgH in the next epoch. With the parameter β → ∞

of the (11), the network will converge to the first stream
framework of DAgH with sign as activation function, which
can generate high-quality attention-guided hash codes as we
required. The time consumption of ATanh as the activation
function in the whole network is negligible (i.e., both forward
and backward computation is negligible) [56]. Different from
the previous hashing methods mentioned above, there is no-
extra quantization error within such an end-to-end hashing
net, hence it shows stronger capacity in learning high-quality
attention-guided hash codes.

Algorithm 1 Deep Attention-Guided Hashing (DAgH)
Input Training Image pair with their similarity label
([xi, xj], sij) in the first stream framework, a sequence 1 =
β0 < β1 < β2 . . . < βm = ∞. Training Image xi and the
attention-guided hash codes Batt in the second stream frame-
work. Training epoches T1 and T2 of the first and second
stream framework optimizations, respectively.

Output First stream framework: sign(Hash(Attention(xi|
2a)|21)); Second stream framework: sign(Hash(xi|22)).

BeginConstruct the pairwise informationmatrix S according
to (1).
1. for t = 1 : T1 epoch do
2. Compute [batti , b

att
j ] according to (5)

3. Train the first hashing network (8) with (11) as activation
4. Compute 2a,21 according to (10)
5. Set converged the first stream framework as next epoch
initialization
6. end for
7. return sign(Hash(Attention(xi|2a)|21)), βm→∞.

1. for t = 1 : T2 epoch do
2. Compute ỹ2i according to ỹ2i = Hash(xi|22)
3. Compute 22 according to (14)
4. Set converged the second stream framework as next epoch
initialization
5. end for
6. return sign(Hash(xi|22)).

D. THE SECOND STREAM FRAMEWORK
As shown in Figure 2, we directly adopt a pre-trainedAlexNet
as the base of the second hashing network. After obtaining
the attention-guided hash code Batt , we thereafter utilize it as
the supervised labels and the original images X = {xi}Ni=1
to train the hashing network. When the hashing network is
trained, the final hash codes bfi are computed through the
trained hashing network:

bfi = sign(Hash(xi|22)), (12)
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where bfi is the final hash code,22 denotes the parameters of
the second hashing network, and tanh(·) as activation of the
fch layer of the hashing network.
The details of learning strategy are explained as follows:

Attention-Guided Strategy
As mentioned above, when the first stream framework is
trained, the generated attention-guided hash codes are used
as the supervised labels to guide the second hashing network.
Considering the powerful image feature extraction ability of
convolutional neural networks, here we adopt the famous
and widely used AlexNet, which is commonly used in base-
line models. The AlexNet consists of 5 convolutional layers
(c1 − c5), and 2 fully-connected layers (fc1 − fc2), and
is pre-trained on the ImageNet dataset. To obtain the hash
codes, we add a k-nodes hash layer, called fch, each node of
fch layer corresponds to 1 bit in the target hash code. With the
fch layer, the previous layer representation is transformed to a
k-dimensional representation. The architecture of the second
hashing network is shown in Figure 2.

More specifically, let ỹ2i = Hash(xi|22) be the output of
the second hashing network, where xi is the original input
image and22 is the parameter of the second hashing network.
Since our goal is to use the attention-guided hash code batti
to guide the second hashing network through sigmoid cross-
entropy loss function, we need to convert the value of −1 in
the attention-guided hash codes to 0 so that the value of the
attention-guided hash code is batti ∈ {0, 1}

K . We define the
following likelihood functions:

P(battik |ỹ
2
ik ) =

{
σ (ỹ2ik ), battik = 1
1− σ (ỹ2ik ), battik = 0

(13)

where battik is the hash code corresponding to the k-th bit of
the i-th element in batti , ỹ2ik is the output of the k-th node in
fch layer of the i-th element, and σ (·) is a sigmoid function as
shown in (7).
Loss Function
Guide Loss In order to use the attention-guided hash codes
to guide the second hashing network, we define a guide loss,
which is written as follows:

Lg = −
1
KN

K∑
k=1

N∑
i=1

logP
(
battik |ỹ

2
ik

)
= −

1
KN

K∑
k=1

N∑
i=1

[logPik b
att
ik · log(1− Pik )(1−b

att
ik )]

= −
1
KN

K∑
k=1

N∑
i=1

[
battik logPik +

(
1− battik

)
log (1− Pik)

]
,

(14)

where N is the number of training images, K is the number
of bits in each hash code, and Pik = σ (ỹ2ik ).

In order to minimize (14), we use the Back-Propagation
(BP) algorithm to learn the parameter 22 of the second
hashing network with stochastic gradient descent (SGD).

Specifically, we take the derivative of the guide loss:

∂Lg
∂ ỹ2ik
=
∂Lg
∂Pik

∂Pik
∂ ỹ2ik

= −
1
KN

(battik
1
Pik
−

1− battik
1− Pik

)(Pik (1− Pik ))

= −
1
KN

(Pik − battik ). (15)

Thereafter, we can obtain ∂Lg/∂22 with ∂Lg/∂ ỹ2ik using
the chain rule, i.e., we can use BP to update the parameter22
of the second hashing network. After training, we obtain the
trained AlexNet model for the final hashing model and the
corresponding image hash codes can be generated by (12).

E. OUT-OF-SAMPLE EXTENSION
After our proposed DAgH model is trained, we can easily
generate its hash code through the second hashing network.
For example, given a new instance xq /∈ X , we directly
use it as the input of DAgH model, then forward propagate
the second hashing network to generate its hash code as
follows:

bq = sign(Hash(xq|22)). (16)

IV. EXPERIMENTS
In order to demonstrate the performance of our proposed
DAgH method, we carried out extensive experiments on
three widely used benchmark datasets, i.e., CIFAR-10,
NUS-WIDE, and ImageNet, to verify the effectiveness of our
method.

A. DATASETS AND SETTINGS
CIFAR-10 [57] dataset consists of 60,000 images with a
resolution of 32×32 in 10 categories (each category has
6,000 images). Each image has only one category. In our
experiment, we randomly selected 100 images per category
(i.e., 1,000 images in total) as the test set, 500 images per
category (i.e., 5,000 images in total) as the training set. The
rest of the images are used as gallery in the testing phase.

NUS-WIDE [58] is a dataset contains that nearly 270K
(260,648) images collected from the public web. It is a
multi-label dataset. There are 81 semantic concepts manually
annotated for evaluating retrieval performance. In our exper-
iment, as in [17] and [34], we selected the 21 most frequent
concepts. We randomly sample 100 images per class (i.e.,
2,100 images in total) as the test set, 500 images per class
(i.e., 10,500 images in total) as the training set. The rest of
the images are treated as the gallery in the testing phase.

ImageNet [59] dataset is a well-known benchmark dataset
for the Large Scale Visual Recognition Challenge (ILSVRC
2015). It contains 1,000 categories with over 1.2M images in
the training set and 50,000 images in the validation set, where
each image has only one category. As in [3] and [54], we ran-
domly selected 100 categories which led to a database with
about 120K images and a query set with about 5,000 images.
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In this dataset, we randomly selected 100 images per class
(i.e., 10,000 in total) as the training set.

B. BASELINES
We compared our proposed DAgH method against some
classic or state-of-the-art hashing methods. We roughly
divided these methods into two groups: traditional hash-
ing methods and learning-based hashing methods. The
traditional hashing methods include unsupervised hash-
ing methods: SH [7], ITQ [8], and supervised hashing
methods: SDH [15], KSH [9]. The learning-based hash-
ing methods include DPSH [52], DHN [16], CNNH [17],
DNNH [33], DSDH [34]. These methods are based on
either AlexNet [19] or CNN-F [60] network architecture. The
AlexNet network and CNN-F network have similar network
architectures (i.e., They consist of 5 convolutional layers
and 2 fully connected layers). As in the traditional hashing
methods, we used DeCAF7 features [61]. For learning-based
methods, we used raw images as input. In fact, in the past
few years, many more advanced networks have been created
such as ResNet [20], WRNs [46]. The aim of our paper
is to demonstrate a novel technique based on AlexNet that
is able to outperform baseline models. If we adopted the
advanced networks, we would be unable to know whether the
performance gain was given by our DAgH method or by the
advanced networks.

We evaluated the image retrieval quality on four metrics:
mean Average Precision (mAP), Precision-Recall curves
(PR), Precision curves within Hamming distance 2
(P@H=2), Precision curves with different Number of top
returned samples (P@N). For fair comparison, we adopted
MAP@1000 for ImageNet and MAP@5000 for other
datasets as in [34]

C. IMPLEMENTATION DETAILS
The DAgH method was implemented on Pytorch and batch
gradient descent was used to train the network. As shown
in Figure 2, our model consists of three networks: an attention
network and two hashing networks. We use a very famous

attention network, i.e., FCN [62] as the base model for the
attention network. As discussed in [62], there are three differ-
ent network models (i.e., FCN-8s, FCN-16s, and FCN-32s).
We use the fusing method of FCN-16s to improve perfor-
mance. Readers can find more details about the attention net-
work in [62]. We used AlexNet for the all hashing networks.
We fine-tuned convolutional layers and fully-connected lay-
ers copied fromAlexNet pre-trained on ImageNet and trained
the hashing layer fch by back-propagation (BP). As the fch
layer is trained from scratch, we set its learning rate to be
10 times that of the lower layers. In our proposed DAgH
method, in batch form are used as the input and every two
images in the same batch constitute an image pair. The param-
eters of our proposed DAgH model are learned by mini-
mizing the proposed loss function. The training procedure,
i.e., DAgH, is summarized in Algorithm 1.
Network Parameters: In our DAgH, the value of

hyper-parameter ν is 50 and λ is 0.3. The parameter ε
of ATanh follows the empirical value of 0.001 in [56].
We use mini-batch Stochastic Gradient Descent (SGD) with
0.9 momentum and the learning rate annealing strategy
implemented in Pytorch. The mini-batch size chosen was
32 and the weight decay parameter selected was 0.0005.

D. RESULTS AND DISCUSSIONS
The mAP results of all methods for different lengths of
hash codes on CIFAR-10, NUS-WIDE, and ImageNet are
listed in Table 1. Results on CIFAR-10 dataset show that the
proposed DAgH method substantially outperforms all other
methods against which it was compared. Compared to tradi-
tional hashing methods, such as, ITQ, the best shallow hash-
ing method using deep features achieves an absolute boost
of 77.83%, 78.25%, 78.74%, and 78.68% corresponding to
different lengths of hash codes, respectively. In addition,
most of the learning-based hashing methods perform better
than the traditional hashing methods. In particular, DSDH,
the state-of-the-art learning-based hashing method, achieves
the best performance among all the learning-based methods.
Compared to DSDH, ourDAgHmethod can achieve absolute

TABLE 1. mean Average Precision (mAP) of hamming ranking for different number of bits on the three image datasets.
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FIGURE 3. The results of DAgH and comparison methods on the CIFAR-10 dataset under three evaluation metrics. (a) Precision-Recall curve @ 48 bits.
(b) Precision within Hamming radius 2. (c) Precision curve w.r.t. top-n @ 48 bits.

FIGURE 4. The results of DAgH and comparison methods on the NUS-WIDE dataset under three evaluation metrics. (a) Precision-Recall curve @ 48 bits.
(b) Precision within Hamming radius 2. (c) Precision curve w.r.t. top-n @ 48 bits.

boosts of 0.68%, 1.90%, 2.9%, and 2.2% in average mAP
corresponding to different lengths of hash codes, respectively.
Similar to the other hashing methods, we also conducted
experiments for large-scale image retrieval. For NUS-WIDE
and ImageNet datasets, if two images share at least one same
label, they are considered to belong to the same category. The
results of experiments using the NUS-WIDE and ImageNet
datasets on Table 1 show that the proposed DAgH method
outperforms the best existing traditional hashing image
retrieval methods (i.e., ITQ) by 41.20% and 5.17% in average
mAP for different lengths of hash codes on these datasets,
respectively. Compared to the state-of-the-art learning-based
hashing method (i.e., DSDH). We achieve absolute boosts
of 1.26% ,3.64% in average mAP for different lengths of hash
codes on these datasets, respectively. These results demon-
strate that our approach can boost the retrieval performance.

We also observe from the Table 1 that the gap between
the learning-based methods and traditional hashing methods
is larger on CIFAR-10 dataset than NUS-WIDE and Ima-
geNet datasets. The reasons are that the number of categories
in NUS-WIDE and ImageNet datasets are more than those
in CIFAR-10 dataset, and each of the image may contain
multiple labels. By carefully comparing the performance of

different bits, we found that our proposed method showed a
higher degree of performance improvement when tested on at
long bits (i.e., 32bits and 48 bits) compared to short bits (i.e,
12bits and 24 bits). This means that our approach can make
the hash codes more informative.

An important indicator for evaluating image retrieval per-
formance is Precision within Hamming radius 2 (P@H=2)
because such Hamming ranking only require O(1) time for
query operations. As shown in Figures 3(b), 4(b), and 5(b),
DAgH achieves the highest P@H=2 results on all the
datasets. In particular, P@H=2 of DAgH with 24 bits
achieves the best performance. This shows that DAgH can
learn more quality hash codes. Norouzi et al. [63] show that
when generating relatively longer hash codes, the Hamming
space will become sparse and few data points will fall within
the Hamming ball with a radius of 2. This is why many
learning-based hashing methods can achieve good image
retrieval performances on short hash codes.

The other important indicators are Precision-Recall
curves (PR) and Precision curves with a different Number
of top returned samples (P@N). These results are shown
in Figures 3(a), 4(a), 5(a) and Figures 3(c), 4(c), 5(c), respec-
tively. We can observe that the performance of our proposed
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FIGURE 5. The results of DAgH and comparison methods on the ImageNet dataset under three evaluation metrics. (a) Precision-Recall curve @ 48 bits.
(b) Precision within Hamming radius 2. (c) Precision curve w.r.t. top-n @ 48 bits.

model (DAgH) is better than the models to which it was com-
pared. For example, using the proposed model, more seman-
tic neighbors are retrieved, which is desirable in practical
applications. In particular, DAgH achieves stable precision
improvement at every recall level test and tests on the number
of top images returned, which is very useful for real-world
practical systems.

E. OTHER ANALYSIS
1) IMPACT OF THE FIRST HASHING NETWORK SELECTION
As shown in Figure 2, (the architecture of DAgH), we lever-
age a hashing network in the first stream framework to
generate the attention-guided hash codes from the attention
images. Intuitively, the performance of the hashing network
could affect the quality of the attention-guided hash codes,
i.e., the better the attention-guided hash codes is, the better
the performance achieved by the second hashing network.
To confirm this, we further design a new variant of DAgH,
i.e., DAgH-ResNet18, which adopts ResNet-18 as the first
hashing network, instead of AlexNet used in previous experi-
ments. ResNet is a well-known convolutional neural network,
and its performance in image processing is better than that
of AlexNet. We carried out experiments on the NUS-WIDE
dataset. The mAP results are shown in Table 2. DAgH-
AlexNet implies that AlexNet was used in the first stream
framework and ResNet-18 was used in DAgH-ResNet18.
From table 2, the following observations were made:

1) DAgH-ResNet18 outperforms DAgH-AlexNet in
most cases except in the case of 48 bits. This proves that
DAgH can obtain better results by using a first hashing
network with better performance.

TABLE 2. Performance comparison of DAgH with different first hashing
networks, i.e, AlexNet and ResNet18.

2) The performance gap between DAgH-ResNet18 and
DAgH-AlexNet was very small. This indicate that
DAgH is not sensitive to attention-guided hash codes,
this may be because the information of the attention
hash codes is diluted when they guide the generation
of new hash codes.

2) IMPACT OF THE HYPER-PARAMETERS
In this subsection, we analyze the impact of the hyper-
parameters, i.e., the value of the attention parameter ν and
the margin parameter λ. The experiments are conducted
on the NUS-WIDE dataset. The value of the attention
penalty parameter ν is selected using values within the range
20 to 80 with a constant step-size of 10 and the margin
parameter λ is using values within the range 0 to 0.5 with
a constant step-size 0.05. Figure 6(a) shows that DAgH can
achieve good performance on NUS-WIDE dataset within the
range 40 ≤ ν < 60. As shown in Figure 6(b), the model is
sensitive to the value of the margin parameter λ and achieved
good performance on NUS-WIDE dataset with 0.2 ≤ λ ≤

0.35. This is because according to (9), if the value of margin
is small, the attention loss has a lower impact in punishing
the attention network, and as the result, the attention image
pair will be similar to the original image pair. If the value of
margin is large, the attention loss will affect (10).

FIGURE 6. Influence of the hyper-parameters. (a) Value of weighting
parameter. (b) Value of margin parameters.
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3) ENCODING TIME
In practical retrieval systems, time efficiency for generating
the hash codes for a new instance (image) is an important
factor in the evaluation model. In this part, we compare
the encoding time of the proposed DAgH method and other
baseline hashing methods: ITQ [8], SDH [15], KSH [9],
DPSH [52], DHN [16], CNNH [17], DNNH [33], and
DSDH [34]. Since the input instances are originally raw
images, for fair comparison, we take into consideration both
the time cost for feature extraction and hashing encoding.
We report both the feature extraction time efficiency for tra-
ditional hashing methods and the encoding cost for learning-
based hashing methods on GPU and the hashing encoding
time of traditional hashing methods on CPU. The encoding
times (in microseconds, base 10) of involved hashing meth-
ods are presented in Figure 7 using a logarithmic scale on the
CIFAR-10 dataset with 48 bits hash codes. From Figure 7,
it can be seen that traditional hashing methods such as ITQ,
and KSH, actually perform quite decently with encoding
times faster than leaning-based hashing methods by an order
ofmagnitude. However, traditional hashingmethods require a
separate process for feature extraction. When the full process
of using a traditional method is put into consideration (fea-
ture extraction + traditional hashing method), the encoding
time of the traditional methods is much worse than that of
leaning-based hashing methods by an order of magnitude.
The computing platform is equipped with an Intel 2× Intel
E5-2600 CPU, 128G RAM, and a NVIDIA TITAN Xp 12G
GPU. The encoding time basically depends on the adopted
neural network model rather than the hashing method. Thus
the time varies little with different lengths of hash codes.

FIGURE 7. The encoding times to encode one new instance (image) of
different hashing methods on CIFAR-10 dataset with 48 bits hash codes.

4) VISUALIZATION OF HASH CODES
Figure 8 shows the t-SNE visualization [64] of the hash codes
learned by the proposedDAgHmethod and the best learning-
based hashing baseline DSDH on the ImageNet dataset (we
sample 10 categories for the case of visualization). We can
observe that the hash codes generated by DAgH exhibit clear

FIGURE 8. The t-SNE visualization of hash codes learned by DAgH and
DSDH. (a) DAgH. (b) DSDH.

discriminative structures where the hash codes in different
categories are well separated, while the hash codes generated
by DSDH do not show such discriminative structures. The
results verify that the hash codes learned through the pro-
posed DAgH are more discriminative than those learned by
DSDH, enabling more effective image retrieval.

V. CONCLUSION
In this paper, we propose a novel attention-guided hashing
method for image retrieval, named DAgH. To improve the
quality of the generated hash codes, in other words, to address
the high correlation problems of the generated hash codes, our
method consists of two stream frameworks, which consist of
an attention network and two hashing networks. The attention
network can automatically mine the key region of an image
and generate the attention images. The hashing networks
are used to learn semantic-preserving hash codes. The first
hashing network generates the attention-guided hash codes
from the attention images using pairwise labels to learn the
attention-guided hash codes. The second hashing network is
then guided by the attention-guided hash codes to generate
the final hash codes. On the choice of the hash activation func-
tion, the first stream framework uses a continuous ATanh acti-
vation function for training and the second stream framework
uses a threshold function sign(·). Comprehensive experiments
on the three benchmark image retrieval datasets demonstrate
that the DAgH outperforms the state-of-the-art methods.

In the future, we plan to extend the self-hashing network
to support image retrieval with relative similarity labels,
i.e., condense the two stream framework into a single self-
training network.
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