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ABSTRACT As an emerging research topic for proximity service (ProSe), automatic emotion recognition
enables the machines to understand the emotional changes of human beings which can not only facilitate
natural, effective, seamless, and advanced human–robot interaction or human–computer interface but also
promote emotional health. Facial expression recognition (FER) is a vital task for emotion recognition. How-
ever, significant gap between human and machine exists in FER task. In this paper, we present a conditional
generative adversarial network-based approach to alleviate the intra-class variations by individually control-
ling the facial expressions and learning the generative and discriminative representations simultaneously. The
proposed framework consists of a generator G and three discriminators (Di,Da, andDexp). The generator G
transforms any query face image into another prototypic facial expression imagewith other factors preserved.
Armed with action units condition, the generator G pays more attention to information relevant to facial
expression. Three loss functions (LI , La, and Lexp) corresponding to the three discriminators (Di, Da,
and Dexp) were designed to learn generative and discriminative representations. Moreover, after rendering
the generated expression back to its original facial expression, cycle consistency loss is also applied to
guarantee the identity and produce more constrained visual representations. Optimized by combining both
synthesis and classification loss functions, the learnt representation is explicitly disentangled from other
variations such as identity, head pose, and illumination. Qualitative and quantitative experimental results
demonstrate the proposed FER system is effective for expression recognition.

INDEX TERMS Facial expression recognition, emotion recognition, conditional generative adversarial
network, human-robot interaction.

I. INTRODUCTION
As an emerging research topic for Proximity Service (ProSe)
[1]–[3], safe, natural, and advanced human-robot interac-
tion (HRI) system is supposed to provide not only friendly
physical contact between robots and human beings, but also
emotional interaction. Among human emotional commu-
nication channels, facial expression is arguably the most
important visual cue for reflecting the underlying human
intentions, physiological changes, affective and cognitive
mental states [4]. Therefore, automatic facial expression
recognition (FER) pays a vital role in emotional commu-
nication based HRI. For instance, as illustrated in Fig. 1,
the artificial intelligence agent with soft skins [5] can work

alongside people as cooperative teammates to improve pro-
ductivity. After face detection and deep feature learning,
the intelligent robot is able to recognize nuanced mean-
ings conveyed by facial expressions. Moreover, the agent
can even improve people’s quality of life by taking their
emotional health into account in the system and ser-
vice design. Apart from HRI/human-computer interface
(HCI) [10]–[14] and assistive robotics [6]–[9], automatic
FER is also important in other applications including
movie or advertisement recommendations, driver fatigue
surveillance, student engagement estimation [15], and the
improvement of expression production in autism disorder
patients [16].
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FIGURE 1. Emotional recognition and friendly physical contact based
human-robot interaction (HRI). Icons are created by Olena Panasovska
and Knut M. Synstad from the Noun Project.

In recent years, great progress has been achieved in auto-
mated facial expression analysis on lab controlled datasets
which were collected under uniform background and illumi-
nation, such as CK+ [17], MMI [18], and Oulu-CASIA [19].
Nevertheless, accurate FER under wild conditions still
remains an unsolved issue. The task of FER is challenging
because the strong intra-class variability exists due to the var-
ious personal identities, such as age, gender, and ethnic back-
grounds. Besides the identity bias, other adverse factors in the
wild condition may include poor illumination, low resolution,
blur, as well as head deflection, etc. Additionally, taken
‘‘in-the-wild’’ datasets are unbalanced. For instance,
the training sample number of happy expression images
is much bigger than the training sample number of angry
expression images in taken ‘in-the-wild’ datasets [60], [61].

Therefore, in this work, we propose a conditional genera-
tive adversarial network (cGAN) based network to disentan-
gle the facial expression factor and learn the generative and
discriminative representations simultaneously. Our proposed
model consists of a generator G and three discriminators
(Di, Da, and Dexp). The task of disentangling the facial
expression factor is realized in two stages: learning by the
conditional generator G and learning by three discriminators.
The generator G individually controls the facial expressions
by transforming any query face image into another synthetic
facial expression image where others factors are preserved
such as identity and background, etc. The generator G was
also designed for data enrichment to alleviate the imbalance
of the data set. Three loss functions (LI , La, and Lexp) were
developed corresponding to the three discriminators (Di, Da,
and Dexp). In addition, after rendering the generated expres-
sion back to its original facial expression, cycle consistency
loss is also applied to guarantee the identity and produce
more constrained visual representations. Optimized by com-
bining both synthesis and classification loss functions, not
only the synthesized facial expression images were preserved

with identity and background, but also more discriminative
features for the expression recognition were obtained.

The rest of this paper is organized as follows. Section II
presents three main steps required in a FER system and
describes the related background. Section III provides facial
image preprocessing, details of proposed neural network
architecture and optimization strategy. Adopted facial expres-
sion databases, experimental results and analysis of the pro-
posed methodology are introduced in Section IV. Finally,
the conclusions are presented in Section V.

II. RELATED WORK
A. FACIAL EXPRESSION RECOGNITION
1) FER APPROACHES BASED ON SHALLOW LEARNING
Themajority of existing FER systems focus on six basic emo-
tions types, namely: happy, surprised, fearful, sad, angry, and
disgust, which were defined by Ekman [20], [21]. Automatic
FER consists of three main stages: pre-processing, facial
feature extraction, and expression classification. Accord-
ing to the adopted feature representation, traditional hand-
crafted FER approaches or so called shallow learning FER
approaches can be approximately categorized into four main
groups: geometric features based methods, appearance fea-
tures based methods, action unit (AU) based methods, and
motion features based methods.

Appearance-based methods capture global and detailed
information by leveraging image filter or filter bank. Pixel
intensity [22], Gabor texture [23], local binary patterns
(LBP) [24], and histogram of oriented gradients (HOG) [25]
are popular descriptors for the appearance-based feature
extraction methods. Geometric features based methods work
with shapes, positions of the facial components and com-
ponents’ geometric relationships. Motion features are com-
monly used in video analysis which mostly focus on the
temporal correlations of contiguous frames in a sequence,
such as motion history images (MHI) [26], volume LBP [27],
and optical flow [28]. AU based method was inspired by the
physiological and psychological theory. As different facial
expressions are the results of the different facial muscles
motions, Facial Action Coding System (FACS) [29]–[31]
developed by Ekman and Friesen defines facial AUs, the basic
elements in formularizing facial expressions, to describe
facial muscle activations. Thus facial expressions can be
decomposed into multiple AUs. Fig. 2 shows eight basic AUs.
Fusion of different handcrafted features was also investigated
in previous work. In [32], the texture features and landmark
features extracted from facial images were combined which
are complementary with each other. Allaert et al. [33] con-
sidered a hybrid of motion features with geometric features.
Additionally, the shape of facial regions of interest were
exploited to form the apex frame [33].

2) FER APPROACHES BASED ON DEEP LEARNING
Over the last few years, deep convolutional neural net-
works (CNNs) [34]–[36] have produced unprecedented
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FIGURE 2. Action unit images for AU 1, 4, 6, 9, 12, 15, 26, and 28.

performance on a variety of tasks, such as object
recognition [37], scene classification [38], and face
recognition [39]–[41]. Meanwhile, conventional handcrafted
features or shallow learning based FER approaches have been
reported a limited recognition performance, because they lack
the ability to cope with the great diversity of factors which
are irrelevant to facial expressions. These factors irrelevant to
facial expressions include backgrounds, hair, and head deflec-
tion. Consequently, utilization of deep learning techniques in
FER has attracted considerable attention among researchers.
Yang et al. [42] leveraged a partial VGG16 network and
a shallow CNN to extract two feature vectors from facial
grayscale images and LBP facial images, respectably. Then
the two feature vectors were fused to fully use complementary
facial information. Tang et al. [43] extracted features by
twelve convolutional and pooling layers which were more
efficient and provided a great improvement, compared with
the 78 dimensions geometric features. Zheng et al. [44]
presented a VGG16 + 1D-CNN model for FER. In their
framework, representations of each frame of a video were
extracted with VGG16 network followed by four 1D-CNN
networks. Then the features were concatenated and were
fed to two fully connected (FC) layers to predict facial
expressions.

B. GENERATIVE ADVERSARIAL NETWORKS (GANS)
Generative adversarial networks (GANs) [45] have been vig-
orously studied in recent years, since the model has achieved
remarkable results in various computer vision tasks such as
image generation, image translation, etc. The goal of GANs
is to model distribution as similar as possible to the true data
distribution. To achieve this goal, the generator G and the
discriminator D of GANs compete in a two player minimax
game. Specifically, the discriminator learns to distinguish
real samples from fake samples while the generator learns to
generate fake samples to fool the discriminator until reach
the Nash equilibrium [46] between the two modules. The
cGAN [47] is an extension of the GAN where the model
receives additional variables (features or label, etc.) as input,
which could deterministically control the output of the gen-
erator. cGAN has been successfully applied to synthesize

images from labels, reconstructing objects from edge maps,
and photo editing [48], etc. Lai and Lai [49] proposed a
GAN-based network model to achieve canonical-view facial
expression recognition. The generator in their model frontal-
ized input non-frontal face images into frontal face images
while preserving the identity and expression characteris-
tics. Yang et al. [50] presented a cGAN based approach
which generated facial expressions in order to alleviate the
issue of subject variations. The input of their model was
restricted to image pairs where each image pair included two
different expressions of the same person. However, paired
images are usually not available in the wild condition. For
instance, there are rarely paired images in AffectNet [60] and
RAF-DB [61] datasets which are taken in the wild. In con-
trast, the proposed model in this paper is capable of dealing
with unpaired data. As AUs are the basic elements of facial
expressions, we present an EAU-Net network to transform
any query face image into another prototypic facial expres-
sion image by editing AUs. More specifically, with desired
AUs condition, the cGAN based EAU-Net edits original AUs
of a given face image and reconstructs a synthetic face image
with desired AUs. In the meantime, generative and discrimi-
native representations are learnt for recognition. To this end,
two different expressions of the same person are dispensable.

III. PROPOSED METHOD
A. FACIAL IMAGE PRE-PROCESSING
Adverse variations exist in wild condition, such as complex
backgrounds and poor illumination, etc. Therefore, pre-
processing to align and normalize the facial images is neces-
sary, before deep feature learning. The three steps for facial
image pre-processing are described below. Step1: Crop the
face region to remove the uncorrelated information. To crop
the facial image, firstly, multi-task cascade convolutional
neural networks (MTCNN) [51] is employed to detect face
and to provide the bounding box of facial region, as MTCNN
is found to be robust and effective for alignment [52]. Then,
according to the bounding box, the face region is cropped
from the original facial image. Step2: Resize the cropped
image to a fixed size which makes sure that the same scale
is shared among all images. In order to capture more sub-
tle facial expression information, the fixed size is set to
256 × 256 pixels. Step3: Normalize the resized images from
[0, 255] to [0, 1] and augment the data using techniques such
as random flip. The purpose of normalizing the image inputs
is not only to remove the high frequency noise but at the same
time to ensure that the pixels of the image have a similar
distribution. Additionally, after random flipping (flipping an
image horizontally or vertically), the data sample size is
expanded, which is very helpful to improve the accuracy and
the generalization capability of the model.

B. NETWORK ARCHITECTURE
A cGAN based network for data enrichment whilst perform-
ing FER is proposed in this paper. The overall architecture
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FIGURE 3. The overall architecture of the proposed model, which consists of a generator G and three discriminators (Di, Da, and Dexp). The generator G
is applied twice: G transforms any given query face image to another facial expression image and then rends it back. Openface [53] is applied to extract
the AUs.

is depicted in Fig. 3, which composes of a generator G and
three discriminators (Di,Da, andDexp). The processing flow
is described as follows:

Here we take the transformation of a happy real face to a
neutral fake face as an example, as shown in the lower part of
Fig. 3. Firstly, a cropped, resized, normalized and augmented
facial expression image (happy real face) concatenated with
AUs is fed to the generator G to generate a synthetic face
(neutral fake face). The AUs are a set of 17-dimensional
vectors, and AUs applied here are extracted from a neutral
real face using Openface [53], as shown in Fig. 3. Actually,
the proposed generator G is capable of transforming any
given facial expression image into another prototypic facial
expression (happy, surprised, fearful, sad, angry, disgust,
or neutral) image. For instance, with the AUs extracted from
a sad real face, the generator G is able to transform any given
facial expression image to a sad fake face.

Secondly, both the real face and fake face are sent to three
discriminators. The functions of the three constructed dis-
criminators vary, and the specific functions of each discrimi-
nator are described as below: 1) Discriminator Di: In order to
generate photorealistic image, the discriminator Di is indis-
pensable. The discriminator Di evaluates the quality of the
generated image to distinguish the real face from the fake
face. 2) Discriminator Da: The discriminator Da learns to
estimate the AUs values to make sure that the AUs from
the neutral fake face is similar to the AUs from the neutral
real face. 3) DiscriminatorDexp: The discriminatorDexp per-
forms the FER task which learns to predict facial expression

labels (including happy, surprised, fearful, sad, angry, disgust,
and neutral).

Thirdly, the generatorG renders the generated face (neutral
fake face) back to the original facial expression (happy) to
generate a reconstructed face (happy reconstructed face). This
reconstruction guarantees the generatorGmapping one facial
expression to another facial expression with identity (includ-
ing age, gender, and ethnic backgrounds, etc.) and other
factors (including background and illumination, etc.) pre-
served by minimizing cycle consistency loss Lcyc. The cycle
consistency loss Lcyc is defined as the difference between
the original image (happy real face in this case) and the
reconstructed image (happy reconstructed face in this case).

Finally, the parameters of generator G and three discrimi-
nators (Di, Da, and Dexp) are learnt by optimizing four loss
functions (LI , La, Lexp, and Lcyc). The details of these four
loss functions are described in part C of section III.

The detailed structures of each component in the proposed
model are described below: 1) Generator G: Fig. 4 reports
the architecture of the proposed generator G where convo-
lutional encoder-decoder layers are embedded. More specif-
ically, the generator G comprises an encoder with output
channels {64, 128, 256} and a decoder with output channels
{128, 64, 3}. Batch normalization (BN) [54] is applied
between each convolutional layer (‘‘Conv3’’ or ‘‘Conv4’’)/
deconvolutional layer (‘‘Deconv3’’ or ‘‘Deconv4’’) and
non-linear activation function (ReLU). The function of BN
here is to reduce internal covariate shift to regularize the
model and to improve the convergence speed. As shown
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FIGURE 4. The architecture of the proposed generator G where convolutional encoder-decoder layers are embedded.

TABLE 1. A Detailed Description of The Architecture of the Proposed
Discriminator Di. The Output Shape is Described as (#channels, height,
width).

in Fig. 4, ‘‘Conv3’’ and ‘‘Conv4’’ employ 3 × 3 filters and
4 × 4 filters, respectively. Similarly, ‘‘Deconv3’’ and
‘‘Deconv4’’ employ 3 × 3 filters and 4 × 4 filters, respec-
tively. Residual blocks are also used here, where the stride
size is set as 1 and the filter size is set as 3× 3. 2) Discrimina-
tor Di and Discriminator Da: The detailed descriptions of the
architectures of the proposed discriminator Di and discrim-
inator Da are provided in Table 1 and Table 2, respectively.
Both the discriminator Di and the discriminator Da have a
13-layers structure. For instance, layer 1 of discriminator
Di is a convolutional layer with filter size of 4 × 4 where
the stride and the pad are set to 2 and 1, respectively. And
the outputs of layer 1 are 64 × 128 × 128 feature maps.
The architectures of the two discriminators (Di and Da) are
similar. The only difference between the two discriminators
is the last convolutional layer. In the discriminatorDi, the last
convolutional layer employs 4 × 4 filters and provides 17 ×
1× 1 feature maps as output where the stride and the pad are
set to 1 and 0, respectively. In the discriminator Da, 1 × 2 ×
2 feature map is outputted from the last convolutional layer
with filter size of 3× 3 where the stride and the pad are set to
1 and 1, respectively. 3) DiscriminatorDexp: VGGNet-19

TABLE 2. A Detailed Description of The Architecture of the Proposed
Discriminator Da. The Output Shape is Described as (#channels, height,
width).

network [70] is applied in the discriminator Dexp which is
trained using original images and synthetic images gener-
ated from generator G. The detailed description of VGGNet-
19 model is illustrated in Table 3. It can be observed that the
VGGNet-19 model follows a conventional CNN structure,
comprising 16 convolutional layers and 3 fully connected
layers. The VGGNet-19 model also includes 5 pooling layers
which are used to reduce the number of parameters to speed
up the computation.

C. OPTIMIZATION STRATEGY
1) ADVERSARIAL LOSS (Ladv )
The generative network (generator) G and the discriminative
network (discriminator) D compete in a two player mini-
max game. In the game, the generator G generates synthetic
images to fool the discriminator D while the discriminator D
in turn tries to accurately distinguish the real images from the
generated images. Given the training data, GAN is trained
by optimizing the adversarial objective min

G
max
D

Ladv. The

discriminator D tries to maximize the adversarial loss while
the generator G tries to minimize it. The adversarial loss is

9852 VOLUME 7, 2019



J. Deng et al.: cGAN-Based FER for HRI

TABLE 3. A Detailed Description of The VGGNet-19 Architecture.
The Output Shape is Described as (#channels, height, width).

defined in equation (1) below:

Ladv = (Ex∼Px [logD (x; θD)]
+Ex∼Px

[
log(1− D

(
G(x; θG); θD

)]
(1)

where x is the input image from the training data, Px denotes
the distribution of the training data, E [·] represents the

expected value operator, θD and θG are the parameters of
discriminator D and generator G, respectively.

2) WASSERSTEIN LOSS (LI)
However, training GAN with Ladv is unstable [55]. Thus, one
of the most stable variation of GAN called Wasserstein GAN
(WGAN) [56] is employed in this work. WGAN allows a
stable training of GAN by minimizing an approximation of
the Wasserstein distance [57] which is an efficient metric to
measure the dissimilarity between twomultidimensional data
sets. TheWasserstein loss in this case is calculated as follows:

LI = (Exao∼Px
[
Di
(
xao; θDi

)]
−Exao∼Px

[
Di
(
G(xao |aT ; θG); θDi

)]
− λEx̂∼Pxα

[(
‖ ∇x̂Di

(
x̂; θDi

)
‖2 −1

)2] (2)

where xao is the input image with AUs a0, E [·] represents the
expected value operator, aT denotes the target AUs, λ is the
penalty coefficient, ∇ represents the vector differential oper-
ator, θDi and θG are the parameters of discriminator Di and
generatorG, respectively, Px is the distribution of the training
data, Pxα is the joint distribution of the original images and
the synthetic images G(xao |aT ; θG) produced by generator G,
and x̂ is defined as x̂ = αx + (1 − α)G(xao |aT ; θG), with
α ∼ U (0, 1) (i.e., uniform distribution).

3) CONDITIONAL AUS LOSS (La)
With the AUs condition, the generator G maps any query
face image to another prototypic facial expression image
according to the regions relevant to facial expression. Thus,
the discriminator Da is employed to estimate the AUs values
which forces the generator G to make its best efforts to
generate more nuanced facial expression images. As AUs can
be extracted from the generated images as well as the original
images, the conditional AUs loss is defined in equation (3)
below:

La = Exao∼Px
[
‖ Da

(
G
(
xao | aT ; θG

)
; θDa

)
− aT ‖22

]
+ Exao∼Px

[
‖ Da

(
xao; θDa

)
− ao ‖22

]
(3)

where xao is the input image with AUs a0, E [·] represents
the expected value operator, aT denotes the target AUs, Px
is the distribution of the training images, G

(
xao | aT ; θG

)
represents the generated image, θDa and θG are the parameters
of discriminator Da and generator G, respectively.

4) CYCLE CONSISTENCY LOSS (Lcyc)
Although the GAN based FER approaches were investigated
in previous studies [50], [58], the unconstrained nature of
the mapping process (from one facial expression to another
facial expression) may produce distribution that is far away
from the real distribution in the training set, resulting in an
ineffective multi-class classifier training. Therefore, a multi-
modal cycle consistency loss is adopted. The cycle consis-
tency loss is used to estimate the reconstruction error between
the original facial expression image and the reconstructed
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facial expression image. This regularization is inspired by
cycle consistency loss [59]. After rendering the generated
expression back to its original facial expression, the cycle
consistency loss is applied in training GAN to produce more
constrained visual representations to maximally maintain
identity information and other factors (including background
and illumination, etc.). The above-mentioned cycle consis-
tency loss is computed as:

Lcyc = (Exao∼Px
[
‖ G

(
G
(
xao | aT ; θG

)
| ao; θG

)
− xao ‖1

]
(4)

where xao is the input image with AUs a0, E [·] represents the
expected value operator, aT denotes the target AUs, θG are the
parameters of generator G, Px is the distribution of the train-
ing images, G

(
xao | aT ; θG

)
represents the generated image,

G
(
G
(
xao | aT ; θG

)
| ao; θG

)
denotes the reconstructed image.

5) CLASSIFICATION LOSS (Lexp)
While the WGAN loss and the conditional AUs loss are
applied, they do not guarantee that the generated facial
images are discriminative for facial expression classifica-
tion. Consequently, the classification loss is formulated. The
classification loss encourages the generator G to construct
images that can be correctly categorized into different facial
expression labels by discriminator Dexp. The classification
loss for the expression classification is defined as:

Lexp = −Ex∼Px
[
log Dexp(y|x; θDexp )

]
(5)

where x is the input image, Px denotes the distribution of
the training data, E [·] represents the expected value operator,
θDexp are the parameters of discriminator Dexp, the term
Dexp(y|x; θDexp ) represents a probability distribution over
expression labels computed by Dexp.

6) FULL LOSS (L)
Finally, we use the full loss function by combining the four
loss functions (LI , La, Lcyc, and Lexp):

L = λ1LI + λ2La + λ3Lcyc + λ4Lexp (6)

where λ1, λ2, λ3, and λ4 are hyper-parameters for adjusting
the weights of individual loss functions. Actually, during
the course of the experiment, we find that dividing the
training process into two phases is beneficial in terms of
improving training stability and speeding up the conver-
gence. More specifically, in the first phase of the two-phase
scheme, λ1, λ2, λ3, and λ4 are set to 1, 4000, 10, and 0,
respectively. In the second phase of the two-phase scheme,
λ1, λ2, λ3, and λ4 are set to 0, 0, 0, and 1, respectively.
These weight hyper-parameters are chosen through numerous
experiments.

IV. EXPERIMENTS AND DISCUSSION
A. IMPLEMENTATION DETAILS
AffectNet [60] and Real-world Affective Faces Database
(RAF-DB) [61] taken ‘‘in-the-wild’’ datasets are used, since

these two datasets are more approximate to the real world
scenarios than posed datasets collected in a constrained lab-
oratory. Though several other databases such as CK+ [17],
MMI [18], Oulu-CASIA [19], and JAFFE [62] for FER are
available, most of them are sampled in well controlled envi-
ronment. The details of AffectNet and RAF-DB datasets are
provided in Table 4.

TABLE 4. The Details of Experiment Set for FER including the Expression
Categories, Training, and Validation Samples.

To date, AffectNet is the largest database with anno-
tated facial emotions [60]. It contains about 400,000 images
and each image is labeled with one of the discrete facial
expressions (including neutral, anger, disgust, fear, happy,
sad, surprise, and contempt). Nevertheless, limitations exist
in AffectNet database. For instance, each image is anno-
tated by only one labeler. Following [71], [72], around
280,000 images with seven prototypic facial expressions
(anger, disgust, fear, happy, sad, surprise, and neutral) are
selected as training samples and 3,500 images as validation
samples in this work.

RAF-DB is a large-scale facial expression database
with around 30,000 great-diverse facial images downloaded
through various search engines [61]. The images in this
dataset vary in personal identities (including age, gender, and
ethnic backgrounds, etc.), head pose, and lighting conditions,
etc. And each image from RAF-DB dataset contains more
annotation information which is the effort result of about
40 independent labelers, compared with the images from
AffectNet dataset. In RAF-DB dataset, 15331 images are
labeled with seven basic expression categories (anger, dis-
gust, fear, happy, sad, surprise, and neutral) where 12271 are
used for training and 3068 for validation.

The implementation is carried on the workstation acceler-
ated by GeForce GTX 1080Ti 11G. And the EAU-Net model
is developed in the deep learning framework Pytorch [63].
Training a single two-phase proposed model EAU-Net takes
5.2 hours for 20k iterations with the batch size of 16 on
RAF-DB dataset while the one-phase EAU-Net takes 8 hours
for training. And it takes 50 hours to train a single two-phase
EAU-Net model for 30 epochs with the batch size of 48 on
AffectNet dataset.
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TABLE 5. Expression Recognition Accuracies of Different Methods on the
RAF-DB Database.

B. QUANTITATIVE EVALUATIONS OF
THE PROPOSED APPROACH
For the FER task on RAF-DB database, the proposed method
performance is compared with performances of recently pub-
lished methods in literatures [64]–[69], as shown in Table 5.
It can be seen that the method proposed in this paper achieves
an average recognition accuracy up to 81.83%, which
outperforms the listed state-of-the-arts methods including
handcrafted feature based method [67], CNN-based meth-
ods [64], [68], [69], capsule-based method [65], and data
augmentation based method [66]. Compared with the listed
state-of-the-arts methods, our cGAN based approach is able
to disentangle facial expression factor by individually con-
trolling the facial expressions and optimizing both synthesis
and classification loss functions (LI , La, Lcyc, and Lexp)
and thus achieves high accuracy in FER task on RAF-DB
database.

TABLE 6. Expression Recognition Accuracies of Different Methods on the
AffectNet Database.

Table 6 shows the comparison between our work and
other state-of-the-arts methods for the FER task on Affect-
Net database. Among these methods, [70], [71] are CNN
based approaches and [72], [73] are CNN with attention
based approaches. The model proposed in this paper achieves
74.80% accuracy for the FER task evaluated on AffectNet
database which outperforms the listed state-of-the-arts meth-
ods. In [73], visual salient regions joined with original face
image were fed to CNN to perform FER while the visual
salient regions were just found to be more related to eyes,
mouth, and nose, these rough regions. However, our cGAN
basedmodel is capable of not only learning the regions related
to expression, but also maximally capturing nuanced char-
acteristics relevant to expression and then transforming the

original expression to another expression with identity and
other factors preserved which is shown in Fig. 7 and Fig. 8.

FIGURE 5. Per-class accuracy of RAF-DB dataset and AffectNet dataset
where the seven facial expression classes include surprise (SU), sad (SA),
neutral (NE), happy (HA), fear (FE), disgust (DI), and anger (AN).

Per-class accuracy of RAF-DB dataset and AffectNet
dataset is illustrated in Fig. 5 where the seven facial expres-
sion classes include surprise (SU), sad (SA), neutral (NE),
happy (HA), fear (FE), disgust (DI), and anger (AN). It can
be seen that the top two with the highest recognition rates
in both datasets are NE and HA. However, the classification
accuracies of SU, FE, DI and SA expressions evaluated on
AffectNet dataset are relatively low compared with other
expressions. Reason is the training sample numbers of SU,
FE and DI expressions are much fewer than others which are
shown in Table 4. Additionally, in comparison with the facial
expression images in RAF-DB database, the facial expression
images in AffectNet dataset are more difficult to distinguish,
even by humans. Examples can be found in Fig. 6; four
expression samples (surprise, fear, disgust, and sad) from
AffectNet dataset have only tiny difference and these expres-
sions can be easily confused with each other resulting in
poor recognition performance. Overall, the high classification
accuracies evaluated on both RAF-DB andAffectNet datasets
indicate that the proposed network is effective for the facial
expression classification task in wild conditions.

FIGURE 6. Ambiguous samples of the four facial expression classes
(sad, disgust, fearful, and surprise) from AffectNet dataset.

C. QUALITATIVE EVALUATIONS OF
THE PROPOSED APPROACH
Some qualitative results are visualized in Fig. 7 and Fig. 8.
In Fig. 7, the left column are the real images and the right
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FIGURE 7. Synthesis results: real facial image (left column), generated
facial image (right column).

FIGURE 8. Synthesis results: real facial image (left column), three
generated facial images (right three columns).

column are the generated images. It can be observed that the
generated images are disentangled from other variations such
as backgrounds, head pose, and illumination, etc. It vividly
shows that the feasibility of individually controlling the facial
expressions and simultaneously learning of the generative
and discriminative representations. In addition, the proposed
model achieves high-quality image synthesis results, even in
the cases with various light intensity and head deflection.
As shown in the right columns of Fig. 7, the details of facial
characteristics like hair, skin color, wrinkles, background and

illumination are generated nicely. In Fig. 8, the left column
are the real images and the right three columns are generated
images. Each image is constructed to three synthesis images
with expressions of happiness, anger, and surprise, respec-
tively. It demonstrates that our cGAN based model is capable
of disentangling the facial expression factor and transforming
any given query face image into several images at the same
time, each with a different expression.

FIGURE 9. The 3-D t-SNE plot of the deep features learnt by the proposed
model on RAF-DB dataset.

To visualize the learnt deep features of each expression,
T-distributed Stochastic Neighbor Embedding (t-SNE) [74]
is employed to nonlinear reduce the learnt high-dimensional
features to a three-dimensional space. Fig. 9 presents a 3-D
t-SNE plot of the deep features learnt from RAF-DB dataset.
The deep features were the output of the last fully connected
layer of discriminator Dexp. The random sample number is
set to 1250 with considering of the computation speed and
the number of the validation set of RAF-DB dataset. It can
be observed that the dots of fear expression in the 3-D t-SNE
plot are relatively few. That is because the data distribution
of the publicly available training set of RAF-DB database
is unbalance. As it can be seen in Table 4, the available
training number of fear expression in the RAF-DB database
is only 281 while the training number of happy expression
is 4772. Although adverse variations (including various race,
age, head pose, and illumination, etc.) exist in RAF-DB
dataset, the dots of every expression tend to cluster and there
is relatively clear interval among seven expressions which
demonstrates the effectiveness of the learnt representations.

V. CONCLUSION
As an emerging research topic for ProSe, automatic FER has
attracted a great amount attention in recent years, as FER
plays a vital part in emotion recognition and has a variety
of applications in HRI and emotion healthcare, etc. However,
accurate FER in real world scenarios remains a challenging
task due to the complex backgrounds, various light intensity
and head deflection, etc. In this paper, we propose a cGAN
based approach to disentangle the facial expression factor and
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learn the generative and discriminative representations simul-
taneously. The task of disentangling the facial expression
factor is implemented in two stages: learning by a conditional
generator G and learning by three discriminators (Di, Da, and
Dexp). The generator G disentangles the facial expression
factor by transforming any face image into a synthetic image
with one of the seven basic facial expressions (anger, disgust,
fear, happy, sad, surprise, and neutral). Three loss functions
(LI , La, and Lexp) corresponding to three discriminators
(Di, Da, and Dexp) are developed to learn the generative
and discriminative representations simultaneously. Addition-
ally, the cycle consistency loss is also applied to guarantee
that the personal identity, background, head deflection and
illumination are persevered. By optimizing the overall loss
functions, the learnt representations are disentangled from
other variations. The experimental results show that the pro-
posed approach is effective for FER task and the proposed
approach outperforms the known competing methods on both
AffectNet and RAF-DB datasets. One limitation of this work
is that the model is trained individually for different datasets.
Since it is subjective to annotate the face expressions, the bias
of annotations is inevitable among different datasets. Thus,
one model trained on a specific dataset may get poor perfor-
mance on another dataset with a different distribution for FER
task. Making pseudo annotations and learning latent features
are worth to be investigated in cross-dataset learning where
the training data and the verification data are from different
datasets.
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