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ABSTRACT Promoting cloud services must consider the privacy requirements between the user and the
provider. Both privacy and trust are related to knowledge about an entity; however, there is an inherent
conflict between trust and privacy. In this paper, we research the relationship between privacy and trust in
the cloud computing. First, we construct a trust model based on multiple factors, such as direct trust, trust
risk, reward-punishment, and feedback trust; the weight of trust factor is determined by class diversity and
information entropy theory. Second, we propose a novel privacy metric model with multiple factors, such as
privacy preference, credential attribute, interaction history, and privacy feedback, and the weight of privacy
factor is based on the maximum dispersion. Third, we propose a tradeoff between privacy and trust; both
user and the provider can choose privacy protection or trust establishment priority by personal preference
and requirement. Fourth, we demonstrate and compare the tradeoff between privacy and trust, interaction
success rate, trust evaluation accuracy, and privacy disclosure rate by different experiments; these simulation
results show that the privacy of each partner can be effectively protected.

INDEX TERMS Cloud computing, privacy, trust, tradeoff, information entropy.

I. INTRODUCTION
With the rapid development of internet and information tech-
nology, more and more people are putting their data in the
public or hybrid cloud [1]. For example, Amazon and SUN
have launched cloud computing services, which allow organi-
zations and individuals to use the dynamic computing infras-
tructure [2]. While users are enjoying a variety of services
with convenience, privacy disclosure has become an impor-
tant issue. Especially, in recent years, there are many scan-
dals about privacy leaks, such as pictures, videos and other
personal privacy information and so on [3], [4]. Therefore,
it is necessary to take applicable solutions to protect privacy
in cloud computing.

A. MOTIVATION
Privacy is a fundamental human right that involves the expres-
sion of various legal and nonlegal norms regarding the right
to a private life [3], mainly includes location privacy, data
privacy, and identity privacy an. However, every cloud trans-
action is proceeding by a negotiation phase where an entity
asks for some credential from the other entity, which implies
privacy loss [4], [6], [8], [9], [23]. Trust is a psychological
state comprising the intention to accept vulnerability based
upon positive expectations of the intentions or behavior of

another. Given a threshold, the privacy protection is trans-
formed into a simple judgment problem. If the trust value
satisfies a certain threshold condition, the object can access
the privacy data [5], [25].

Many articles focus on establishing a trusted infrastruc-
ture in cloud computing, which gradually requires a tradeoff
between privacy and trust, such as certificate recommenda-
tions or transaction history [6], [11], [14], [17]. However,
these credentials may lead to a compromise of privacy in the
form of revelation of identity, interaction history, personal
preferences. Thus, in the network environment, privacy and
trust are in an adversarial relationship; the problem requires
a tradeoff between privacy and trust, which can be further
decomposed as 3 sub-problems [13], [18], [19]:

1) How much trust is constructed by several factors?
2) How much privacy is constructed by several

factors?
3) How much privacy is willing to be sacrificed for a

certain amount of trust gain?
These questions show how complex optimization of the pri-
vacy trust exchange is and involves many factors [20], [23].
How to design an effective solution is still a problem,
it is necessary to balance the relations between trust and
privacy [24], [26].
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B. OUR CONTRIBUTIONS
To solve these above problems, we propose a tradeoff model
between privacy and trust in the cloud computing. The main
contributions of the paper are summarized as follows.

1) We construct a trust evaluation model based on mul-
tiple factors, such as direct trust, trust risk, reward-
punishment, and feedback trust, in addition, introduce
the weight factor by information entropy theory to
describe the trust more accurately and objectively.

2) We propose a novel privacy metric model with multiple
factors, such as privacy preference, credential attribute,
interaction history, and privacy feedback, and calculate
weight by the maximum dispersion.

3) We use the information entropy theory for two aspects:
privacy loss and trust gain, and further propose a trade-
off relationship model that can determine the priority of
protecting privacy or establishing trust for interaction in
the cloud computing.

The rest of this paper is organized as follows. In section II,
some related research articles are introduced. In section III,
we construct a multi-factor trust metric model. In section IV,
a privacy metrics model based on multi-attribute is proposed.
In section V, we research and construct a tradeoff relation-
ship model from two aspects: privacy loss and trust gain.
In section VI, we design several experiments to compare
our research and two other models. Finally, in section VII,
we conclude the paper.

II. RELATED WORK
In recent years, because of the continuous efforts of academia
and industry, many studies have addressed general privacy
issues in cloud computing [1]–[6]. General privacy concerns
might have an influence on perceived privacy and trust,
because of the inspiration for this article, wemainly introduce
the research work between privacy and trust.

Information entropy theory was proposed by Shannon [7].
As an effective tool for information measurement, entropy
has shown important contributions in the field of commu-
nication, and privacy, which can be naturally quantified by
the entropy method. To properly evaluate different privacy
preserving schemes, Longpr and Kreinovich [8] proposed to
supplement the average privacy loss with the standard devia-
tion to determine how much the actual privacy loss deviates
from its average value. In the big data era, personal data can
be obtained from several sources, such as internet services
and social media. Kim et al. [9] proposed a new analytical
model to measure the personal information disclosure risk
in open data before publishing and formulating the entropy-
based re-identification risk to measure the privacy disclosure
risk.

Jamar and Almasizadeh [10] introduced the mean privacy
approach to intuitively quantify how attackers behave and
their predictability. This metric can be considered an appro-
priate indicator for quantifying the security level of computer
systems, which was quantified by an information theoretic.
Casas and Hurtado [11] discussed potential risks and attacks

of social network site privacy, and presented the measure-
ment and quantification of the social privacy. Simply by
relying on the total leaked privacy value calculated with the
metric, users can adjust the level of information disclosure.
Arnau et al. [12] researched the fundamental problem
of quantitative measures of the privacy of user profiles
and established the critical importance of quantifying pri-
vacy to assess, compare, and optimize privacy enhancing
technologies.

Rivadulla [13] explored the issues of online privacy
considering the new possibilities the internet and other avail-
able technologies have provided, which can compel the col-
lector to ask the user for explicit and informed consent
before assembling the data. Aldini and Bogliolo [14] and
Yang and Chen [15] investigated the tradeoff among the
multiple dimensions that characterize the incentive strategies
resulting from discussion and discussed the benefits and the
implementation issues of two models that differ in the way
in which privacy is managed and traded with respect to and
cost.

Dependencies between sensitive and useful data results in
a privacy utility tradeoff that has strong connections to gener-
alized rate distortion problems. Frey et al. [16] formulated
the privacy-utility tradeoff problem where the data release
mechanism has limited access to the entire data composed
of useful and sensitive parts. Basciftci et al. [17] established
these results for general families of privacy and utility mea-
sures that satisfy certain natural properties required of any
reasonable measure of privacy or utility, which also uncov-
ered a new, subtler aspect of the data processing inequality
for general non-symmetric privacy measures and discuss its
operational relevance and implications.

Privacy and trust should be adjusted to guarantee appro-
priate security, Tyagi et al. [18] discussed some valuable
assumptions for privacy and trust trade based on pieces of
evidence, and constructed a tradeoff model between privacy
and trust. Differential privacy is an effective tool to pri-
vacy protection. Martin [19] used factorial vignette survey
methodology to measure the relative importance of violating
privacy expectations to consumers’ trust, which can support
a reinforcing relationship between privacy and trust in a
website online.Wang and Zhang [20] studied an attack model
in recommender systems and presented a privacy-preserving
recommendation framework based on weighted nonnegative
matrix. In order to the convenience of reading the article,
some important symbols are given in Table 1.

III. TRUST COMPUTING
Assume that D1,D2, · · · ,DN ∈ D(S) denote nodes in a
cloud system; which are divided into 2 types: service provider
and user. According to the dynamics and complexity of trust,
assume that the trust relationship function has many factors
(T1(Di,Dj),T2(Di,Dj), · · · ,Tm(Di,Dj)) between Di and Dj,
the decision set is T = (T1,T2. · · · TM ), 0 ≤ Tm(Di,Dj) ≤ 1,
(m = 1, 2, · · · ,M ). tr_ωm expresses the weight fac-
tor of Tm(Di,Dj), and satisfies the following condition
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TABLE 1. Symbols of trust and privacy model.

formula (1):

0 ≤ tr_ωm ≤ 1,
M∑
m=1

tr_ωm = 1 (1)

TG(Di,Dj, S, t) represents the total trust evaluation between
entity Di and entity Dj, it can be expressed as formula (2):

TG(Di,Dj, S, t) =
M∑
m=1

tr_ωmTm(Di,Dj) (2)

where S is the service provided by Dj, the category and qual-
ity of service can be determined by TG(Di,Dj, S, t), when
the value of TG(Di,Dj, S, t) is higher, the quality of service
is better, where t is the interactive time stamp.

A. TRUST DECISION FUNCTION
In the process of trust decision, operation is determined by
the map relationship between trust and authority. Assume
that the total trust degree TG(Di,Dj) has N level RS =
{RS1, · · · ,RSi, · · · ,RSN }, 0 ≤ RSi ≤ 1 (i = 1, 2, · · ·N).
RS is an order division of space; the service provider can
provide service set S = {s1, s2, · · · , sP} that is also an order
division class, then the trust decision function8(TG(Di,Dj))
between S = {s1, s2, · · · , sP} and TG(Di,Dj) is defined as
formula (3):

2(TG(Di,Dj)) =



sP, RSN ≤ TG(Di,Dj) ≤ 1
sP−1, RSN−1 ≤ TG(Di,Dj) < RSN
...

...

s2, RS1 ≤ TG(Di,Dj) < RS2
s1, 0 ≤ TG(Di,Dj) < RS1

(3)

RS = {RS1,RS2, · · · ,RSi, · · · ,RSN } is determined by the
application requirements in the cloud computing, when Di
requests service from Dj, permission is determined by the
trust degree. For example, a cloud system provides 3 levels
of services, S = (s1, s2, s3), s1, s2, s3 represent deny, read
and write service, respectively. The corresponding decision
space is RS = {RS1,RS2} = {0.3, 0.5}, and the trust decision
function can be expressed as the following formula (4):

2(TG(Di,Dj)) =


s3, 0.5 ≤ TG(Di,Dj) ≤ 1
s2, 0.3 ≤ TG(Di,Dj) < 0.5
s1, 0 ≤ TG(Di,Dj) < 0.3

(4)

Assume that the trust degree of Di is TG(Di,Dj) = 0.2,
then the decision result is 2(TG(Di,Dj)) = 2(0.2) = s1 =
deny. In the following sections, we will introduce direct trust,
trust risk, feedback trust, and reward punishment factors to
describe the trust relationship.

B. DIRECT TRUST FUNCTION
Direct trust is usually made up of multiple factors, and the
relevant attributes can be selected from the database record
of the service provider.

1) WEIGHT CALCULATION
Tomore objectively quantify themultiple indicators, themax-
imum entropy method is used to determine the factor weight
in decision making. There are m users and n attributes of the
direct trust evaluation, matrix E(D) is shown in formula (5),
eij is the evaluation score of the ith user to the jth attribute:

E(D) =


e11, e12, . . . e1n
e21 e22 . . . e2n

. . . . . .
. . . . . .

em1 em2 . . . emn

 (5)
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Entropy weight method: E = (eij)m×n

ej = −k
m∑
i=1

pij· ln pij, pij = eij/
m∑
i=1

eij

(i ≤ j ≤ n), k = 1/ lnm (6)

The jth attribute weight:

Wj = (1− ej)/
n∑
j=1

(1− ej), (1 ≤ j ≤ n)

0 ≤ Wj ≤ 1,
n∑
j=1

Wj = 1 (7)

2) DECAY TIME FACTOR
Trust computing is closely related to time, so it is necessary
to introduce the decay time factor. In the section, let’s take
a few assumptions: ti is the time span of the ith transaction
service; t1i represents the start time of the ith transaction;
t2i indicates the end time of the ith transaction; t0 is the time
of user successful registration; n is the number of interactions
between the user and the service provider; so, the decay time
factor T (i) can be expressed as formula (8):

T (i)
=

1
2
[

ti − t0
n∑
j=1

(tj − t0)
+

t2i − t
1
i

n∑
j=1

(t2j − t
1
j )
], and

n∑
i=1

T (i)
= 1

(8)

3) CALCULATION DIRECT TRUST
According to formulas (6), (7) and (8), T1(Di,Dj) is the direct
trust evaluation between Di and Dj, and n is the number of
interactions as shown in formula (9):

T1(Di,Dj) =
n∑
j=1

ejWjT (i) (9)

C. FEEDBACK TRUST FUNCTION
Feedback trust is an important part of total trust, which is
based on the transfer content of the entity, such asDi trustsDj,
and Dj trusts Dk , so Di also trusts Dk , and so on. There are
many recommendation paths in the feedback trust, but how
to choose and aggregate trust paths efficiently is an important
problem.

Assume thatDi is a parent entity, all the neighbors are child
nodes, a neighbor also has a neighbor, so we can construct a
multilevel weighted direction trust tree (WDT, a sample is
shown in Fig. 1). It is expressed as formula (10):

WDT (Di) = (〈D(S),DTR〉,T1) (10)

where D(S) is a collection set of entities, DTR represents the
direct trust relationship between the parent and child entities,
and T1 is the direct trust value. In the WDT, the level of the
root entity is level = 0, the level of the direct neighbor of the
root entity is level = 1, the level of the neighbor’s neighbor is
level = 2, and the rest of the nodes follow the arrangement.

FIGURE 1. A WDT example of computational feedback trust.

Because the effects of each layer are different, a feedback
weight factor is introduced to adjust the polymerization cal-
culation accuracy. In an interaction process, the entity Dj
needs to evaluate the feedback trust degree of the entity Di,
{F1,F2, · · · ,Fl} is a feedback entity set, Fk is a feedback
entity, so the feedback trust (such as Fig. 1) function is
defined as:

T2(Di,Dj) =


∑l

k=1 (ρ(Fk )× T1(Dk ,Dj)∑l
k=1 ρ(Fk )

l 6= 0

0 l = 0

(11)

where l is the number of feedback entities, and ρ(Fk ) is the
weight factor of feedback trust according to the ‘‘six degrees
of separation’’ [21] it is expressed as formula (12):

ρ(Fk ) =


1, level = 0
l∏

m=0

T1(Dm,Dn), 6 ≥ level > 0
(12)

where T1(Dm,Dn) represents the direct trust degree from Dm
to Dn according to formula (10), level is the level of the
feedback trust. For example in Fig. 1, level = 1, ρ(D1) = 0.5;
level = 2, then ρ(D3) = 0.5 × 0.6 = 0.30; when level = 3,
ρ(D9) = 0.8 × 0.6 × 0.5 = 0.24. Assume that the entity
D0 requires the feedback trust of the entity D10, and there
are two entities D5 and D6 interacting with D10; the mutual
direct trust degree is T1(D5,D10) = 0.4, T1(D6,D10) = 0.5.
According to formula (12), ρ(D5) = 0.4 × 0.6 = 0.24
and ρ(D6) = 0.5 × 0.6 = 0.30. According to formula
(11), T2(D0,D10) = (0.24 × 0.4 + 0.3 × 0.5)/(0.24 +
0.3) ≈ 0.45. According to formula (12), with the increment
of level, the value of ρ(Fk ) gradually decreases. To improve
the aggregation speed of feedback trust, we introduce quality
factor and distance factor to adjust the scale of the feedback
trust.
The quality factor η ∈ [0, 1] is defined as a normal

constant number; if T1(Di,Dj) ≥ η, the feedback information
is credible; if T1(Di,Dj) < η, the feedback information is
incredible. Not only the quality factor can effectively control
the scale of feedback trust aggregation, but also can reduce the
malicious feedback entities with low trust value and improve
the security of the system.
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Distance factor χ ≥ 1 is also defined as a normal number,
which is used to control the propagation depth of feedback
trust. level(Di,Dj) represents the level distance between Di
and Dj, and when level(Di,Dj) ≤ χ , the entity will forward
the information to the neighbor entity; otherwise, it will stop
the transmission, and can improve computing efficiency of
feedback trust.

Algorithm 1 Compute Feedback Trust
Input: l, χ , η
Output: T2(Di,Dj)
1:F(Di) = {F1,F2, · · · ,Fl} represents the feedback entity
of Di;
2: construct WDT by formula (10);
3: for (all Dk ∈ F(Di))
4: calculate T1(Di,Dj) by formulas (5), (6), (7), (8), (9);
5: calculate ρ(Fk ) by formula (12);
6: calculate T2(Di,Dj) by formula (11);
7: End.

The feedback function (formula (11), (12)) are given
to show how to aggregate k number of feedback entities.
Therefore, malicious feedback can be avoided by improving
quality factor η. For example, when η = 0.4, an entity with
a trust value of less than 0.4 will not be adopted by the
system; thus, malicious feedback will be avoided; the specific
feedback trust algorithm is given above.

D. REWARD-PUNISHMENT FUNCTION
In the process of trust value calculation, the honest entities
should be rewarded; the malicious entities must be punished.
Therefore, we introduce reward punishment function to the
trust evaluation, which can encourage both sides to take
honest actions and increase the probability of successful inter-
action, and is expressed by the formula (13):

T3(Di,Dj) = 1−

∑
B
F(Di,Dj)

B
(13)

where
∑
B
F(Di,Dj) represents the number of failure times,

and B is the total number of transaction times. Because mali-
cious entities often interrupt or deny service, the transaction
failure rate of the cooperation entities becomes high, and the
reward-punishment function can punish those bad behaviors.

E. TRUST RISK FUNCTION
According to [28] and requirements for quality of service,
the risk function can be expressed as formula (14).

R(Di,Dj) = sj × (1− TG(Di,Dj, S, t))

= 2(TG(Di,Dj, S, t))× [1− TG(Di,Dj, S, t)]

(14)

where sj represents the quality of service provider of Dj.
According to experience, when the value of sj is greater, the
risk is greater. Trust risk function refers to the cognition of

the uncertainty between service provider and user, it can be
expressed the formula (15):

T4(Di,Dj) = 1− R(Di,Dj) (15)

According to formula (14) and (15), risk and service have
an inverse proportional relationship between T4(Di,Dj) and
R(Di,Dj).

F. WEIGHTS OF TRUST ATTRIBUTES
Based on the connotation and definition of information
entropy [7], we can obtain the decision attribute function that
is expressed as the following formula (16):

H (Tm(Di,Dj)) = −Tm(Di,Dj) log2 Tm(Di,Dj)

− (1− Tm(Di,Dj)) log2(1− Tm(Di,Dj))

(16)

where Tm(Di,Dj) represents the certainty of the mth metric
attribute function, and 1 − Tm(Di,Dj) represents the uncer-
tainty of the mth attribute function.

Assume that the evaluation values of T2(Di,Dj) and
T1(Di,Dj) are[

T1(Di,Dj) 1− T1(Di,Dj)
0.99 0.01

]
and [

T2(Di,Dj) 1− T2(Di,Dj)
0.5 0.5

]
,

so H (T1(Di,Dj)) = −0.99 log 0.99− 0.01 log 0.01 = 0.08.
H (T2(Di,Dj)) > H (T1(Di,Dj)) show that the uncertainty

of T2(Di,Dj) is more than T1(Di,Dj). According to for-
mula (16), the entropy function of the decision factor is
0 ≤ H (Tm(Di,Dj)) ≤ 1, and it is symmetrical-axis of
Tm(Di,Dj) = 0.5.
Because information entropy can only reflect the uncer-

tainty of the event, the symmetry of entropy function is
not conductive to decision making. Therefore, we introduce
formulas (17) and (18) to correct this limitation, and define
CDm as the class diversity of decision factors Tm(Di,Dj),
(m = 1, 2, · · · ,M ):

CDm =

1−
1

logP2
H (Tm(Di,Dj)), Tm(Di,Dj) > 0.5

0 Tm(Di,Dj) < 0.5
(17)

The weight tr_ωm of the decision function is calculated by
formula (18):

tr_ωm = CDm/
M∑
m=1

CDm, 0 ≤ tr_ωm ≤ 1,
4∑

m=1

tr_ωm = 1

(18)

When the entropy of the decision factor is no greater than 0.5,
CDm is 0, so it can effectively reduce risk by filtering out
some unstable factors.
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TABLE 2. Weight of decision factor.

FIGURE 2. Architecture of privacy metrics based on multi-factor.

In Table 2, the values of H (T1(Di,Dj)), H (T2(Di,Dj)),
H (T3(Di,Dj)) and H (T4(Di,Dj)) are 0.9708, 0.9708, 0.7205,
0.7205, respectively; this means that the average uncertainties
of T1(Di,Dj) and T2(Di,Dj) are greater than T3(Di,Dj) and
T4(Di,Dj). This finding reflects the symmetry of a deci-
sion factor and indicates that the information entropy can-
not describe the subjective meaning of events. In Table 2,
tr_ω3 = 0.3516, and tr_ω1 = 0.2968, which indicates
that T3(Di,Dj) is more important than T1(Di,Dj). According
to formula (1), (2) and (18), so, the total trust degree of
Table 2 can be expressed as TG(Di,Dj, S, t) = 0.6×0.2966+
0.3516× 0.8 = 0.4592.

G. TRUST EVALUATION ALGORITHM
In the section, based on above trust attributes, factors, and
corresponding functions, we synthesize and put forward a
total trust evaluation algorithm that can be used to determine
whether to provide the service to requester in a cloud com-
puting system.

According to algorithms (1) and (2), the cloud service sys-
tem can decide to accept or refuse the user’s request, whether
sj conforms with the total trust function TG(Di,Dj, S, t).
If 9(TG(Di,Dj, S, t)) ≥ sj is true, the system can provide
services sj toDi; otherwise, it refuses the request. In addition,
the authorization operation mapping relationship between
service and trust can be adopted by actual requirement.

IV. PRIVACY METRIC
To meet the requirement of privacy protection, the pri-
vacy metric requires a comprehensive investigation of

Algorithm 2 Total Trust Computing
Input N , n, H , χ , η, LEVEL, M
Output TG(Di,Dj, S, t)
1: F(Di) = {F1,F2, · · · ,Fn};
2: calculate the decision factors:
3: T1(Di,Dj)→ direct trust function,
4: T2(Di,Dj)→ feedback trust function,
5: T3(Di,Dj)→ reward-punishment function,
6: T4(Di,Dj)→ trust risk function;
7: calculate tr_ωm of decision function;
8: calculate total trust TG(Di,Dj, S, t);
9: End.

multiple influencing factors and relative objective weight
method [6], [30]. In the paper, we assume that it includes
the following parts: privacy preference of the participants,
the credential attributes, privacy interaction history, the pri-
vacy feedback and weight of privacy attribute; the details are
shown in Fig.2.

A. PRIVACY PREFERENCE FUNCTION
Assuming that privacy preference includes 4 parts: ST rep-
resents service type; IT represents preference of interacting
entity; TM represent temporal preference; SP represents spa-
tial preference, they are represented as follows:

ST [st1, st2, · · · stm]
IT [it1, it2, · · · itn]
TM [tm1, tm2, · · · tmy]
SP[sp1, sp2, · · · spz] (19)

VOLUME 7, 2019 10433



P. J. Sun: Research on the Tradeoff Between Privacy and Trust in Cloud Computing

These above four vectors represent some requirements and
can construct matrix R1, which is expressed as formula (20):

R1 =


r11 r12, . . . r1m
r21 r22, . . . r2n
r31 r32, . . . r3y
r41 r42, . . . r4z

 (20)

where rij ∈ [0, 1] represents the satisfaction of the service to
the jth constraint for the ith preference, the privacy preference
function Y1 is expressed as the following formula (21):

Y1 = λ1×
m∑
j=1

r1j/m+ λ2×
n∑
j=1

r2j/n

+ λ3×
y∑
j=1

r3j/y++λ4×
z∑
j=1

r4j/z (21)

λ = [λ1, λ2, λ3, λ4] represents the weight of the privacy
preference attribute.

B. CREDENTIAL ATTRIBUTE FUNCTION
Assume that RC = {rc1, rc2, · · · , rci, · · · , rcn} represents a
restricted credential set, and SC = {sc1, sc2, · · · , scj, · · · ,
scn} represents the satisfaction matrix of a privacy credential
set, scj ∈ [0, 1] is the satisfaction degree for the jth credential.
The credential attribute function Y2 is shown as follows:

Y2 =
n∑
j=1

scj/n (22)

C. INTERACTION HISTORY FUNCTION
SH = {(sh(1)ij , sh

(2)
ij , · · · , sh

(l)
ij , · · · , sh

(h)
ij )}, l ∈ [1, h], sh(l)ij

is the privacy information between Di and Dj, h represents
the number of privacy interactions, sh(1)ij represents the oldest

interaction, sh(h)ij represents the latest interaction, and the
direct interactive history function Y3 are shown as formula
(23) and (24):

Y3(Di,Dj) =


h∑
l=1

sh(l)ij × hw(l)/h, h 6= 0

0, h = 0

(23)

hw(l) =

{
1 l = h
hw(l − 1) = hw(l)− 1/h 1 < l < h

(24)

where hw(l) represents the weight of the interactive history
between Di and Dj.

D. PRIVACY FEEDBACK FUNCTION
Assuming that the interaction has a disclosure risk between
Di and Dj, the legal disclosure privacy information is PI =
(pi1, pi2, . . . , pim), PI ′ = (pi′1, pi

′

2, . . . , pi
′
n)(m ≥ n) is

the illegal disclosure privacy information, the amount of PI
and PI ′ are expressed as PA = (pa1, pa2, . . . , pam) and
PA′ = (pa′1, pa

′

2, . . . , pa
′
n), privacy feedback function Y4 is

the formula (25):

Y4(Di,Dj) = (
n∑
j=1

ςj × pa′j)/(
m∑
i=1

ςi × pai) (25)

ς = (ς1, ς2, . . . , ςm),
m∑
i=1
ςi = 1, ςi ≥ 0, i, j = 1, 2, · · ·m is

a weight vector of privacy information.

E. WEIGHT OF PRIVACY ATTRIBUTE
The effect of multiple attributes is different, so we pro-
pose a weight method [25]. Let W = (ω1, ω2, · · · , ωm)
express the weight vector of the privacy attribute function,
according to the literature [22], ‘‘Or metric method’’ is:

Orness(W ) = 1
m−1

m∑
i=1

(m− i)ωi; the dispersion degree is

Disp(W ) = −
m∑
i=1
ωi lnωi, further, 0 ≤ Disp(W ) ≤ lnm,

which meets these following three conditions:

max imize : −
m∑
i=1

ωi lnωi (26)

Orness(W ) = α, α ∈ [0, 1] (27)
m∑
i=1

ωi = 1, ωi ∈ [0, 1], i = 1, 2, · · ·m (28)

From formula (26), (27), (28) and the maximum dispersion
principle [22], we can get formula (29), (30), (31), (32):

α = Orness(W ) =
1

m− 1

m∑
i=1

(m− i)ωi (29)

lnωi =
i− 1
m− 1

lnωm +
m− i
m− 1

lnω1 ⇒ ωi =
m−1
√
ωm−i1 ωi−1m

(30)

ω1[(m− 1)α + 1− mω1]m

= [(m− 1)a]m−1[((m− 1)a− m)ω1 + 1] (31)

ωm =
((m− 1)α − m)ω1 + 1
(m− 1)a+ 1− mω1

(32)

In practical applications, participant can set reasonable values
of α and calculateω1,ωi,ωm by formulas (30), (31), and (32).
According to above privacy functions, we propose algorithm
3 for calculating the weight of privacy attributes.

In algorithm 3, the classification weight vector is deter-
mined by m and a. In an application environment, m is a
certain value, the key is how to determine a reasonably.
According to the Table 3, when α = 0, then ω1 = 1, and
ω2 = ω3 = · · ·ωi = · · · = ωm = 0; when α = 1, then
ωm = 1, ω1 = ω2 = · · ·ωi = · · · = ωm−1 = 0; when
α = 0.5, ω1 = ω2 = · · ·ωi = · · · = ωm = 1/m, when
0 < α < 1, a 6= 0.5,
we can get different values of ωi.

F. PRIVACY INFORMATION METRIC
According to formula (16), in a similar way, the entropy
value of themth factor function is calculated by the following
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TABLE 3. The (ω1, ω2, ω3, ω4) for different values of a.

Algorithm 3 Weight of the Privacy Attribute
1: if 0 < m ≤ 2
2: then ω1 = a,
3: ω2 = 1− a;
4: if m > 2

5: then
ω1[(m− 1)α + 1− mω1]m

= [(m− 1)a]m−1[((m− 1)a− m)ω1 + 1]
,

6: ωm =
((m−1)α−m)ω1+1
(m−1)a+1−mω1

;
7: for i = 2 to m− 1 do
8: ωi =

m−1
√
ωm−i1 ωi−1m ;

9: when ω1 = ω2 = · · · = ωm =
1
m

10:⇒ disp(W ) = lnm, a = 0.5;
11: End.

formula (33):

H (Ym(Di,Dj)) = −Ym(Di,Dj) log2 Ym(Di,Dj)

− (1− Ym(Di,Dj)) log2(1− Ym(Di,Dj))

(33)

where Ym(Di,Dj) indicates the certainty of the mth privacy
function, 1− Ym(Di,Dj) indicates the uncertainty of the mth
privacy function. Thus, privacy information GP(Di,Dj) is
calculated by the following formula (34):

GP(Di,Dj) =
4∑

m=1

ωmH (Ym(Di,Dj)),

0 ≤ ωm ≤ 1,
4∑

m=1

ωm = 1 (34)

where H (Ym(Di,Dj)) is the entropy of the mth attribute
function; ωm is the weight of the mth attribute function.
Further, combining with these above privacy attributes and
weight functions, we propose a total privacy computation
algorithm (4).

V. RELATION BETWEEN TRUST AND PRIVACY
Data information disclosure means privacy loss; however,
the improvement of trust reduces the requirement for pri-
vacy [18]. The interest of the data owner is to minimize
privacy loss at an acceptable trust level; different people have
different knowledge of private information [26]. In the next
sections, we make use of information entropy theory for

Algorithm 4 Multifactor Privacy Information
Input: at the t , the disclosure of private information
between the user and provider
Output: compute result of privacy information
1: calculate the privacy functions Y1, Y2, Y3, and Y4;
2: calculate the information entropy of Y1, Y2, Y3,
and Y4;

3: calculate the weight of the metric attribute function
(algorithm 3);

4: calculate privacy information results.
5: End

quantifying privacy loss and trust gain to construct a tradeoff
relationship model.

A. ESTIMATE AND QUANTIFYING PRIVACY LOSS
Assume that these private attributes are A = (A1,A2, . . .
Aj, . . . ,Am), j < m, according to the restricted credentials
in section IV, which can be partitioned by a service provider
into revealed subsets R(cs) and unrevealed subsets P(cs) to
the receiver [24]. Assume that a user has a subset credentials
Nc = {rc1, rc2, · · · , rci, · · · , rcn} from P(cs), which satisfies
the minimum requirement for building trust. So, the privacy
loss problem can be formulated as follows:

min{Pr ivacyLoss(Nc ∪ R(cs))

− Pr ivacyLoss(R(cs))|Nc satisfy trust requirement (35)

Assume that entity Di requires entity Dj to achieve trust level
TGa before disclosing a piece of privacy, and currently, the
trust level is TGb between Di and Dj. Let us consider two
situations:

1) If TGb ≥ TGa, the privacy loss can be calculated by
formula (33) and formula (34):

H (Ym(Di,Dj)) = −Ym(Di,Dj) log2 Ym(Di,Dj)

− (1− Ym(Di,Dj)) log2(1− Ym(Di,Dj)),

GP(Di,Dj) =
4∑

m=1

ωmH (Ym(Di,Dj)), 0 ≤ ωm ≤ 1,

4∑
m=1

ωm = 1.
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2) If TGb < TGa, this situation would lead to relative
privacy information loss when the private information is dis-
closed.

Assume that a credential rci with respect to an attribute Aj
has a finite domain {V1,V2, · · · ,Vi, · · · ,Vm}, the probability
of Aj = Vi is Pr ob(Aj = Vi|R(cs)), the probability of
Aj = Vi in rci is Pr ob(Aj = Vi|R(cs) ∪ rci), so the privacy
loss is quantified based on entropy:

H1 = privacylossAj (rci|R(cs))

=

m∑
i=1

(−Pr obi log2(Pr obi))

−

m∑
i=1

(−Pr ob1i log2(Pr ob
1
i ))

Pr ob1i = Pr ob(Aj = Vi|R(cs) ∪ rci)

Pr obi = Pr ob(Aj = Vi|R(cs)) (36)

whereH1 expresses average information loss when disclosing
a piece of privacy with private attributes. A larger Pr ob(Aj =
Vi|R(cs)) indicates less privacy loss and a higher probability
of achieving TGa with TGb.

B. ESTIMATE AND QUANTIFYING TRUST GAIN
The trust model has already been shown in section III, and
we can propose the following formula (37) is to compute the
trust gain:

trust_gain = TGnew − TGold (37)

Privacy loss can impact the trust evaluation in formula (35),
TGold and TGnew represent the old and new trust of the
entity, respectively. According to the above section (V, A), let
P2 = prob(TGc/TGb) denotes the probability of achieving
TGc under condition TGb. P2i = prob(TGci/TGbi) represents
the conditional probability of the ith credential from the
Nc = {rc1, rc2, · · · , rci, · · · , rcn}when disclosing the private
information. Let p′1, p

′

2 · · · p
′
n denote the original values of

p2i , and the conditional probability formula (38) is expressed
below:

P2i =
p′i

p′1 + p
′

2 + · · · p
′
n

(38)

Based on the above formula (38), the trust gain is expressed
as the following formula (39):

H2 = −k(
n∑
i=1

p2i log2 p2i)

× (
n∑
i=1

p2i = 1, k = p′1 + p
′

2 + · · · p
′
n) (39)

Then, H2 expresses average trust gain by disclosing private
information. A greater value of P2 = prob(TGc/TGb) indi-
cates more trust gain because it indicates lower uncertainty
for TGc when disclosing a piece of privacy [25].

C. TRADEOFF BETWEEN PRIVACY AND TRUST
Both privacy and trust are related to knowledge about an
entity; however, there is an inherent conflict between trust
and privacy [14], [15], [19]. For example, an online seller
might reward a high trust customer with special benefits,
such as discounted prices. Normally, he/she can reveal private
digital credentials or past interaction histories to gain more
trust [18], [26].

When one entity asks for information from another entity,
the responder can compute and disclose the privacy informa-
tion to the requester. We use Htp to express the relationship
between privacy loss H1 and trust gain H2, which can be
expressed by formula (40):

Htp = −φH1 + ψH2, φ + ψ = 1 (40)

We don’t give the specific value of φ and ψ , because they
can be adjusted by application and preference. According to
the relation between privacy loss and trust gain, we give three
guidelines for the parameter selection:
1) If it is necessary to balance privacy and trust, partici-

pant can choose φ = ψ = 0.5.
2) If it is necessary to trade privacy for trust, participant

can choose φ < ψ .
3) If it is necessary to protect privacy, participant can

choose φ > ψ .
To illustrate the application of our research, let’s explain an
interaction example. The requester informs the responder that
a set of credentials Nc = {rc1, rc2, · · · , rci, · · · , rcn} could
be used, and there is no need to provide all credentials if
the required trust can be established. Then, the responder can
compute privacy information loss and trust gain for every cre-
dential, choose the proper φ and ψ to adjust the relationship
between H1 and H2, and then combine the relevant rules to
make privacy protection decisions [26], [27].

VI. EXPERIMENT ANALYSIS AND DISCUSSION
In this section, we design experiments (privacy loss, trust
gain, interaction success rate, trust accuracy and privacy
disclosure rate) to compare TTPM (tradeoff between trust
and privacy model) with TPTV (Never Trust Anyone: Trust-
Privacy tradeoffs in Vehicular Ad-Hoc Networks) [18] and
PPVT (The penalty for privacy violations: How privacy vio-
lations impact trust online) [19].

Experimental environment: Intel Core i7-7500 U,
2.73GHz 2DuoCPU, 8G bytes ofmemory,MATLAB2015a,
Eclipse platform and SQL server. There are two data sets in
our experimental evaluations: one is the real-life CENSUS
data set at http://www.ipums.org, which contains the personal
information of 500KAmerican adults (Table 4); and the other
one is the synthetic numeric data set.

A. PERFORMANCE METRICS ANALYSIS
In the section, we design experiments of privacy loss and trust
gain under three different environments: privacy protection
(φ > ψ) or trust establishment (φ < ψ) preference, balance
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FIGURE 3. Performance comparison under privacy protection preference. (1) Privacy loss. (2) Trust gain.

FIGURE 4. Performance comparison under trust establishment preference. (1) Privacy loss. (2) Trust gain.

TABLE 4. Summary of attributes in CENSUS.

privacy and trust (φ = ψ = 0.5), these specific parameters
are as follows:

(1) The disclosure of privacy information requires more
than one kind of trust certificates; (2) privacy can be calcu-
lated by algorithm 4; (3) there are 9 kinds of private attributes,
the categories of disclosure privacy information are randomly
generated; and (4) we randomly generate interactions and
repeat 50 times, and calculate the average value.

1) PRIVACY PROTECTION PREFERENCE
In the section, we design experiments of privacy loss and trust
gain under the privacy protection preference. In the Fig. 3, the
horizontal axis represents the number of privacy information

categories, and the vertical axis represents the metrics results
of private information.

In Fig. 3(1), when the number of privacy attributes is 9, the
privacy loss of TTPM is 0.673 and 0.221 less than TPTV and
PPVT, respectively. In Fig. 3(2), when the number of private
attributes is 9, the trust gain of TTPM is also higher than
PPVT and TPTV 0.402, 0.621, respectively. Next, we give
specific reasons and explanations of different articles.

The relationship between trust and privacy is simple in
the PPVT which also lacks dynamic protection mechanism;
TPTV does not study the impact of dynamic trust on privacy
disclosure. TTPM not only has not these shortcomings, but
also integrates information entropy and multiple factors into
privacy and trust model, with the growing number of private
attributes, it has clear and stable advantages over TPTV and
PPVT.

2) TRUST ESTABLISHMENT PREFERENCE
In the section, we design related experiments of privacy loss
and trust gain under the trust establishment preference. Note:
these related meanings of the coordinate axis of Figure 4 are
the same as the Figure 3.

In Fig.4(1), when the number of private attributes is 9, the
privacy loss of TTPM is 1.643 and 0.621 less than TPTV
and PPVT, respectively. In Fig.4(2), when the number of
private attributes is 9, the trust gain of TTPM is 1.012 and
1.132 higher than TPTV and PPVT, respectively.

Because PPVT can only take compensation according to
the privacy deviation, and lack the ability to trust feedback
compensation for privacy. In addition, the relationship
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FIGURE 5. Performance comparison under balance privacy and trust. (1) Privacy loss. (2) Trust gain.

between trust and privacy of TPTV is also relatively fixed,
trust factor lacks objective and concrete quantification to
adapt to dynamic trust environment. TTPM adopts a several
factors to trust evaluation, such as trust risk, reward pun-
ishment and so on, distance factor and quality factor are
used in the feedback trust which can cope with the trust
establishment preference environment. Thus, it can obtain
less privacy loss and more trust gain than TPTV and PPVT,
respectively.

3) BALANCE PRIVACY AND TRUST
In the section, we design related experiments of privacy loss
and trust gain under balance privacy and trust. Note: the
meanings of the coordinate axis of Figure. 5 are the same as
the Figure. 3 and Figure. 4.

In Fig.5(1), when the number of private attributes is 9, the
privacy loss of TTPM is 0.913 and 0.721 less than TPTV
and PPVT, respectively. In Fig.5(2), when the number of
private attributes is 9, the trust gain of TTPM is 1.062 and
1.412 higher than TPTV and PPVT, respectively. PPVT can
only take compensation measures according to the privacy
deviation. In the TPTV, the zero-sum relationship between
trust and privacy is relatively fixed and lack of dynamic
adaptability. TTPM builds a tradeoff model between trust
and privacy and adjusts parameters according to requirement,
with the increasing numbers of private attributes, which has
better adaptability than PPVT and TPTV in balance privacy
and trust environment.

B. INTERACTION SUCCESS RATE
Continuing the work of the last section, we compare the
interaction success rate among three models. The horizontal
axis indicates the number of attributes, and the vertical axis
indicates the success rate of the interaction.

In Fig. 6. (1) under privacy protect preference, the interac-
tion success rate is relatively lower; in Fig. 6. (2) under trust
establishment preference, the interaction success rate is rela-
tively higher; in Fig. 6. (3) under privacy protect preference,
the interaction success rate is relatively moderate. In addition,
because of tradeoff relationship between trust and privacy,
we can conclude that the success rate of TTPM is stable at

FIGURE 6. Interaction success rate of three models. (1) Privacy protection
preference (φ > ψ). (2) Trust establishment preference (φ < ψ).
(3) Balance privacy and trust (φ = ψ = 0.5).

approximately 75%, and the choice of parameters φ and ψ
have an approximately 5% influence on the interaction.

In the PPVT, online trust evaluation is influenced by the
penalty of privacy deviation, the privacy protection is rel-
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atively weak because of lacking trust feedback to correct
privacy. In the TPTV, the relationship between privacy loss
and trust gain is relatively fixed and simple. TTPM not only
propose trust and privacy evaluation model and construct a
tradeoff relationship model between trust and privacy based
on information entropy theory, but also can dynamically
choose trust gain or privacy protection, so it has a great
advantage in the interaction success rate than TPTV and
PPVT.

C. ACCURACY OF TRUST EVOLUATION
In the experiment, we generate 50K synthetic data records,
and each record contains 1000 attributes, and each attribute
value is randomly distributed in the [0, 1].
Due to the influence of many uncertain factors, the evalua-

tion error is inevitable. Accuracy is used to check whether the
scheme can accurately provide trust calculation, which can be
measured by the error. The smaller the error, the higher the
accuracy. Assuming that At is the actual trust value, TGt is
the trust evaluation value at time t , there are two methods of
MAD (mean absolute deviation) and MAPE (mean absolute
percentage error) for measuring the accuracy of the trust
evaluation.

1) MEAN ABSOLUTE DEVIATION

MAD =

∑n
t=1 |TGt − At |

n
=

∑n
t=1 |et |
n

(41)

MAD is used to measure the degree of deviation of evaluation
result. et = TGt −At is the evaluation error at time t , n is the
number of experiment times.

FIGURE 7. MAD in different number of transactions.

In the Fig.7, when the number of transactions is more
than 1200, the average MAD of TTPM, PPVT, and TPTV
is 0.1027, 0.1110, and 0.1183 respective. TTPM can be able
to integrate information entropy into trust evaluation algo-
rithm, so the error of trust evaluation is the lower than PPVT
and TPTV.

2) MEAN ABSOLUTE PERCENTAGE ERROR
MAPE is also a measure method of accuracy, which usually
can reflect the accursedness of the trust evaluation model.
et = TGt − At is the error, At is the actual trust value at

time t , and n is the number of interaction times.

MAPE =
1
n

n∑
t=1

|
et
At
|(×100%) (42)

In the Fig.8, When the number of transactions is more than
1200, the MAPE of TTPM, PPVT and TPTV are 11.6%,
12.8%, 13.6%, respectively. Based on Fig. 7 and Fig. 8,
TTPM adopts time decay, trust feedback, the dynamic per-
formance is relatively good, but PPVT and TPTV lack similar
mechanisms.

FIGURE 8. MAPE in different number of transactions.

D. PRIVACY DISCLOSURE ANALYSIS
According to the above 50K synthetic data, we further divide
the data into three kinds of sensitivity: high (H), medium (M)
and low (L).

In this experiment, the interactive request is randomly
generated, the trust decision result is based on for-
mula (1) and (2). Suppose that the user’s trust Tr is lower
than the trust threshold of the interaction requirement in the
ith request; this is regarded as a privacy disclosure event Edi.
So, the privacy disclosure rate is defined as the following
formula (43):

privacy disclosure rate =
n∑
i=1

Edi/rq (43)

where rq represents all possible interaction access, and n is
the number of interactions.

Fig. 9, Fig.10 and Fig. 11 show the disclosure rate by
varying the portion of L, M, H from 0 to 1, respectively.
In the Fig. 9, the privacy disclosure rate of TTPM, PPVT,
and TPTV is reduced from 0.389, 0.402, 0.411 to 0. In the
Fig. 10, with the increment ofM, the privacy disclosure rate of
TTPM, PPVT, and TPTV remain stable at 0.265, 0.368, and
0.392, respectively. In the Fig. 11, the privacy disclosure rate
of TTPM, PPVT, and TPTV remain stable at 0.481, 0.560,
and 0.571, respectively. Based on the experiment results,
the privacy disclosure rate of TTPM is relative lower than
TPTV and PPVT.

There are zero sum relations between trust and privacy
in the TPTV, quantification of privacy is relatively sim-
ple, which seriously affects the privacy protection in the
cloud computing. In the PPVT, the weight of privacy attribute
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FIGURE 9. Disclosure rate (varying data amount at level L).

FIGURE 10. Disclosure rate (varying data amount at level M).

FIGURE 11. Disclosure rate (varying data amount at level H).

lacks quantitative formula, which leads to inaccurate privacy
description. TTPM not only can make use of feedback pri-
vacy and multi-attribute privacy algorithms to adjust privacy
disclosure, but also can adjust the related parameters by
preference and requirement. Therefore, it is better than TPTV
and PPVT in preventing privacy disclosure.

VII. CONCLUSION
When users interact with businesses and institutions, a para-
dox between privacy loss and trust gain is inevitable. In this
paper, we research the relationship between privacy and trust
in the cloud environment. First, we propose a trust evaluation
model; second, we propose a novel privacy metric model;
third, we propose a tradeoff between privacy and trust, which
allow participants to select the service and dynamically adjust

the privacy release granularity. Experimental results show
that our research can effectively protect user privacy by quan-
tifying trust, service, and other preference factors.

There are still weaknesses in the article; for example, the
personalization requirement is still a difficult problem in
cloud privacy protection. In addition, there should be a unique
framework that canmitigate the problem between privacy and
trust, and provide an enforcement mechanism for preserving
the privacy of each partner.
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