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ABSTRACT Data clustering is a challenging task to gain insights into data in various fields. In this
paper, an Enhanced Quantum-Inspired Evolutionary Fuzzy C-Means (EQIE-FCM) algorithm is proposed
for data clustering. In the EQIE-FCM, quantum computing concept is utilized in combination with the FCM
algorithm to improve the clustering process by evolving the clustering parameters. The improvement in
the clustering process leads to improvement in the quality of clustering results. To validate the quality of
clustering results achieved by the proposed EQIE-FCM approach, its performance is compared with the
other quantum-based fuzzy clustering approaches and also with other evolutionary clustering approaches.
To evaluate the performance of these approaches, extensive experiments are being carried out on various
benchmark datasets and on the protein database that comprises of four superfamilies. The results indicate
that the proposed EQIE-FCM approach finds the optimal value of fitness function and the fuzzifier parameter
for the reported datasets. In addition to this, the proposed EQIE-FCM approach also finds the optimal number
of clusters and more accurate location of initial cluster centers for these benchmark datasets. Thus, it can be
regarded as a more efficient approach for data clustering.

INDEX TERMS Clustering, quantum computing, evolutionary algorithm, fuzzy set theory, bioinformatics.

I. INTRODUCTION
Unsupervised learning is an important approach for
exploratory data analysis. Clustering is one of the widely used
unsupervised learning approaches. It partitions the data into
various groups such that the data point belonging to the same
group exhibit more similarity with each other in comparison
with data points belonging to other groups. Clustering is
used in many application domains such as medical imaging,
disease diagnosis, and bioinformatics where data are gener-
ated at a tremendous pace. Like in the Bioinformatics area,
with the progress of experimental technologies in molecular
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biology, the biological data in terms of protein sequences
are gathering at an accelerating rate in public databases.
Clustering is gaining importance in all these areas to gain
insight into the accumulated data [3]–[8].

One of the most widely used clustering algorithms was
initially presented byDunn [9] and completed by Bezdek [10]
known as the Fuzzy C-Means (FCM) algorithm. The FCM
algorithm partition the collection of n data points X =

[x1, . . . , xn] into C fuzzy clusters, and finds a cluster center
of each group such that an objective function of a dissim-
ilarity measure is minimized. It allows the data points to
belong to the multiple clusters with a membership degree
µil varies between 0 and 1. Although the fuzzy cluster-
ing can increase the accuracy of the cluster representation
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there are several fundamental sources of ambiguity in
clustering.

One of the problems is that the number of clusters C has
to be known in advance for the dataset. However, different
datasets require a different number of clusters, so it is tough
to know beforehand. The second problem is the selection of
initial cluster centers because the FCM algorithm is initially
started with random assignment of the cluster centers. The
behavior of the FCM algorithm is highly sensitive to the
selection of the initial centers ofC number of clusters. There-
fore, selection of inappropriate values of the cluster centers
may lead the algorithm to converge at local optima. More-
over, when the multiple runs of the same data are executed
with different initial cluster centers, then the FCM algorithm
does not converge to the same set of final cluster centers.
Due to this, the clustering results which are generated by
the FCM algorithm suffers from the drawback of producing
inconsistent clustering results and will make the algorithm to
converge at different local optima. Another critical problem
in applying the FCM algorithm for clustering of data is the
selection of fuzzifier parameter m because the appropriate
value of fuzzifier parametermwidely varies from one dataset
to another. The choice of the inappropriate value of m may
also lead the FCM algorithm to the local optima problem.
Therefore, it is essential to determine an adequate value of
fuzzifier parameter m.
In the literature, many clustering methods [11]–[26] are

designed which automatically identify the number of clusters
but they depend on the selection of the objective function.
These clustering algorithms are executed with the different
values of C and the best value of C is selected on the basis
of predefined criteria. Figueiredo and Jain [11] uses the mini-
mum message length (MML) [12], [13] as the criterion func-
tion in conjunction with the GaussianMixtureModel (GMM)
to estimate the C . This approach starts with a large number
of clusters and gradually starts merging the clusters if this
leads to a decrease in the MML criterion. In addition to
this, several validity indices are proposed by the researchers
[27]–[29] to identify the number of clusters C . Also, a wide
variety of clustering methods for molecular sequences based
on sequence similarities are computed using homologous
search programs like BLAST [30] and FASTA [31]. Inmolec-
ular biology, using clustering for the identification of protein
superfamilies based on sequence similarity is a traditional
problem.Due to the numerous advancement and development
of improved clustering algorithms, they are widely applied
to the biological researches [32], [33]. One of the successful
clustering algorithms is the Markov Cluster algorithm [34].
It is used to detect the protein families in the protein-protein
interactions networks based on graph theory. Go fuzzy clus-
tering algorithm was proposed by Tari et al. [35], which
enables the simultaneous use of biological knowledge and
gene expression data in a probabilistic clustering algorithm.
Recently, spectral clustering [8] is applied to the clustering
of protein sequences. This algorithm suffers from a problem

that the number of clusters has to be specified manually,
and it requires a long runtime. Furthermore, some literature
available for the choice of fuzzifier parameter [10], [36].
Dembélé and Kastner [37] proposed a method to compute
the upper bound value of m for clustering of microarray
data using the FCM algorithm. Patel et al. [38] proposed a
Quantum-Inspired Evolutionary Fuzzy C-Means (QIE-FCM)
algorithm which aims to utilize the concept of quantum com-
puting to find the appropriate value of the fuzzifier parameter
along with the number of clusters. Despite this, the QIE-
FCM approach is sensitive to the selection of the location
of initial cluster centers because it is done randomly. Thus,
it does not guarantee the optimal global solution for the
QIE-FCM algorithm. In spite of the above-stated methods
proposed by the researchers, it is still very challenging to
decide which value of m, C , and location of initial cluster
centers which leads to the meaningful clusters with best fuzzy
partitions.

In this paper, we attempt to utilize quantum computing con-
cept [39] to alleviate the above-discussed drawbacks of the
QIE-FCM algorithm [10]. An Enhanced Quantum-Inspired
Evolutionary Fuzzy C-Means (EQIE-FCM) algorithm is pro-
posed. In EQIE-FCM, the value of fuzzifier parameter m
is represented in terms of quantum bits in generation g
(user defined parameter). For each value of m obtained in
generation g, the number of clusters C is initialized in the
range of C = 2, 3, . . . , cmax where cmax =

√
n (n is the

number of instances) [40]. As discussed above in the QIE-
FCM algorithms, the location of cluster centers for each C
is initialized randomly, which does not guarantee the optimal
global solution and thus converge to the optimal local solu-
tion. To mitigate this problem, in the EQIE-FCM for each
value of C , the set of the cluster centers VC is initialized in
terms of quantum bits. For each value of C on the initialized
set of the cluster centers VC , the several runs of the FCM
algorithm are executed and corresponding fuzzy partitions are
obtained. To evaluate the fitness of produced fuzzy partitions
on different values of C obtained in generation g, VIDSO [41]
index is used as the objective function. Then a fuzzy parti-
tion with a minimum value of the VIDSO index is selected,
which indicate the best fuzzy partition representing the local
best fitness value for generation g. After this, the fuzzifier
parameter m and set of the cluster centers VC corresponding
to each C are evolved in generation g using the quantum
rotation gate [42]. To achieve the optimal global value of m
and C , the proposed algorithm is executed for several gener-
ations. However, to guarantee that the best fuzzy partition in
any of the generation would not be lost in the evolutionary
process [39], the global fitness function is evaluated. This
will store a fuzzy partition which attains the minimum value
of the fitness function among all the generations. Through
this, the EQIE-FCM algorithm can find the optimal value
of fuzzifier parameter m and number of clusters C with the
best location of initial cluster centers. The same is being
empirically tested on various benchmark datasets and four
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baseline protein superfamilies obtained from the International
Protein Sequence Database [43].

The rest of this paper is organized as follows. Section II,
briefly present the preliminaries. The detailed description
and the implementation perspective of the proposed EQIE-
FCM algorithm are given in Section III. Section IV presents
the experimental results and analysis based on these results.
Finally, we conclude this paper and indicate future research
perspective in Section V.

II. PRELIMINARIES
Before describing the overall concept of the proposed
EQIE-FCM algorithm, we briefly present the concept of
quantum computing. The main idea of quantum comput-
ing concept is to represent data in terms of quantum bits
which is made up of qubits. The qubit is the smallest unit of
information representation. It differs from classical computer
bits that are ‘‘1’’ and ‘‘0’’ in terms of representation. As a
classical bit can represent only two possibilities of an event
at one time by bit ‘‘1’’ or ‘‘0’’. Meanwhile, a qubit can exist
in both states simultaneously using the probability concept
proposed by Han and Kim [39], [42]. Qubit represents the
linear superposition of ‘‘1’’ and ‘‘0’’ bits probabilistically,
which is denoted as follows :

q = α | 0〉 + β | 1〉 (1)

where α and β are the complex numbers specifying the
probability that a qubit may appear in ‘‘0’’ state and ‘‘1’’ state.
The probabilities that the qubit will be found in ‘‘0’’ state and
‘‘1’’ state are represented by |α|2 and |β|2, respectively and
defined as follows:

α2 + β2 = 1; 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 (2)

An individual quantum bit Q in generation g contains the
k number of qubits q which is represented as Qg =
[qg1, ...., q

g
k ] where each qubit q is composed of complex

numbers α and β as shown in Equation (1). The individual
quantum bit in terms of qubits is represented as follows:

Qg =
[
α
g
1 α

g
2 ........ α

g
k

β
g
1 β

g
2 ........ β

g
k

]
(3)

As discussed above, a qubit can be represented in two
states (21), i.e., ‘‘0’’ state and ‘‘1’’ state. Similarly, an individ-
ual quantum bit with two qubits can represent the linear super-
position with four states, i.e., ‘‘00’’, ‘‘01’’, ‘‘10’’, and ‘‘11’’.
Thus, if there is a string of k qubits in an individual quantum
bit, then the string can represent 2k states at the same time.
Let us take an example of an individual quantum bit with two
qubits are represented as follows:

Q =
〈
1/
√
2|1/
√
2

1/
√
2|1/
√
2

〉
(4)

Q = (1/
√
2× 1/

√
2)〈00〉 + 1/

√
2× 1/

√
2)〈01〉

+1/
√
2× 1/

√
2)〈10〉 + 1/

√
2× 1/

√
2)〈11〉 (5)

As shown in Equation (5) only one quantum bit is enough
to represent four states. Thus, the quantum bit representa-
tion provides better characteristics of population diversity in
comparison with other representations and also enables us to
find the optimal global solution in a large search space which
is made up of many subspaces. Han and Kim [39] used a
genetic algorithm in a combination of the quantum computing
concept for evolving the optimal solution of the knapsack
problem in several generations. Based on the idea mentioned
above, we proposed an EQIE-FCM algorithm, which uses the
quantum computing concept. In this algorithm, the clustering
of data is done by finding the global best value of the fuzzifier
parameterm and the number of clusters C along with the best
location of initial cluster centers from subspaces in several
generations. The EQIE-FCM algorithm is designed with the
novel quantum bit representation of the fuzzifier parameterm
and set of cluster centers VC . During this evolutionary pro-
cess, the quantum rotational gate [42] is used in this algorithm
for updating the qubits of m and VC .

III. PROPOSED APPROACH
In this paper, we proposed an Enhanced Quantum-Inspired
Evolutionary Fuzzy C-Means (EQIE-FCM) algorithm.
As pointed out by Pal and Bezdek [29], the fuzzifier parame-
ter m and the number of clusters C plays an important role in
validating the fitness of partitions produced by fuzzy based
clustering algorithms. To judge the reliability of obtained
fuzzy partitions, the identified number of clusters C must be
insensitive to changes in the fuzzifier parameter m. In order
to investigate these measures in the EQIE-FCM algorithm,
the quantum concept is utilized to evolve the different values
of m in each generation g from subspaces where m is rep-
resented in terms of quantum bits. Then, the transformation
process is applied in each generation to obtain the real coded
value of m. In the EQIE-FCM algorithm, for the real coded
value of m obtained in generation g, the number of clusters
C is initialized over the range of C = 2, 3, ..., cmax. For
each value of C , the set of cluster centers V g

C is initialized
in terms of quantum bits and then the real coded value of
V g
C is obtained through the transformation process. These

parameters are then passed to the conventional FCM algo-
rithm and several runs of FCM algorithm is executed for
each value of C in generation g and correspondingly fuzzy
partitions are generated. Next, the VIDSO [41] index is used
as the objective function to compute the fitness of obtained
fuzzy partitions. After this, a fuzzy partition is selected with
the minimum value of the VIDSO index. The optimal value
of VIDSO represents the local best fitness function for gen-
eration g. Then, a quantum rotational gate is used to update
the quantum bits of fuzzifier parameter and set of the cluster
centers for each value of C so that the distinct values of these
parameters can be evolved in each generation from subspaces.
Subsequently, the rest of the process is repeated similarly
for several generations, and the global fitness function is
evaluated, which store the fuzzy partition with a minimum
value of the fitness function among all the generations.
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Through this, the EQIE-FCMalgorithm guarantees to achieve
the optimal global value of m and C as well as it finds the
best location of initial cluster centers for the datasets. The
overall procedure of the EQIE-FCM algorithm is partitioned
into five major steps: quantum bit representation of fuzzifier
parameter m, representation of the cluster centers in quantum
bits, transformation process, formulation of fitness functions,
and quantum bit update process. The detailed description of
these steps is presented in the subsequent sections.

A. REPRESENTATION OF A FUZZIFIER PARAMETER
IN QUANTUM BIT
As discussed earlier, the fuzzifier parameterm plays a crucial
role in applying fuzzy based approaches for clustering of data.
The selection of an inappropriate value of m may lead the
algorithm to converge at local optima. To overcome this issue,
in the proposed algorithm the fuzzifier parameterm is decided
using the quantum concept inspired by the above-mentioned
idea of Han and Kim [39]. This concept is utilized in the
proposed algorithm to evolve the different values of fuzzifier
parameter m in several generations so that we can find the
optimal global value of m from subspaces. To achieve this,
it is required that a fuzzifier parametermmust be represented
in terms of a quantum bit. Let us denote the fuzzifier parame-
ter m in terms of a quantum bit for generation g asM ′g, which
is defined as follows:

M ′g = Qgm (6)

where Quantum bit Qgm consists of k qubits represented as
Qgm = [αg1m|α

g
2m|α

g
3m|......|α

g
km]. The purpose of representing

Qgm in terms of k qubits implies that the best value of fuzzifier
parameter m will be searched from 2k subspaces.

To get exploration and real coded value of the fuzzifier
parameter M ′g, the transformation process is used which is
discussed in the further section.

B. REPRESENTATION OF CLUSTER CENTERS
IN QUANTUM BITS
As mentioned earlier, the initialization of cluster centers is a
critical issue for the execution of fuzzy based clustering algo-
rithm. In the case of the FCM algorithm, the cluster centers
have been initialized randomly due to which it gets trapped
in the problem of local optima. To handle this problem,
in the proposed (EQIE-FCM) algorithm the cluster centers
have been initialized in the form of quantum bits. Then,
to evolve the different locations of the cluster centers in each
generation, the proposed algorithm is executed for many gen-
erations. In each generation, different location of the cluster
centers is produced using a quantum update function. In this
way, we can find the best location of the initial cluster centers
for the appropriate value of the number of clusters. In gener-
alized form, the set of the cluster centers VC in generation g
is represented as follows:

V g
C = [(V1)

g
C , (V2)

g
C , ...., (Vt )

g
C ] (7)

where V g
C consist of t number of cluster centers such that

t = 1, 2, ...C and each cluster center (Vi)
g
C is represented

as follows:

(Vi)
g
C = [(V1i)

g
C , (V2i)

g
C , ...., (Vdi)

g
C ]

T
∈ Rd (8)

where (Vji)
g
C represents the jth dimension of ith cluster center

such that j = 1, 2, .., d and C is the number of clusters.
As stated above, the fuzzifier parameter in generation g

is represented in terms of a single quantum bit as given
in Equation (6) but for a cluster number C , each cluster
center in generation g consists of d-dimensions. Therefore,
corresponding to each cluster number C , the jth dimen-
sion of the ith cluster center in generation g is also repre-
sented in terms of a single quantum bit which is given as
follows:

(V ′ji)
g
C = (Qji)

g
C (9)

where (Qji)
g
C contains the k qubits and represented as

(Qji)
g
C = [(αji)

g
1C |(αji)

g
2C |(αji)

g
3C |......|(αji)

g
kC ].

To get exploration and real coded value for the cluster
centers (V ′ji)

g
C , we use the transformation process which is

discussed next.
In general, the real coded value for an individual quantum

bit Q and a qubit q is represented as Q′ and q′. So in the
subsequent section, we have given the general representation
of the transformation process showing the conversion of a
single qubit q into real coded value q′ which is also appli-
cable for the conversion of fuzzifier parameter and cluster
centers.

C. TRANSFORMATION PROCESS
As discussed above to achieve exploration and to get the
real coded value of qubit q′ we use transformation pro-
cess. The transformation process starts with a random num-
ber matrix Rg = [rg1 r

g
2 r

g
3 .....r

g
k ], corresponding to Qg =

[αg1 |α
g
2 |α

g
3 |......|α

g
k ] where k represents the number of qubits.

The value of rgp is selected with the help of a random function
(rand) which generates random numbers between 0 and 1.
Then a further mapping is done using binary matrix Sg where
Sg = [sg1, ....., s

g
k ]. The value of matrix Sg is generated as

follows:

if (rgp ≤ (αgp)
2) then sgp = 1 else sgp = 0.

where p = 1, 2, ..., k and k denote the number of qubits.
To get the real coded value of the required parameter from
binary matrix Sg, we have used a uniform random number
generator (urg). As shown in Equation (3) and Equation (4),
the individual quantum bit with k qubits can represent the
linear superposition of 2k states. Thus, to get an optimal value
of the real coded value of the qubit q′ corresponding to q from
2k subspaces, we use a formula bin2dec(Sg)+1. This formula
helps to get a real coded value from a particular subspace
from the available 2k subspaces. The whole transformation
process has been described in terms of pseudo-code as
follows :
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Transformation process()

begin
Step-1: Initialize qg, random number matrixRg, and link = 0.

for p = 1 : k do
qg = αgp ; 0 ≤ αgp ≤ 1
rgp = rand ;

end for
Step-2: for p = 1 : k do

if rgp ≤ (αgp)2

sgp = 1;

else
sgp = 0;

end if
end for

Step-3: link = bin2dec(Sg)+ 1
(q′)g = urg();

end
return (q′)g

The transformation process can be understood with the
help of an example. Let a quantum bit consist of two qubits is
represented asQ = 〈0.707|.707〉, therefore a random number
matrix is generated using a random number R = [0.850.02].
The quantum bit consists of two qubits will provide four sub-
spaces. Now using the formulation (rgp ≤ (αgp)2), the binary
matrix is generated as S = [01]. Once the binary matrix is
achieved, then the formula (bin2dec(S)+1) used to convert a
binary number to a decimal value. This gives in result a num-
ber, between 1 to 4. We have assumed four subspaces using
a uniform random generator. This formula (bin2dec(S)+1)
gives output 2 as a decimal value according to binary bits
S = [01] therefore, the real coded value corresponds to
the quantum bit Q = 〈0.707|.707〉, is selected from second
subspaces.

Once, the transformation process is completed the real
coded value for the fuzzifier parameter mg is represented as
follows:

mg = (Q′)gm (10)

Similarly, the real coded value of the cluster center is repre-
sented as follows:

(v′ji)
g
C = (Q′)gC (11)

such that

(v′i)
g
C = [(v′1i)

g
C , (v

′

2i)
g
C , ..., (v

′
di)

g
C ]

T
∈ Rd (12)

(v′)gC = [(v′1)
g
C , (v

′

2)
g
C , ..., (v

′
t )
g
C ] (13)

where (v′ji)
g
C is the real coded value of the jth dimension of ith

cluster center and (v′)gC denotes the real coded value of set of
cluster centers such that j = 1, 2, ..., d , t = 1, 2, ...C and C
is the number of clusters.

D. FORMULATION OF LOCAL AND GLOBAL
FITNESS FUNCTION
As mentioned earlier, the EQIE-FCM algorithm uses a VIDSO
index [41] as the objective function to evaluate the fitness of
produced fuzzy partitions. The main motivation behind using
the VIDSO index as the objective function is that it evaluates
the fitness of obtained fuzzy partitions on the basis of three
measures, i.e., intra-cluster compactness, inter-cluster separa-
tion, and inter-cluster overlap. This implies that the obtained
fuzzy partitions are good enough if the data points belong to
the same cluster are tightly coupled with each other, and data
points belong to the distinct clusters are well separated from
each other with the minimum overlap between the clusters.
The smallest value of the VIDSO index represents the better
fuzzy partitions. In the EQIE-FCM algorithm, we normalized
the VIDSO index for each value of C over the range C =
2, 3, ..., cmax which is evaluated as follows:

VI sumDSO(U
g,mg) =

cmax∑
C=2

VIDSO(C,Ug,mg) (14)

VINormalizedDSO (C,Ug,mg) =
VIDSO(C,Ug,mg)
VI sumDSO(U

g,mg)
(15)

where Ug represents the fuzzy partition matrix for genera-
tion g. Next, we store the fitness of C number of clusters
corresponding to generation g in FgC , which is defined as
follows:

FgC = VINormalizedDSO (C,Ug,mg) (16)

In addition to this, the best fuzzy partition in generation g is
selected by evaluating the local fitness function denoted by
FgLbest (mg,C) and defined as follows:

FgLbest (mg,C) = min
2≤C≤cmax

[VINormalizedDSO (C,Ug,mg)] (17)

where FgLbest (mg,C) contain the minimum value of the fitness
function evaluated over the range C = 2, 3, ..., cmax corre-
sponding to mg obtained in a generation g.

Furthermore, to determine the best fitness corresponding
to each cluster number C , one more parameter is computed
which store the global best fitness of each cluster number
C from all the generations denoted by FgbestC and defined as
follows:

FgbestC = min(FgbestC ,FgC ) (18)

In addition to this, to ensure the effective clustering of data
the best value of mg from subspaces is determined by finding
the global best value of the fitness function from all the
generations denoted by FGbest (mbest ,Cbest ) and defined as
follows:

FGbest (mbest ,Cbest )

= min(FGbest (mbest ,Cbest ),F
g
Lbest (mg,C)) (19)

where mbest and Cbest denote the best value of fuzzifier
parameter and the number of clusters found among all the
generations.
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E. QUANTUM BIT UPDATE PROCESS
In quantum inspired algorithms, the quantum rotational gate
is an important operator to generate a new value of qubits.
As EQIE-FCM is an evolutionary algorithm, which evolves
the optimal value of the fuzzifier parameter and the cluster
centers in several generations.

To get the appropriate value of both the parameters,
the quantum rotational gate [42] is used which update the
qubits of the fuzzifier parameter and cluster centers in each
generation. The quantum gate requires a proper angle to rotate
the qubit. The new qubit is generated using the quantum
rotational gate and the previous value of a qubit which is
defined as follows:

αg+1p = [αgp ∗ cos1θ −
√
1− (αgp)2 ∗ sin1θ ] (20)

In the above equation, the rotational angle (1θ ) is an
important variable to get the appropriate value of new qubit.
The selection of an appropriate angle is done on the basis
of local fitness function (FgC and FgLbest (mg,C)) obtained
at generation g and global fitness function (FgbestC and
FGbest (mbest ,Cbest )) find till g− 1 generations so that a new
value of 1θ help to produce better qubits. As shown in the
transformation process that each qubit αgp is associated with
the binary value sgp. Therefore, a mapping is done between
fitness function and qubit with the help of binary value.
The binary value corresponding to local fitness function
(FgC and FgLbest (mg,C)) and the global best fitness function
(FgbestC and FGbest (mbest ,Cbest )) is s

g
p and s

global
p , respectively.

As suggested by [45], if the value of local fitness function
(FgC and FgLbest (mg,C)) obtained in the current generation is
better than the value of global fitness function (FgbestC and
FGbest (mbest ,Cbest )) obtained in the previous generation and
status of the current binary value sgp is zero and best binary
value sglobalp is one, then change in the qubit αgp towards one
to zero may produce the worst result. Therefore, to increase
the value of qubit αgp , 1θ must be negative, according to
the quantum rotational gate. Conversely, if the value of local
fitness function obtained in the current generation is worse
than the value of global fitness function obtained in the
previous generation and status of current binary value sgp is
one and best binary value sglobalp is zero, then change in the
qubit αgp from zero to one may produce the worst result.
Therefore, to decrease the value of qubit αgp , 1θ must be
positive, according to the quantum rotational gate. For the
rest of the cases, 1θ must be zero. The value of 1θ must
be selected in such a way that it can take the less number
of iterations to cover a maximum number of values of αgp in
the range of (0, 1). Hence, according to [42], 1θ must be
initialized between [0.01×π , 0.05×π ]. Table 1, summarizes
all the possible cases for selecting the value of 1θ .
From preventing the qubit αgp from attaining values 0 or 1,

following constraints are applied.

αgp =


√
ε, if α

g
p <
√
ε

α
g
p if

√
ε ≤ α

g
p ≤
√
1− ε

√
1− ε if α

g
p >
√
1− ε

(21)

TABLE 1. Parameters for Qubits update.

where the limiting parameter ε is assigned a very small value
(approximately approaching to zero), so that it can cover
maximum value in the range of (0, 1).

F. WORKING OF THE EQIE-FCM ALGORITHM
As pointed out by Pal and Bezdek [29], the appropriate value
of m lies in the interval of [1.5, 2.5]. Therefore, the EQIE-
FCM algorithm is executed for gmax generations to find the
appropriate value of m in the above-mentioned interval. The
maximum number of generations gmax is set as the stopping
criteria for EQIE-FCM algorithm because the appropriate
value of m in the defined interval can be easily found within
the gmax generations. Conversely, if the proposed algorithm is
executed for more than gmax generations, then it will generate
the repeated values of m with a significant increment in the
computational overhead. The graphical representation of the
overall procedure of EQIE-FCM algorithm is given in Fig. 1.
However, the step-wise procedure of the EQIE-FCM algo-
rithm is summarized in Algorithm1 as follows:

IV. EXPERIMENTAL RESULTS
In the experiments, we compare the performance of the
proposed EQIE-FCM approach in comparison with the
QIE-FCM approach [38] and other approaches [46]–[51].

A. EXPERIMENTAL ENVIRONMENT
The experiments were performed on the Intel(R) Xeon(R)
E5-1607 Workstation PC with 64 GB of memory and run-
ning on the Windows 7 Professional operating system with
a processing speed of 3.0 GHz. The proposed EQIE-FCM
approach and compared QIE-FCM approach is implemented
in MATLAB computing environment and executed on MAT-
LAB version R2014. Furthermore, we have obtained the
source code of all the other comparative approaches [46]–[51]
from the respective sources and perform the experiments on
the same partition of the datasets.

B. DATASETS
The performance of the proposed EQIE-FCM approach
is evaluated in comparison with other approaches [38],
[46]–[51] on various benchmark datasets. These bench-
mark datasets are taken from the University of California
at Irvine (UCI) Machine Learning Repository [52]. Table 2
presents the details of these benchmark datasets. Also,
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FIGURE 1. The flowchart describing the complete procedure of EQIE-FCM algorithm where the appropriate value of m, C and VC is
evolved in each generation.

the performance of the EQIE-FCM approach is evaluated on
a protein database in comparison with other approaches. This
protein database used for the experimental study is obtained
from the International Protein Sequence Database [43]

maintained by the National Biomedical Research Foun-
dation (NBREPIR) at the Georgetown University Medical
Center. The protein database is comprised of four superfam-
ilies are RAS, Globin, Trypsin, and Kinase. The detailed
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Algorithm 1 EQIE-FCM Algorithm
Input: The dataset X = [x1, x2, ..., xn] consist of n data
points. Each data point is represented by a d-dimensional
feature vector xz = (x1z, x2z, ..., xdz)T ∈ Rd . The best
location of set of cluster centers vbest is initialized as φ. The
other parameters FgbestC and FGbest (mbest ,Cbest ) is initialized
as∞.
Process:
1: The current generation g is initialized as 1 and set the

maximum number of generation gmax to 100.
2: while g ≤ gmax do

(A) The fuzzifier parameter m for generation g initialized
in terms of quantum bit by using Equation (6).

(B) Call transformation process(M ′g): Generate the
real coded value mg corresponding to the quan-
tum value M ′g using the transformation process and
Equation (10).

(C) Set termination criteria T = 0.001, cmax =
√
n,

σ , 1θ , and ε is taken as 0.6, 0.03 × π , and 0.01,
respectively.

(D) for C = 2 : cmax do
(I) Initialize criteria function Jmg ((v

′)gC : X ,mg,
C,Ug) = ∞ and (Vji)

g
C is initialized in terms of

quantum bit using Equation (9).
(II) Call transformation process(V ′ij)

g
C : Generate

the real coded value (v′ji)
g
C corresponding to

the quantum value (V ′ij)
g
C using the transformation

process and Equations (11).
(III) repeat

(a) Compute the fuzzy partition matrixUg
= [µgil]

for 1 ≤ i ≤ C and 1 ≤ l ≤ n.

µ
g
il =

‖ xl − (v′i)
g
C ‖

−2
mg−1∑C

i=1 ‖ xl − (v′i)
g
C ‖

−2
mg−1

(22)

(b) Update the cluster centers (v′i)
g
C for 1 ≤ i ≤ C .

(v′i)
g
C =

∑C
i=1[(µ

g
il)
mg ]xl∑C

i=1(µ
g
il)
mg

(23)

(c) Compute the criteria function Jmg ((v
′)gC :

X ,mg,C,Ug) to evaluate the fitness of
obtained fuzzy partition.

Jmg ((v
′)gC : X ,mg,C,U

g)

=

n∑
l=1

C∑
i=1

(µgil)
mg‖xl − (v′i)

g
C‖

2 (24)

until (Jmg ((v
′)gC : X ,mg,C,U

g) ≥ T )
end for

(E) Compute the objective function VIDSO(C,Ug,mg)
[41] to evaluate the fitness of obtained partitions
for all the values of C corresponding to mg.

Algorithm 1 (Continued.) EQIE-FCM Algorithm
(F) Compute the summation of VIDSO(C,Ug,mg)

objective function corresponding to all values of C
using Equation (14).

(G) Compute the normalized value of objective function
VIDSO(C,Ug,mg) for all values of C over the range
C = 2, 3, ..., cmax using Equation (15).
for C = 2 : cmax do
i) Store the fitness of fuzzy partition corresponding
to each cluster number C in FgC using Equation (16).
ii) if (FgC ≤ F

gbest
C ) then

FgbestC = FgC
vbest = (v′)gC
Update the quantum bit of (V ′ji)

g
C by using

Table 1 and Equations (20) and (21).
else
Update the quantum bits of (V ′ji)

g
C by using

Table 1 and Equations (20) and (21).
end if

end for
(H) Compute the local best fitness, i.e., FgLbest (mg,C)

by using Equation (17) that determines the best fitness
value in generation (g).

(I) Compute the global best fitness denoted by
FGbest (mbest ,Cbest ) using Equation (19) that
identify the best value of fuzzifier parameter and

the number of clusters from the overall generations.
(J) Update the quantum bit of M ′g by using Table 1 and

Equations (20) and (21).
3: Update g = g+ 1.
4: end while
5: returnmbest ,Cbest and best location of set of initial clus-
ter centers vbest .
6: End

description of these superfamilies used in a protein database
for the experimental study is presented in Table 5. The protein
sequences present in these superfamilies always contain the
characters from the 20-letter amino acid alphabet 6 =

{A,C,D,E,F,G,H , I ,K ,L,M ,N,P,Q,R,S,T ,V ,W ,Y }.
These protein sequences vary in the length and may contain
a combination of these amino acids in any order. The most
important issue while applying an algorithm for the clustering

TABLE 2. Description of the datasets.
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TABLE 3. Detailed information of superfamilies present in protein
database.

TABLE 4. Parameters specification of EQIE-FCM and QIE-FCM for
benchmark datasets and protein database.

TABLE 5. Detailed information of superfamilies present in protein
database.

of protein sequences is the encoding of the protein sequences.
This implies that how these protein sequences can be repre-
sented in terms of feature vectors so that these feature vectors
can be applied as an input to the clustering algorithm. For this
purpose, we have used the encoding technique presented in
[53] that entails the extraction of six features corresponding
to each protein sequence.

C. PARAMETER SPECIFICATION
In all of our experiments, we ensure that the algorit-
hms [46]–[51] used for comparative analysis starts with the
same parameters setting as stated by the researchers. The
parameter values used for both the proposed EQIE-FCM
algorithm and the QIE-FCM algorithm [38] is kept the same,
and the details about it are presented in Table 6. The value
of cmax will be different for the different datasets because it
depends on the number of instances (n). Thus, the value of
cmax for IRIS, Wine, Glass, Vehicle, Pima Indian Diabetes
datasets, and Protein Database are cmax =

√
n ≈ 12,

cmax =
√
n ≈ 13, cmax =

√
n ≈ 14, cmax =

√
n ≈ 29,

cmax =
√
n ≈ 28, and cmax =

√
n ≈ 44, respectively.

D. RESULTS AND DISCUSSION
This section discusses the results of experiments conducted
in order to demonstrate the effectiveness of the proposed
EQIE-FCM algorithm in comparison with the QIE-FCM

TABLE 6. Parameters specification of eqie-fcm and qie-fcm for
benchmark datasets and protein database.

algorithm [38] on benchmark datasets and also on the protein
database. The efficacy of the EQIE-FCM ismeasured in terms
of the following parameters.

• Determination of best fitness value and fuzzifier param-
eter.

• Comparison of the best location of cluster centers.
• Computational performance comparison in terms of iter-
ations counts per cluster.

For each dataset, we compare the performance of EQIE-
FCM with QIE-FCM using the parameters as described
in Table 6. In Fig. 2 and Fig. 3, we have reported the results
of both the algorithms on benchmark datasets and also on
protein database. The detailed description and analysis of the
results of the parameters discussed above are presented next.

As shown in Fig. 2, the best value of the fuzzifier param-
eter and the fitness function achieved by the EQIE-FCM
algorithm is comparable with the QIE-FCM algorithm for
all the benchmark datasets and the protein database. The
comparative results are reported on different values of the
fuzzifier parameter obtained in 100 generations. As discussed
earlier, the VIDSO index [41] is used as the objective function
in both the algorithms and the fitness functions formulated
in these algorithms are using the VIDSO index which is dis-
cussed in section III-D. The fitness functions formulated in
these algorithms are used to evaluate the fitness of obtained
fuzzy partitions. The small value of the VIDSO index implies
the minimum value of fitness function and thus represents
the better fuzzy partitions. In this figure for IRIS dataset,
the minimum value of the fitness function achieved by the
EQIE-FCM algorithm is at mbest = 1.523 which is in
comparison 1.106 times lesser than the value of the fitness
function achieved by the QIE-FCM algorithm at mbest =
1.523. For WINE dataset, the minimum value of the fitness
function achieved by the EQIE-FCM algorithm at mbest =
1.6605 is comparatively 1.157 times smaller than the fit-
ness function value attained by the QIE-FCM at mbest =
1.6605. Similarly, the minimum value of the fitness function
achieved by the EQIE-FCM on GLASS, VEHICLE, and
Pima Indian Diabetes datasets at mbest = 1.5154 is compar-
atively 1.266 times, 1.183 times, and 1.158 times lesser than
the fitness function value attained by the QIE-FCMatmbest =
1.5154, respectively. Furthermore, on the protein database,
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FIGURE 2. Comparison of the EQIE-FCM algorithm with QIE-FCM algorithm indicating the best value of fuzzifier parameter denoted by mbest for
different datasets. (a) IRIS Dataset. (b) WINE dataset. (c) Glass Dataset. (d) VEHICLE Dataset. (g) Pima Indian Diabetes Dataset. (f) Protein Database.

FIGURE 3. Performance comparison of the number of iterations taken by the EQIE-FCM algorithm and the QIE-FCM algorithm. (a) IRIS Dataset.
(b) WINE Dataset. (c) GLASS Dataset. (d) VEHICLE Dataset. (e) Pima Indian Diabetes Dataset. (f) Protein Database.

the minimum value of the fitness function achieved by
EQIE-FCM is 0.0019985 at m = 1.5154 which is com-
paratively 1.01 times lesser than the fitness function value
attained by the QIE-FCM at m = 1.5154. Although, both
the algorithms for these datasets identifies the same best
value of fuzzifier but the EQIE-FCM algorithm achieved
a much lesser value of the fitness function in comparison
with the QIE-FCM algorithm. Hence, the above-stated results

justify the superiority of the EQIE-FCM algorithm over the
QIE-FCM algorithm in terms of fitness value.

Table 7 presents the initial cluster center locations pre-
dicted by the EQIE-FCM algorithm in comparison with the
randomly initialized location of cluster centers taken by the
QIE-FCM algorithm. In this table, we have reported the
results on only two datasets, i.e., the Protein database and
the Pima Indian Diabetes dataset due to space considerations.
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TABLE 7. Comparison of initial cluster center locations of the eqie-fcm algorithm with the qie-fcm algorithm.

The results are reported in terms of the location of the cluster
centers find by both the algorithms. It is observed that the
best location of cluster centers predicted by the EQIE-FCM
algorithm is reasonably good because each predicted location
of the centers is almost in the middle of the clusters of the
dataset. However, the cluster center locations were chosen by
the QIE-FCM algorithm for each cluster is almost colliding
with each other. Due to the random selection of initial cluster
center locations by the QIE-FCM algorithm, the clustering
results achieved by this algorithm may trap into the local
optima. Conversely, in the EQIE-FCM algorithm, the loca-
tions of cluster centers are initially represented in terms of
a quantum bit and after several generations of evolution,
the EQIE-FCM algorithm comes out with the best location
of cluster centers. As we can see in Table 7, cluster center
locations predicted by the EQIE-FCM algorithm is more
accurate than the randomly chosen location by the QIE-FCM
algorithm.

Fig. 3 shows the number of iterations required to find a
stable location of cluster centers by the EQIE-FCM algo-
rithm in comparison with the QIE-FCM algorithm for the
100th generation. The results show that the proposed EQIE-
FCM algorithm always takes the lesser number of iterations
in comparison with the QIE-FCM algorithm for finding a
stable location of cluster centers on each cluster number.
The reported results show that the QIE-FCM algorithm is
much more computationally intensive than the EQIE-FCM
algorithm. The reason behind the better computational per-
formance of the EQIE-FCM algorithm in comparison with
the QIE-FCM algorithm is that in the QIE-FCM algorithm,
the location of initial cluster centers is decided randomly.
So, if the data points are located far away from the actual
location of initial cluster centers, then the algorithm will
converge slowly by taking many iterations to find the proper

location of cluster centers. However, in the case of the EQIE-
FCM algorithm, due to the selection procedure of location of
initial cluster centers, it takes, the less number of iterations
in finding the proper location of cluster centers, and hence,
results in faster convergence.

E. COMPARISON WITH OTHER
EVOLUTIONARY APPROACHES
In order to properly examine the performance of the proposed
EQIE-FCM algorithm, we compared it with other cluster-
ing algorithms [46]–[51] on the same datasets. The source
codes of these compared algorithms are obtained from the
respective authors and we perform the experiments on these
methods. Table 8 shows the comparative results in terms
of four parameters are cbest , fitness value, Standard Devia-
tion (SD), and Runtime. The reported result shows that the
proposed approach is found to be significantly better than
compared approaches in terms of the best value of fitness
function and the optimal number of clusters. The optimal
number of clusters identified by the proposed EQIE-FCM
algorithm for different datasets is similar to the number of
clusters as per the geometrical distribution of these datasets
in two-dimensional space. Moreover, the best value of the
fitness function achieved by the EQIE-FCM algorithm is
comparatively much lesser than the fitness value attained
by the other compared approaches. Also, it can be seen
from the reported results that the runtime of the proposed
EQIE-FCM approach is comparatively lesser than the QIE-
FCM [25], FCMVGA [35], QM-FCM [33], RQECA [34],
KMQGA [36] approaches. Thus, the proposed EQIE-FCM
approach is much faster in terms of runtime than the QIE-
FCM [25], FCMVGA [35], QM-FCM [33], RQECA [34],
KMQGA [36] approaches but it is comparatively little slower
than the K-Means [37] and Affinity Propagation [38]. Hence,

VOLUME 7, 2019 50357



N. Bharill et al.: Generalized Enhanced Quantum Fuzzy Approach for Efficient Data Clustering

TABLE 8. Performance comparison of the eqie-fcm algorithm with other approaches.

the discussed results quantify the effectiveness of proposed
EQIE-FCM algorithm over compared approaches.

V. CONCLUSION
In this article, we proposed an Enhanced Quantum-Inspired
Evolutionary Fuzzy C-Means (EQIE-FCM) algorithm for
clustering of data. In the fuzzy based clustering approach,
the fuzzifier parameters m, number of clusters C and the
selection of the initial cluster centers are the most important
parameters for the effective clustering of datasets. The EQIE-
FCM algorithm performs the clustering of datasets by evolv-
ing these parameters in several generations using the quantum
computing concept. These parameters are evolved in each
generation using five major operations: Representation of the
fuzzifier parameter and the cluster centers in the quantum
bit, transformation process, formulation of the local and the
global fitness function and quantum update function. After

several generations of evolution, we get an optimal value of
these parameters from subspaces. To investigate its effective-
ness, we tested it on various benchmark datasets and a real-
life protein database which consist of four superfamilies. The
proposed algorithm outperformed the QIE-FCM and other
evolutionary clustering algorithms and acquired promising
results.

We wish to investigate the possibility of extending the cur-
rent EQIE-FCM algorithm by making it a scalable algorithm
to be implemented in Apache Spark on Hadoop cluster so that
it can efficiently handle the clustering of big datasets. Thus,
it provides an important direction for our future work.
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