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ABSTRACT Three-dimensional (3D) data acquisition and real-time processing is a critical issue in an
artificial vision system. The developing time-of-flight (TOF) camera as a real-time vision sensor for
obtaining depth images has now received wide attention, due to its great potential in many areas, such as
3D perception, computer vision, robot navigation, human–machine interaction, augmented reality, and so
on. This paper survey advances in TOF imaging technology mainly from the last decade. We focus only on
recent progress of overcoming limitations such as systematic errors, object boundary ambiguity, multipath
error, phase wrapping, and motion blur, and address the theoretical principles and future research trends as
well.

INDEX TERMS Vision sensor, time of flight, depth image, sensing device, computer vision, 3D vision.

I. INTRODUCTION
New computer vision system mostly needs to solve big
data processing problems in real-time, especially when the
system works in a dynamic environment and billion bytes
of three-dimensional (3D) spatial data generated in every
minute. Time of flight (TOF) is a novel method for 3D imag-
ing, which shares the similar principle with 3D laser sensor.
The major merit is obtaining the depth information of the
whole scene simultaneously, instead of point wise scanning,
which is suitable for dynamic scene. TOF cameras have
a similar imaging process compared to usual cameras. For
example, both of them are consist of light source, optical com-
ponents, controlling circuit as well as the processing circuit
and functional units. However, the key different component is
the TOF chip, which implements active light detection, that
is, placing a front-end lens before it to collect light, every
pixel of TOF chip records the phase shift between the incident
light and the reflected light. According to the phase change
between the incident and reflected signal, the distance can be
measured. Moreover, two more shutters are integrated into
TOF chip for sampling the reflected light at different time
point [1].

TOF camera produces a depth image, in which every pixel
encodes the distance between itself and the corresponding
point in the scene [2]. This technology has been applied
in many fields for research and engineering solutions. Some
practical applications of this sensing modality include robot

navigation [3], [4], collision and obstacle detection for
robot-assisted surgery [5], 3D reconstruction [6], measure-
ment of structural deformation [7], [8], simultaneous local-
ization and mapping (SLAM) [9], [10], human-computer
interaction [11], 3D television (3DTV) [12], plant pheno-
type [13], [14], debris monitoring [15], etc.

The TOF measurement principle is to calculate the phase
delay of the infrared light (IR) reflected from object surface.
Of course, there are many other ways of 3D measurement.
For instance, Kinect also projects an IR structured pattern
onto object surfaces and determine the distance by visual
triangulation. This kind of devices shares many applications
with TOF cameras [16]–[21]. However, the attractions of
TOF camera include its low cost, good accuracy, reliability,
single-shot and video-rate depth data collection, and compact
size of its hardware.

TOF camera is a 3D vision sensor which modulates its
signal of light-emitting diodes (LEDs) and detects the phase
delay of the reflected signal with a CMOS/CCD imaging chip
at each pixel. The camera can also obtain the amplitude image
of the scene. The range of camera can be calculated by the
equation S = c/(2f ), where S is the depth, f is themodulation
frequency and c is the light speed. A 3D point cloud can be
derived from the collocated range and the reflected signal
amplitude images [22].

TOF camera has a unique sensing architecture, and the raw
depth data contains both systematic and nonsystematic bias,

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

12495

https://orcid.org/0000-0002-6705-3831


Y. He, S. Chen: Recent Advances in 3D Data Acquisition and Processing by TOF Camera

FIGURE 1. TOF imaging principle: measuring the phase difference
between the emitted and detected IR signals TOF imaging.

which need further process for robust depth information [23].
Moreover, TOF camera suffers various deficiencies in prac-
tice, such as low spatial resolution, low depth precision, bias
caused by geometric, radiometric and illumination variation.
The measurements would be ambiguous when the measured
scene is beyond a certain range. The maximum range with-
out phase wrapping is determined by the signal frequency.
Motion blur is another critical problem, which is caused by
either object or camera motion. Because of the TOF sensing
architecture, the motion blur of depth images shows some
special characteristics [24].

To deal with the abovementioned challenges, many novel
methods have been proposed, which may be categorized into
different groups in terms of input depth data. Section II
briefly addresses principles, advantages and limitations of
these methods. Section III introduces the most widely used
TOF cameras and their applications. Section IV presents the
deficiencies of TOF cameras, including both systematic and
non-systematic errors. SectionV gives some usual methods to
correct errors. Finally, further research trends and some con-
clusions are drawn separately in Section VI and Section VII.

II. TOF IMAGING PRINCIPLES
The principle of TOF imaging is illustrated in Fig. 1 [25].
An IR light is emitted from an LED to the object in the scene,
and it is reflected by the surface and detected by the TOF
sensor. The distance from the sensor to the object can be
determined according to the phase difference or time delay
between the emitted and reflected IR lights. The phase change
is calculated by the relation of the four control signals and the
electric charge values. Each phase control signal has a phase
delay of 90 degrees, as shown in Fig. 2. The four signals find
the collection of electrons from the reflected IR and estimate
the phase difference ϕ as

ϕ = arctan
(
C3 − C4

C1 − C2

)
, (1)

D =
c
2f

ϕ

2π
(2)

dmax =
c
2f

(3)

where C1 to C4 in (1) represent the electric charge amount of
four control signals [23], [26], [27]. Then the distance D is

FIGURE 2. Depth is calculated by the phase difference between the
emitted and detected IR signals.

determined by (2), where c is the speed and f is the frequency
of the light signal. dmax constrains the maximum distance of
measurement without phase wrapping, which is, of course,
determined only by the frequency f . The phase wrapping will
be further discussed in Section IV.

III. DEVICES AND APPLICATIONS
A. PROPERTIES AND ADVANTAGES
TOF cameras have been found with many interesting proper-
ties which differ from other technologies in obtaining depth
images, e.g. (1) video-rate image acquisition, (2) compact
and fixed structure, (3) illumination adaptation, (4) self-
registration of dense depth data and color image, (5) small
and light weight [23]. Compared to conventional cameras,
TOF camera exhibits many advantages, including:

• Achieves richer location relationship between objects
with depth information [1], [27].

• Depth information also can be competent to traditional
applications like image segmentation, tags, recogni-
tion, tracking, etc. [28], [29].

• Through further processing, depth information can
be used for 3D-reconstruction and other homologous
applications [3], [30]–[33]

• Able to quickly applied in target recognition and track-
ing [18], [34]–[36]

• Costs of main accessories are relatively cheap,
including CCD and common LED, and popularizing
the production and utilizing the products are in all
probability [23]

• With the aid of the characteristics of CMOS, can get a
large amount of data and information, the judgment for
complex object is very effective [37]

• Without scanning equipment supporting work [25]

B. TYPICAL PRODUCTS
At present, the mainstream TOF camera manufactures
include PMD, MESA, Optrima, and Microsoft [38]. MESA
is TOF camera manufacturer who is currently the largest
provider in the field of scientific research. The main feature
is its compactness. PMD products are able to detect multi-
ple range, which can be used both in indoor and outdoor.
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FIGURE 3. Typical TOF cameras, (a) SR4500 (176 × 144), (b) CamCube 3.0
(200 × 200), (c) E-SERIES 70 (160 × 120), (d) Kinect V2 (512 × 424).

Optrima’s and Microsoft’s products are mainly designed for
family and entertainment applications, and therefore their
prices are relatively low. Here Four latest professional TOF
cameras from MESA, PMD, Fotonic and Microsoft are
shown in Fig. 3 and introduced as follows.

1) MESA SR4500.
SR4500 TOF cameras produce depth maps and amplitude
images at the resolution 176× 144. Every pixel is quantified
to a 16-bit floating-point word and each pitch represents
40µm size. The amplitude image reflects the detected IR light
and forms the depth-map, which provides three dimensional
coordinates corresponding to the image pixels. Themaximum
frame rate is 30 fps and the field of view (FOV) is 44 ×
35 degrees. The operating range of SR4500 is up to 9.0 m
depending on the modulation frequency.

2) PMD CAMCUBE 3.0.
This type of TOF camera is a state of the art depth camera
with a high resolution, high frame rate, superior ambient light
suppression and a flexible andmodular design. The resolution
is 200 × 200 pixels and the frame rate is 40 fps, while the
work range with standard settings is 0.3-7.0 m. The FOV of
this device is 40 × 40 degrees.

3) FOTONIC E-SERIES 70.
The greatest benefits with the E-SERIES 70 are the very low
motion artifacts and high frame rate. These features make it
effective for using in dynamic environment, e.g. tracking of
moving objects. The maximum frame rate is 58 fps and the
pixel array size is 160× 120. Since the modulation frequency
is 15 MHZ, the measurement range is 0.15-10 m. The FOV
of E-SERIES 70 is 70×53 degrees.

4) KINECT V2.
Kinect V2 is the new type depth sensor fromMicrosoft which
can produce color image at the resolution 1920 × 1080 and

depth image at resolution 512× 424. The frame rate of color
and depth sensor are equal to 30 fps. The range of detection
is 0.5-4.5 m and the FOV come up to 70 × 60 degrees.

C. APPLICATIONS
The properties and advantages of TOF cameras make them
wide applications in practice, e.g.

1) LOGISTICS INDUSTRY
In the process of logistics, TOF camera can obtain the volume
of the packages quickly and track their locations, optimize the
packing and shipping [8], [39]–[41].

2) SECURITY AND MONITORING
(1) In some public venues, the security department will
count people to ensure the number of people is less than
limit [42], [43]. (2) By counting the stream of people
or the complicated traffic system, we can complete the
statistical analysis design of the security system [44]–[47].
(3) Object detection helps us to monitor in sensitive areas [8],
[14], [48]. (4) Machine vision: industry locating, guidance
and the volume forecast [35].

3) 3D RECONSTRUCTION
According to the depth image collected by the camera, we can
build 3D maps of indoor and outdoor scene and reconstruct
objects in the scene [14], [30], [49]–[54]. Even some spe-
cial environment of 3D reconstruction, such as underwater
environment [32], [55], 56].

4) ROBOT
TOF camera provides good obstacle avoidance information
for automatic driving [57]–[60]. In industrial production,
cameras guide the robots on the installation, quality control
and raw material selection [61], [62].

5) MEDICAL AND BIOLOGICAL
In the field of biology and medicine, TOF camera can be
applied to many fields, e.g. foot orthopaedics modeling,
patient activities/sate monitoring, surgery assistance and 3D
facial recognition [34], [63]–[65].

6) INTERACTIVE ENTERTAINMENT
The application in interactive entertainment includes posture
detection, expression recognition and human-computer inter-
action [28], [34], [63], [66]–[71].

IV. EXISTING LIMITATIONS
Although TOF camera takes many advantages, its special
sensing architecture still causes a series of problems in appli-
cations. A raw depth image taken by TOF camera is still
at low spatial resolution. Most of cameras can only get
20-40 pixels in a frame. Both systematic and nonsystematic
biases are existing in the resulted data and depth precision
is still limited. Errors can be caused by many geometric and
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radiometric variations. The accuracy is also affected by the
limited power of emitted IR. The amplitude of the detected
IR value often varies in terms of color and natural material of
the object. Depth ambiguities caused by scenic structure and
motion blur caused by object and camera movement need to
be solved. What’s more, calibration is another critical prob-
lem of TOF camera. In this section, we especially concern the
depth noises and error sources in applications.

The depth image taken by TOF camera suffers from
some systematic errors, including integration time (IT) error,
amplitude ambiguity, temperature error, depth distortion error
and built-in pixel error [1], [23], [72], [73]. On the other
hand, there exist many nonsystematic errors in applications,
including light scattering error, multipath error, object bound-
ary ambiguity, multipath error, phase wrapping, and motion
blur.

A. INTEGRATION TIME
As shown in Fig. 4, the longer IT offers the higher signal-
to-noise ratio (SNR) [74]. The IT is related to the frame
rate as described in [1], and affects the range of depths
and the precision of TOF cameras. This source of IT error
is rarely mentioned in majority of existing works, and it is
unclear whether this error is explicitly taken into account.
Some cameras use an auto mode for the IT. It can be a good
feature sometime for non-professional users, but it alsomakes
the calibration not applicable.

FIGURE 4. Integration time error.

B. AMPLITUDE AMBIGUITY
Several reasons may cause amplitude ambiguity errors, e.g.
non-uniform LED radiation, non-uniform scenic illumination
due to objects at varying distances, and non-uniform reflec-
tion property of the object surfaces. As shown in Fig. 5,
the 3D points of same depth have different IR amplitudes of
the reflected signal depending on the object color [1], [23].

C. TEMPERATURE DRIFT
The working temperature in a TOF camera affects its depth
processing and causes reference drift or systematic errors.
Some cameras have an internal fan installed in the device to
keep stable temperature. Otherwise, the calculated values will
have a drift in the whole 3D image. Impact of internal and
external temperature on distance measurement can be found

FIGURE 5. Amplitude ambiguity.

in [75], for understanding the response of semiconductor
materials according to temperature changes.

D. DEPTH DISTORTION
This type of systematic error appears in TOF cameras because
the emitted IR cannot be generated perfectly due to irregu-
larities in the modulation process [76]. Such errors produce
a depth offset depending on the distance at each point on
the surface. Those error sometimes appears as wiggling or
circular error.

E. ELEMENT VARIATION IN SENSOR ARRAY
There are small built-in variations at sensor elements and
causes error at pixels. Due to the variation of material prop-
erties in each CMOS/CCD element, the depth measured in
two adjacent pixels might be different even though they cor-
respond to the same distance in the real scene. Another is the
latency related error caused by the time delay of capacitor
charge in signal correlation. The built-in element variation
causes pixel-dependent errors. These errors are usually small
and may be neglected, but we still need to consider the error
produced by rotation of the image [23].

F. LIGHT SCATTERING
There are artifacts in the depth image which caused by light
scattering [36], [77]. As shown and marked in Fig. 6, due to
the low sensitivity of the TOF sensor, IR saturation in a place
causes depth distortion in other parts in the depth image.

FIGURE 6. Light scattering.

G. BOUNDARY AMBIGUITY
Object boundary ambiguity is a serious problem for recon-
structing 3D scenes [78]. The pixels near the boundaries goes
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to background and foreground simultaneously [79], which
results in some distortion in the obtained 3D image, as the
example shown in Fig. 7.

FIGURE 7. Object boundary ambiguity.

H. MULTIPATH DISTURBANCE
Due to light reflection, multiple reflected IR signals might be
superposed for depth calculation in a sensor pixel [80]. This
multipath disturbance is serious in some complex places, e.g.
the concave corners (Fig. 8).

FIGURE 8. Multipath error around the concave corner.

I. PHASE WRAPPING
The maximum detecting range of TOF camera is determined
by the signal periodicity, or i.e. the signal frequency. Beyond
the maximum range, phase wrapping will occur and the mea-
sured values are confounded. According to the principle of
TOF camera, the detected IR light is gated using its internal
reference signals. The function for distance measurement is
arctangent of phase ϕ in the detected signal. Due to the period
of 2π , the value has ambiguity at phase ϕ + 2π , for all
n ≥ 0. Therefore, a modulation frequency f corresponds to
a maximum range dmax determined by (3). For a position
beyond dmax, the actual distance might be d + ndmax. This
phase wrapping problem requires the algorithm to determine
the unknown n, or called phase unwrapping. For example,
Fig. 9a shows a typical wrapped TOF depth map obtained
by SR4000. The unwrapped version of this map is shown as
Fig. 9b.

J. MOTION BLUR
Cameras often produce motion blur in the captured images
due to either camera motion or object motion. The blur is a
regional or global error and causes image degradation. The
corresponding deblurring methods are not yet well explored
in practice for TOF cameras. For live 3D data acquisition,

FIGURE 9. Phase wrapping.

a TOF camera has also to deal with this issue. However,
the motion blur from TOF images is very different from
other color cameras due to the special sensing principle. One
special characteristic is that the TOF motion blur often shows
overshoot or undershoot, which can be found in the regions
between foreground and background transition. Accordingly,
the blur results in higher or lower depth value calculated than
other depth values near foreground and background.

To study the motion blur in a TOF image, we have to
explain the IT. Since the depth value is obtained bymeasuring
the phase delay between the emitted and detected IR signals,
the IT has to be sufficient for collecting electric charge to
find the phase delay. During the integration period any camera
or object motion will cause imaging blur. If the process of
collecting electric charge C1 to C4 to calculate depth (1)
occurs ncycles during the IT, the calculation can be repeated
n times to increase the SNR.

ϕ = arctan
(
nC3 − nC4

nC1 − nC2

)
(4)

where C1 to C4 are corresponding electric charges of the four
control signals S1 to S4 in Fig. 2. The depth calculation (4)
assumes that the IR signal comes from a specific 3D point
in the scene during the IT. If there is any motion in the period,
the resulted depth will be corrupted. As shown in Fig. 10,
the red point is a same pixel in the TOF camera. Because
of the object motion, the red point comes from different
places in the scene during the IT. Thus, the motion causes
the false depth calculated from the points around the moving
area.

FIGURE 10. TOF depth motion blur.

V. METHODS FOR DATA CORRECTION
The enhancement of TOF data is an important issue in the
practical applications [73]. In order to deal with the encoun-
tered challenges and to reduce the errors, researchers have
proposed some useful methods to solve the urgent issues in
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the TOF camera applications, mostly on system error reduc-
tions and nonsystem error reductions.

A. SYSTEMATIC ERROR REDUCTIONS
There are many systematic errors described in Section IV.
Here we summarize some available methods attempted to
reduction to these errors. Table 1 lists a summation of them
which are based on single camera data [23]. There are three
main error sources of the systematic error, i.e. built-in pixel,
depth distortion, and time integration errors.

TABLE 1. Approaches to systematic error reduction.

Several recent contributions are supplemented mainly for
dealing with the two error sources of the systematic error. The
first is depth distortion, which appears when the emitted IR
light cannot be practically generated as planned because of
irregularities in modulation. Two approaches are addressed
for this error. One is comparing depth measurements with
a reference ground truth [81], [82], and the other is esti-
mating the error from optimization of multiple measure-
ments [83]. Hussmann et al. [84] presented a modulation
method based on sine waves for minimizing the wiggling
error. A noise distribution model is also derived which pre-
dicts the performance of the modulation method in real time
for depth images. Applications in 3D reconstruction and
modeling should be suited by this type of approach. Fuchs
and Hirzinger [85] and Kahlmann et al. [75] also studied the
systematic error sources and the overall error is reduced to
below 3mm. More intensive investigation has been done by
González-Ortega et al. [23], who had summarized some clas-
sic approaches to reduction of the typical systematic errors.

Another systematic error is amplitude ambiguity error,
which occurs due to low or overexposed reflected amplitudes.
According to the different causes, there are three categories

of solutions. A threshold in the amplitude filter can cut the
low amplitude errors [83], and the over exposition error
can be corrected by accessing the raw measure time of the
camera . The third cause of amplitude error is non-uniform
surface reflectivity. Generally, a calibration process can be
used to analyze different reflective object surfaces [81]. As a
novel 3D system, a multiple camera system (MCS) such as
combination of TOF cameras with color cameras, has been
applied to detect amplitude errors [89].

B. NONSYSTEMATIC ERROR REDUCTION
1) DEPTH DATA DENOISING
The captured depth data from a TOF camera is often starkly
contaminated by noise [90], [91]. Multiple light reception
and light scattering are the two occurrences of the nonsystem-
atic errors, which make the raw TOF image noisy and being
unpredictable. Multiple light reception is mainly caused by
object boundaries, e.g. with depth jumps and object con-
cavities (Fig.7 and Fig. 8). Several methods have been pro-
posed to identify and correct the jump edge errors [92]–[95].
Pathak et al. [96] used Gaussian analysis in correction of
multi-modal measurements. However, its computation cost
is very high, this method has to integrate over 100 images
for processing every frame, which is difficult to implement
for real-time applications. Reynolds et al. used Random
Forest Regress to measure pixel confidence and detect fly-
ing points according to real world data (Fig. 11a) [78].
Ghorpade et al. [79] applied a ‘‘Line-of-Sight’’ based edge
filter to remove the jump edges. The method has good perfor-
mance and the computation cost for range image filtering is
lower than existing methods. In a different way, Li et al. [97]
proposed a denoising method for TOF depth images in a
weighted least squares framework. The algorithm can well
preserve surface edges and improve the Peak Signal-to-Noise
Ratio (PSNR) of the denoised images by 0.5–2.6 dB at the
same time.

FIGURE 11. Depth image denoising and resolution improvement.
(a) Flying pixels in the white coil [78], (b) RGB-D camera system for
upsampling [98].

In addition to edge noises, the accuracy of a TOF camera
can also significantly affected bymultipath interference when
scanning the places with object concavities. by This error
may have several centimeters in such places. Fuchs [80]
propose a multipath model which can estimate and correct the
interference. Such a multipath model was further improved in
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the recent literatures. Yong et al. [99] proposed a denoising
algorithm for TOF depth data by a parametric noise model.
The results show that the algorithm can yield good denoising
effect and preserve edge details as well.

Light scattering effect is another problem affecting the
measurement accuracy, due to repeated light reflexions
between the lens and the sensor surface in the TOF cam-
era [8]. This effect can be almost minimized following two
approaches. The first is applying a filter by combination of
amplitude and intensity values to reduce affected scattering
pixels [100]. The second is to apply blind deconvolution
based on a mathematical model for compensation [101].
Of course, instead of dealing with the scattering effect, people
are also seeking for new sensor materials of lower reflectivity
to make scattering negligible on the sensor [102].

In practice, MCS can also be used for denoising
and resolution improvement [79], [98], [103]–[109].
Oprisescu et al. [110] proposed some methods attempting to
correct the imaging error of one image based on the other one.
The amplitude image is firstly enhanced by using the distance
information, and then an algorithm of amplitude-based dis-
tance modification corrects some errors of distance estima-
tion for far-distance pixels, rather than treating the amplitude
of each TOF sample as a measure of confidence.

2) RESOLUTION IMPROVEMENT
The current TOF sensor limits its image resolution. The low
resolution (LR) noisy depth image is big problem faced in
the applications [79], [111]–[113]. To improve the depth
data resolution [114], [115], Gandhi et al. [116] proposed a
TOF-stereo fusion method to deal with the LR range data and
obtain a dense and accurate depth map. Garicia et al. [117]
proposed a unified multi-lateral filter which can increase
the image resolution in real-time. At present upsampling is
an effective method to improve the resolution [118], due
to the constraints in upsampling models, the high-resolution
depth image obtained in this way suffers from either texture
copy artifacts or depth discontinuity blur. An optimization
framework proposed in [119] can tackle this problem well.
Lately, a deblurring and super-resolution method for blurred
TOF images is proposed in [120], which analyzes the image
formation model and directly works with raw measurements
from the sensor. The reported results outperform most exist-
ing methods on both synthetic and real datasets.

Park et al. [98] gave a framework to upsample a LR
depth map using an auxiliary RGB image with high resolu-
tion (HR). They proposed to use registered and potentially
HR RGB images as references to enhance the resolution
of range images. The number of referenced color images
is not restricted [121]. Yeo et al. [107] analyzed another
framework for upsampling the depth resolution, where the
RGB-D camera system is shown in Fig. 11b.

Some other frameworks of multiple camera methods in
depth image improvement are also investigated in the lit-
erature. Three typical frameworks are shown in Fig. 12.
Particularly, Galna et al. [22] proposed a method using TOF

FIGURE 12. Multiple camera systems. (a) TOF+stereo cameras [123],
(b) TOF+Video cameras [125], (c) TOF pair cameras [22].

stereo for depth data acquisition. They combine two cam-
eras in different frequency to obtain depth images, and then
improve the accuracy of the depth image with an optimization
function. This method can successfully avoid multi-camera
interference and improve the TOF data effectively. A pair
of TOF cameras is also attempted in [22] (Fig. 12c). Many
people have tried to combine a TOF camera with a stereo of
color cameras [122]–[124]. Evangelidis et al. [124] com-
bined the LR depth map with the HR stereo images. The
reconstructed stereo data and depth map are fused according
to textural and geometrical likelihoods. This method yields
an efficient algorithm for selective growing of correct dis-
parities and runs at 3 fps on a standard personal computer.
As another attempt to combining a TOF camera and a video
camera Kim et al. [87], [125], generated and served 3D
video represented by ‘‘video+depth’’, where the noisy depth
maps are enhanced by performing several steps, e.g. bilat-
eral filtering, outer-boundary refinement, and motion estima-
tion. Finally, it generates high-quality 3D ‘‘video+depth’’ in
MPEG-4 multimedia.

3) PHASE UNWRAPPING
In the TOF measuring principle formulated in (2), the dis-
tance is proportional to the phase difference, but it is restricted
by the light modulation wavelength. Distance ambiguity
occurs when the measurement distance is larger than the
sensor’s range dmax (3), which is termed phase wrapping.
There are many methods proposed in the last decade for
phase unwrapping [126]–[131]. They are categorized into
two types, i.e. single depth map-based and multiple depth
map-based.

Single map phase unwrapping methods can deal with
dynamic environment where the cameras or objects are mov-
ing [132]–[134]. For practical applications [132], [133],
the depth discontinuity on object boundary is an important
cue for relative wrapping estimation. Droeschel et al. [127]
applied several modulation frequencies to identify wrapping
and correct the measured data. In a different way, a gener-
alized approximate message passing (GAMP) framework is
used to incorporate both accurate probabilistic modeling for
the measurement process and underlying depth map sparsity
to accurately extend the unambiguous depth range [129].
Lee [26] proposed ‘‘loopy belief propagation’’ for wrapping
detection and inference, which is also based on a single map.
Some TOF cameras, e.g. SR4500, can take both amplitude
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image and depth map. The intensity of the amplitude image is
inversely proportional to the squared distance. The amplitude
values are important in detecting the wrapped regions [134].

Comparing to the single map phase unwrapping methods,
multiple map methods are more complicated. These methods
use two or more depth maps, which are often taken at differ-
ent frequencies, and determine the number of wrappings by
examining the depth differences for each pixel [127], [135].
It takes the advantage of dealing with occlusion and boundary
transition, but it brings another problem for moving cameras
and objects because there may be some time difference when
switching among different signal frequencies. Considering
this problem, a hardware solution will be useful. Actually,
it has been reported tomake a single shot with twomodulation
frequencies [136]. It can effectively eliminate the temporal
difference in TOF imaging. However, commercial products
using such a hardware technique are not yet available proba-
bly because of system complexity and cost consideration.

There are some other approaches available in the
literature for phase unwrapping, which also utilize a pair
of depth maps simultaneously. Among them, Markov ran-
dom field (MRF) is often applied in the technology. For
example, Choi and Lee [137] applied iterative MRF opti-
mization for solving the problem caused by the different
viewpoints. Kirmani et al. [128] proposed a framework for
phase unwrapping in homodyne TOF cameras. As mentioned
in [135], the consistency constraint is important in phase
unwrapping. Jeong et al. [130] described phase unwrapping
using single modulated light source and multi photo gate
frequencies for TOF camera. To protect human eyes, the illu-
minating power of TOF cameras is restricted. Consequently,
the wrapping points are abundant. In order to achieve a robust
estimation against noise, Droeschel et al. [127] used an
auxiliary depth map of another modulation frequency and
incorporates the constraint of depth consistency.

4) MOTION DEBLURRING
As described in Section 4, motion blur in TOF cameras is
very different from that in CCD cameras. The motion blur
in a CCD camera appears color transition gradually from
the foreground to the background in the image [138, 139],
but the motion blur in a TOF depth map looks ‘‘overshoot’’
or ‘‘undershoot’’ near depth jumps. Due to this difference,
the existing deblurring algorithms of color images are inap-
plicable to depth images. A long IT helps to get high SNR
depth data, but a shot IT helps to suppress the motion blur.
Sun et al. [74] found a scheme that can take advantages
of both short and long IT and effectively reduce motion
artifacts.

In TOF images, there are two types of motion blur artifacts
depending on whether due to lateral or axial motion. Some
methods are available in solving this problem. In [140],
combination of a PMD camera with a conventional color
camera is proposed to detect ‘‘lateral motion artifacts’’ by
an edge detector in the 2D image. Then they filter the
image by weighted average of neighbor pixels and perform a

FIGURE 13. Motion blur artifacts of different object. (a) Rigid,
(b) Multiple, (c) Deformable.

2-phase depth computation algorithm after sampling analysis
of images. In industrial applications, Hussmann et al. [141]
specifically introduced a method of blur detection for work-
ing on a conveyor belt, while this can only deal with
one directional motion. Castaneda et al. [24] proposed a
detection and deblurring method for depth motion blur.
These methods are intended to reduce the artifacts to some
extent rather than completely eliminate the motion blur.
Chang [142], [143] proposed methods for relatively com-
plete systematic deblurring.

As reported in some contributions, motion blur artifacts
can be caused by different object motions, e.g. multiple body
motion, rigid body motion, and deformable body motion
(Fig. 13). Different motion blurs require corresponding meth-
ods for deblurring respectively. A notable issue is that motion
blur occurs not only just on the object boundaries, but also
inside the objects. Furthermore, depth differences inside an
object during the integration time can also cause motion
blur. A straightforward but ‘‘effective and fast’’ method is
proposed in [142], which is suitable for realizing hardware
with no additional processing time andmemory [144], [145].

The representative nonsystematic error reduction and
performance improvement approaches in recent years are
summarized in Table II.

VI. FUTURE TRENDS
A. MULTIPLE CAMERA SYSTEM
Given the problems of these existing approaches, there are
potential trends on TOF cameras. One is the multiple camera
system. Although a TOF camera shows the great advantage of
real-time depth data acquisition which is rather useful in prac-
tical applications, the current TOF imaging products still have
two fatal limitations, i.e. resolution and accuracy, as described
in the previous sections. A TOFMCS is illustrated in Fig. 14,
which is currently a strategy to overcome these shortcom-
ings caused by noise and surface scattering [147], [169].
The MCS uses two or more TOF cameras and combines
the acquired depth data sets to improve the accuracy and
resolution [14], [31]- [33], [170]. Some 3D object scanning
approaches are exploited based on TOF MCS. However,
in applications, the multiple camera system often requires
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TABLE 2. nonsystematic error reduction and performance improvement
approaches.

to capture the same scene by several cameras at different
viewpoint. If theywork simultaneously at the same frequency,
they would interfere with each other. This problem limits the

FIGURE 14. Multiple TOF camera system.

FIGURE 15. RGB-D camera system.

FIGURE 16. People detection and tracking results on office dataset (first
row) and mobile camera dataset (second row) [166].

application ofmultiple camera systems and needs to be solved
by some strategies [171], [172].

B. RGB-D SYSTEM
Another MCS is to assemble the TOF sensor with one
or two color cameras [173], as shown in Fig. 15,
which is called RGB-D system. Such a camera system
has good performance in many applications, e.g. target
detection and tracking [174]–[176] (Fig. 16), human activ-
ity analysis [58], [177]–[180] (Fig. 17), object recogni-
tion [174], [181]–[188] (Fig. 18), SLAM [189]–[191], hand
gesture analysis [192]–[194], and 3D hand pose detection
(Fig. 19).

The calibration is a prerequisite in practice for using a
measurement system, either stereo sensors or RGB-D MCS,
because the color image and depth data have to be cor-
responded to the world coordinates. A single TOF sensor
can usually be calibrated by traditional mathematical meth-
ods [195]. However, when calibrating an RGB-D system,
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FIGURE 17. Human action recognition from RGB-D data [168].

FIGURE 18. Object recognition in cluttered environment [193].

FIGURE 19. RGB-D system for hand pose detection [147].

the traditional methods do not work well due to the weak-
nesses of the TOF sensor, such as blurry amplitude image and
low resolution. There are some latest calibration methods on
various datasets [196]–[200]. However, a better process of
calibrating an RGB-D system still desired to overcome the
above-mentioned problem.

C. REAL-TIME DATA PROCESSING IN DYNAMIC SCENE
TOF cameras as a developing type of 3D vision sensor are
attracting more and more attentions for autonomous mobile
robotics [42], [57], [201]. The real-time 3D data can help
robots to accomplish autonomous path-planning [57], [202].
Therefore, the vision system now becomes indispensable
for the robots to see the environment and avoid possible
obstacles, e.g. as the scenario shown in Fig. 20, where the
two robots are equipped with a TOF camera. However, some
problems are still urgent to be solved in such TOF cam-
eras system, like accurate camera calibration in motion [5].

FIGURE 20. Indoor test with static obstacles [63].

FIGURE 21. Object detection [209].

In order to ensure the correct driving path of a collision free
for a mobile robot, we need an effective and robust calibration
procedure to obtain the correspondence between the real
world and the image [42], [203]. This calibration procedure
is required for any mobile robot systems. Extrinsic camera
parameters estimation is another task for the system. The
reconstruction of the image to real world projection depends
strongly on robust estimated camera parameters.

D. INTEGRATION WITH COMPUTER VISION
TOF camera as a vision sensor has to be integrated with
vision algorithms for practical applications. Most of contri-
butions in computer vision are dealing with the problems
of feature analysis, target detection, recognition, tracking,
modeling, and activity analysis. For example of target detec-
tion, the algorithm needs to find an area, e.g. showing as a
bounding box, to indicate the existence of the target at that
place [204]. However, we want to understand the imagemore
meticulous, not just about what is visible but also about what
is not visible. After recognizing an object, a better sense is
to make clear the exact distance from the observer and the
appearance from other views. The TOF image provides a
richer representation, and thus computer vision algorithms
can take advantages of more cues for practical tasks like
object detection, categorization, pose estimation (Fig. 21),
and 3D scene labeling (Fig. 22). More corresponding works
about these issues can be found in the contributions by [194]
and [205]–[208].

Another example of computer vision problem is semantic
segmentation for image understanding. A typical attempt of
using TOF as a vision sensor for semantic segmentation and
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FIGURE 22. Labeling of 3D complex scenes with RGB-D dataset [217].

scene labeling can be found in [210]. Another attempt of
adopting aMRFmodel and using feature descriptor on super-
pixels is shown in [211]. A recent work in [174] might be
inspired by [212], where they chose novel feature descriptors
for indoor scene understanding in RGB-D images.

VII. CONCLUSION
This paper summarizes recent advances of TOF data acqui-
sition and processing, including fundamental sensing prin-
ciples, applications, and current limitations. Typical TOF
camera applications include 3D reconstruction, computer
vision, medical and biological application, robot navigation,
etc. With the mature of TOF camera technology, the perfor-
mance of TOF camera has been improved obviously. Higher
resolution and accuracy depth image are obtained in these
years, many systematic and nonsystematic errors have been
decreased, and a rich number of projects have been con-
ducted to broaden the application range of TOF cameras.
Nevertheless, as summarized in this survey, some challenges
still remain. First, the resolution of TOF sensors is still low
compared to other vision sensors such as color cameras and
laser scanners. Second, superfluous noises still exist though
some methods have already led to better SNR. Third, some
challenging issues such as phase wrapping still want to be
solved better. Although there are some available algorithms
to deal with these challenges, more sophisticated approaches
are desired in order to increase the unambiguous range. Other
concerns are addressed, including motion blur, the relation-
ship between the integration time and SNR, environment light
noise and high reflectivity surfaces in the scene.
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