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ABSTRACT Data compression and decompression have been widely used in modern communication and
data transmission. But how to decompress the corrupted lossless compressed files remains a challenge.
Aiming at the Lempel–Ziv–Storer–Szymanski (LZSS), a lossless data compression algorithm widely used
in the field of general coding, this paper proposes an effective method to repair the errors and decompress
and restore the corrupted LZSS files, and provides the theoretical basis for the method. By using the residual
redundancy left by the LZSS encoder to carry the check information, the method can repair the errors in
LZSS compressed data without any loss of compression performance. The proposed method neither requires
additional bits nor changes coding rules or data formats. It is fully compatible with standard algorithms. That
is, the data compressed by LZSS with error repair capability can still be decompressed by the standard LZSS
decoder. The experimental results verify the validity and practicability of the proposed method.

INDEX TERMS Corrupted files, error repair, lossless data compression, residual redundancy.

I. INTRODUCTION
Source coding technology is used in various communica-
tion systems. The purpose of source coding is to remove
redundancy and describe information with as few bits as
possible [1]; thus, source coding is also called data compres-
sion. Limited communication resources require efficient data
compression techniques, whereas noisy wireless channels
and corrupted file systems require repair capabilities.

The lossless data compression method Lempel-Ziv-Storer-
Szymanski (LZSS) and its variants are used extensively in
many compression schemes (e.g. Zip, Pdf, Png, Office doc-
uments). This popular compression method works online in
real time. It replaces the longest prefix of the uncompressed
portion in files with a pointer to the same prefix of the already
compressed portion (including the position and length of the
longest prefix). However, LZSS has a main disadvantage
of poor anti-error performance. Even a single error may
spread and produce numerous error codes in the decoding
process [2].

Error-correcting decompression technology can repair data
errors and decompress corrupted data. This technology has
been widely used in audio or video decoding [3], [4]. The
lossless compressed files are difficult to repair because of
their low redundancy. The corrupted lossless compressed
files can be retrieved by backup or retransmission. There
are few studies on error-correcting decompression of lossless
compressed files.

With the development of the Internet technology,
the amount of data on the Internet has increased dramati-
cally, making it difficult to backup and retransmit all loss-
less compressed files. In addition, with the emergence of
the applications such as the wireless sensor networks and
the Internet of Things, data are becoming larger and more
diverse. The limited storage space and bandwidth make it
impossible to backup and retransmit the lossless compressed
files. Therefore, it becomes really necessary to repair the
errors of the corrupted lossless compressed files.

The error-correcting method for the lossless compressed
files was originally designed to decompress the corrupted
compressed files intercepted from wireless channels [5], [6].
The error-correcting decompression method needs to be
employed to repair the corrupted intercepted compressed data
in non-cooperative communication, for there is no way to get
the data retransmitted.

A possible solution to this problem is to protect the com-
pressed data by adding additional check code so that error
detection and correction can be performed during the decom-
pression process. The number of bits required to carry the
check information in such systems should be as small as
possible. Kwon et al. [7] introduced three special bit patterns
in compressed data and proposed an error detection method,
which required no additional bits to detect the error codes,
but he failed to develop a feasible error-correcting method
for the corrupted compressed file. Wang et al. [8] established
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a mathematical model for error bit detection by using com-
pression coding rules and grammar rules, estimated the
rough range of error bits, and used heuristic method to
determine the exact positions of the errors and correct the
errors. But the heuristic method requires grammar rules as
the prior information and cannot correct the replacement
errors. Kostina et al. [9] used the information of source
state and channel state transmitted with compressed data to
correct the errors of compressed data at certain bit error rate.
Zhang et al. [10] grouped length-variable source codes and
added check code to the grouped data. Klein and Shapira [11]
analyzed the error propagation problem in dictionary encod-
ing and transformed the multiple modes in dictionary encod-
ing rule into the uniform standard codes. This could increase
the decoding speed and provide stronger robustness at occur-
rence of mistakes. However, the error recovery problem
remained unsolved. Kitakami and Kawasaki [12] encoded
the error’s sensitive parts such as matching length codes and
marker bits in the compressed data by unary coding, and
inserted the synchronous sequence into the compressed data.
Pereira et al. [13] proposed an unequal error protection (UEP)
scheme to detect errors according to the importance of each
part of compressed data. Lakhani [14] adjusted the construc-
tion rules of the encoder and dictionary table and verified
the data by adding redundant bits. Park et al. [15] used
compression coding rules to detect corrupted ZIP compressed
data. However, the exhaustive error correction methods can
correct only 1 bit each time to ensure the speed of error
correction. All of the above mentioned methods reduce the
compression performance, because they integrate additional
check code in the compressed data [16] instead of using the
residual redundancy left by the compressed data. Moreover,
these methods modify the standard algorithm. Due to changes
in encoding rules and data formats, they are not compatible
with standard algorithms, so the usability is compromised.

To effectively repair the errors of the LZSS compressed
data, we propose a new scheme compatible with the stan-
dard LZSS algorithm, addressing the problem of the existing
research that needs additional information bits to protect data
and are incompatible with the standard algorithm. The pro-
posed method is capable of error repairing. It does not change
the encoding rules and data format, so the data compressed
by the method in this study can still be decompressed by
the standard LZSS decoder, not affecting the compression
performance.

The LZSS encoder cannot completely remove the corre-
lation of the input sequence; thus, redundancy still exists
in the compressed data stream. The redundancy originates
from the encoding when the pointer codeword is selected
among multiple matching pointers. If the longest prefix has r
matches, then

⌊
log2r

⌋
bits can be embedded by selecting one

of the r pointers. The matching multiplicity can be used for
error repair once the redundancy bit is determined. Extensive
test of the LZSS decoder shows that the method is fully
compatible with the standard LZSS algorithm and will not
affect the compression performance.

The remainder of this paper is arranged as follows.
Section 2 introduces the basic principles of the LZSS algo-
rithm. Section 3 elaborates on the two error correction meth-
ods LZSR and LZSRD. Section 4 discusses the theoretical
analysis results of the LZSRD algorithm. Section 5 presents
the implementation process and analyzes the experimental
results.

II. BASIC PRINCIPLE OF LZSS ALGORITHM
When the LZSS algorithm reads the file and processes the
data in real time, it parses the file from left to right and
checks the encoded symbol sequence to determine the longest
matching prefix of the string to be encoded starting from
the current position [17]. The longest matching prefix is
represented by a pointer, which is a codeword consisting of
(position, length).

The basic principle of the LZSS algorithm is to determine
the longest matching prefix (Xi,Xi+1, . . . ,Xi+l−1) of the cur-
rent encoded string S= (Xi,Xi+1, . . . ,XN ) in the processed
string Z = (X1,X2, . . . ,Xi−1) and replace it with a pointer to
the same prefix that appears before. The pointer is represented
by the codeword Yk = (pk, lk ), where pk is the position of
the longest matching prefix of the current index i, and lk is
the length of the longest matching prefix. Figure 1 shows
that when the LZSS algorithm is encoding a sequence with
starting position i, a phrase with starting position j and length
l = 9 is matched with a prefix whose current starting
position is i.

FIGURE 1. LZSS algorithm.

To avoid excessive position and length parameter values,
the LZSS algorithm uses a lookup principle called a sliding
window, which finds the longest matching phrase only in a
fixed-size window.

Let T be the data in a finite-length symbol set A whose
length is n, and T[i](1 ≤ i ≤ n) denotes the ith sym-
bol in T . T [i, j] is used as an abbreviation for substring
T [i]T [i+ 1] . . . T [j](1 ≤ i ≤ j ≤ n), and convention
T [i, i] = T [i] is obtained. The prefix and suffix of T are
represented as substrings T [1, j] and T [i, n] respectively.
Suppose the first i − 1 symbols of the string T have

been parsed out in the first k − 1 phrases (i.e., T[1,i−1] =
y1y2 . . . yk−1). To identify the kth phrase, the LZSS algorithm
is used to determine the longest prefix of T[i,n] that matches
a certain substring of T[1,i−1]. If T[j,j+l−1], j ≤ i − l is a
substring that matches the longest prefix, then yk = T[j,j+l−1].
The algorithm provides the pointer codeword (i−j, l) and then
updates the current position value from i to i+ l.

On the basis of theory and experiment, many phrases
have more than one longest matching prefix in the
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compressed data. Specifically, the number of longest match
prefix in a sequence with a length of n generated by binary
memoryless source, Mn (where p is the probability of the
occurrence of 0) shall satisfy p(Mn = j) ≈ (1/h)(pj(1− p)+
(1− p)jp)/j, where h is the entropy of the source [18].

III. REPAIR AND RESTORATION OF LZSS FILES
The residual redundancy in source coding is introduced in the
encoding process and the encoder that ignores the probability
distribution characteristics of the source data [19]. The princi-
ple of the error-correcting decompression based on the dictio-
nary compression such as LZSS is to improve the capability
of error correction without reducing the compression ratio
(the ratio of the compressed and uncompressed data sizes).

The residual redundancy in the compressed data stream
using the dictionary-based algorithm is used to introduce
validation information and provide error repair capability by
embedding protection bits into the compressed data stream.
This information can be used to detect and repair errors in the
compressed stream.

A. LZSR ALGORITHM
The compression mechanism of LZSS must be analyzed to
embed additional bits for repairing errors. The new algorithm
is called LZSR algorithm, where ‘‘R’’ refers to error repair.
The LZSS encoder cannot completely remove the correlation
of the input sequence. Thus, residual redundancy still remains
in the compressed data stream; this residual redundancy can
be used to repair errors. More than one longest matching
prefix exists for a given sequence or phrase; hence, more
than one matching pointer also exists. Usually, the algorithm
selects the latest pointer [20], which has the smallest position
value; however, selecting another pointer does not affect the
decompression process and result. If the starting position of
a phrase is i from the beginning of the input sequence, and
r longest prefixes exist in the sequence that exactly match
position i, then the phrase has matching multiplicity r . The
matching multiplicity represents the redundancy of some
types. It is possible to embed additional information bits with-
out reducing the compression ratio. The residual redundancy
is generated from the process that the pointer codeword is
selected from r > 1 possible pointers. Additional bits can
be embedded in the position with r > 1 multiple longest
matching prefixes. At most

⌊
log2(r)

⌋
additional bits can be

embedded by selecting one of the r pointer options. These
additional bits can be used for various purposes, such as
authentication [21] or bit error repair.

Set T[1,i−1], the initial part of T, has been parsed. For all 0 ≤
m ≤ r − 1, let {(p0, l), (p1, l), . . . , (pm, l), . . . , (pr−1, l)} ,
r ≥ 1 be all the possible pointers to the longest matching
prefix of T[i,n], where l > 1, 1 ≤ pm ≤ i − l. If r = 1,
no additional information bits are embedded. When r > 1,
one of the r pointer codewords is selected on the basis of
the value of d =

⌊
log2 r

⌋
bits in F data to be embedded.

Suppose that the first t bits of F have been embedded in
the previous phrase, the result of the encoding is the pointer

codeword (pF[t+1,t+d] , l). Then, T is moved to i + l from the
current position, and t is incremented by d . When r > 1
identical longest matching pointers exist, the additional bits
can be encoded by reasonable selection of pointers. As shown
in Fig. 2, the number of longest matching prefixes is r = 4.
Two additional bits can be embedded by selecting one of the
four matching pointers to embed the check code for error
detection and repair. Selecting different pointers does not
affect the decompression process; thus, the proposed algo-
rithm is fully compatible with the standard LZSS decoder.

FIGURE 2. Multiplicity of the longest matching prefix.

Once the residual redundancy of the LZSS algorithm is
determined, a method can be devised to repair the error by
using redundant bits. The protected pointer codewords are
represented by a sequence of bytes; thus, the Reed-Solomon
(RS) code [22] is used to protect the data. The RS code is an
error-correcting code that is widely used in digital communi-
cation and storage systems. The RS code is a BCH code and
is usually expressed as RS(a, b), where a is the size of the
packet containing the data and the check code, and b is the
size of the payload.

The encoder collects b symbols and adds (a-b) check bits
to form a packet with a length of a. If an error occurs in any
bit of the packet, then a bit error is generated. The RS decoder
can correct e errors in the packet, where e = (a − b)/2.
Given a code element represented by s bits, the maximum
packet length of the RS code is a = 2s − 1. For example,
the maximum length of a codeword with 8 bits (s = 8) is
255 bytes. Therefore, the RS code of s = 8 can be represented
by RS (255, 255-2e), where 255 is the number of the bytes
contained in each packet, 255-2e denotes data, and 2e is the
check code. Encoding can automatically detect and correct e
byte errors anywhere in the packet.

Subsequently, the manner in which the LZSR algorithm is
used to embed the RS check code is introduced. The scheme
initially compresses T using the standard LZSS algorithm
and divides the encoded compressed data into packets with
the size of 255-2e. Then, from the last one, the packets
are processed in reverse order. When processing packet Gi,
the encoder initially calculates the RS check code of packet
Gi+1 and embeds the RS check code into the pointer code-
word of packet Gi using the multiplicity of matching. The
check code of the first packet G1 is not embedded in any
packet but is stored at the beginning of the compressed file.
The operation flow of the LZSR encoder processing com-
pressed data is shown in Fig. 3.

The decompression process proceeds in the forward order.
The decoder receives the sequence of pointer codewords,
the first being the check code of the first packet G1. First
the input data stream is divided into packets with the size
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FIGURE 3. LZSR encoder (RSn represents the check code of block Gn).

of 255-2e, and the check code is then used to repair the first
packet G1. When packet G1 is correct, the LZSR algorithm
is used to decompress it. This process not only reconstructs
the first packet of the original file but also restores the bit
information stored in the particular selected pointer code-
word. These additional bits are collected as the check code of
the second packet G2; thus, the decoder can repair the possi-
ble errors in packet G2, and the algorithm then decompresses
packetG2 to extract the check code of packetG3. This process
continues until all packets have been decompressed.

The RS check code of the current packet must be known
prior to the decompression of the decoder. Thus, by embed-
ding the RS check code of the current packet into the previous
packet, the RS code of the current packet can be obtained as
the previous packet is decompressed and the current packet is
verified. Therefore, the encoder must process these packets in
reverse order.

On the basis of the redundancy of the encoded data,
the capability to embed bits in the multiple matching pointer
determines the maximum number of errors e that can be
effectively corrected in each packet when decompressing.
In the LZSR algorithm, e is constant in all packets; thus, its
value is limited by the packet with the least redundancy.

B. LZSRD ALGORITHM
In the LZSR algorithm, the redundancy of different parts of
the data may be different; thus, the algorithm is not optimal
if e takes a constant value in all encoded packets. If the
redundancy of a packet in the data is extremely low, it will
determine the maximum value of e in all packets. Such low-
redundancy packets are usually located at the beginning of
the encoded data because only few identical matches can
produce redundancy at the beginning. To fully utilize the
overall redundancy, the value of e that is dynamically adjusted
between each packet can be used on the basis of the avail-
ability of redundant bits in each packet. In this case, the low
redundancy of data only affects the error protection perfor-
mance and the amount of information embedded in these
parts, and the rest of the data can be protected according to
its redundancy availability. Therefore, the average of e can be
higher to better resist the impact of bit errors.

From the above analysis, LZSRD algorithm is proposed
based on LZSR, where ‘‘D’’ refers to the dynamically
adjusted e. The encoding process is still carried out in two
steps. In the first step, the encoder not only compresses the
input stream, but also determines the embedding capability of
each data packet, which is used to determine the parameters
of the check code. The input string X is initially encoded
using the standard LZSS algorithm, and the number r of

the identical longest matching prefixes that each pointer has
is recorded. The data to be embedded are then divided into
packets of different lengths according to the number of bits
that can be embedded by the available redundancy. First,
the data length of the first packet G1 is 255-2e1, where e1 is
used as the parameter input of the algorithm. The bits number
mi of the check code in the packetGi is calculated on the basis
of the r value of the packet Gi−1. mi is calculated according
to (1).

mi =
∑

g∈Gi−1

⌊
log2 rg

⌋
(1)

The check code length is bmi/8c, and it can detect and correct
ei = bbmi/8c /2c errors in the packet Gi.

For example, if the bits number that can be embedded
on the basis of the multiple match pointer

∑
g∈G1

⌊
log2 rg

⌋
of the first packet G1 is 39, then the length of check code
for the second packet G2 is b39/8c = 4. On this basis,
the data length of the second packet G2 is 255-4 = 251.
In G2, the check code can detect and correct e2 = 2 errors.
This process is repeated until the input data end. Finally,
n packets with data length of 255-2en are obtained, as shown
in Fig. 4.

FIGURE 4. The process of calculating the embedding capability.

After all the data are sliced into packets of different lengths,
the process of embedding the check bit is carried out. In the
second step, these packets are processed in reverse order, and
the length, 2ei, of the information bits that can be embedded
in each packet is different. When processing the data packet
Gi+1, the encoder reads the parameter information of RS
codes associated with the packet Gi, selects an appropriate
RS encoder according to this information and calculates the
check bit of the data packetGi+1. These bits are to be embed-
ded into the packet Gi. During this process, the last packet
contains only compressed symbols and no additional infor-
mation. The first packet’s check bit is added to the beginning
of the output stream of the encoder. As shown in Fig. 5.

FIGURE 5. The process of embedding the check code.

The expected error correction capability, e1, of the first
packet G1 is taken as the input parameters of the algorithm,
and for all the other packets, the expected error correction
capability, ei, is based on the redundancy dynamics of its
previous packet. In the LZSRD algorithm, the check code
of the first packet G1 is appended to the beginning of the
encoded data. To preserve the compatibility with the standard
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LZSS decoder, the check code of the first packet where
e1 = 0 is to be removed.

The decompression process is similar to the LZSR decod-
ing algorithm. First, the 2ei embedded check code are
extracted from the packet Gi−1, and the packet Gi uses the
check code to determine the data length and correct the errors.
Then, the LZSR decoder is used to decompress the original
data of the packet Gi and obtain the 2ei+1 check code of
the next packet Gi+1, which is used to determine the data
length of the packet Gi+1 and verify the packet. This process
is repeated until the last packet.

IV. ANALYSIS OF MATCHING MULTIPLICITY OF LZSRD
This section analyzes the multiplicity of matching in the
LZSRD algorithm. When the data are generated by a mem-
oryless source, the distribution characteristics of the longest
matching prefix number can be estimated on the basis of the
analysis result.

Let T[1,n] be the first n symbols generated by the source,
and L is a random variable found in T[1,n] associated with the
length of the longest matching prefix of T[n+1,∞]. In other
words, the random variable L describes the length of the
longest matching prefix in the LZSRD algorithm. The vari-
ableWn is used to indicate the number of the longest matching
prefix of the sequence starting from the position n in the data,
that is, Wn =

∑n−L
i=1 1(T[i,i+L−1] = T[n,n+L−1]). For Markov

sources, the result of Jacquet and Szpankowski [23] can prove
E[Wn] = O(1).
Wn can be defined on the basis of the associated suffix tree

Sn constructed from the first n suffixes of the data T to obtain
an accurate representation of the asymptotic distribution of
Wn and its factorial moments. In view of the insertion node of
the (n+ 1)th suffix, when the (n+ 1)th suffix of T is inserted
into Sn, Wn is equal to the number of the leaf nodes of the
subtree of which the root node is the (n+1)th insertion node.
For example, suppose the (n+1)th suffix begins withωβ for a
certain β ∈ A = {0, 1}, and ω ∈ A∗. Then, the first n suffixes
are checked. If k suffixes starting with ωα (α = 1⊕β, where
⊕ is the modulo 2 addition) exist and the other (n−k) suffixes
do not start withω, thenWn = k can be obtained; that is,Wn is
the size of the subtree starting from the newly inserted branch
point.

The next goal is to study Wn in the suffix tree, which
is constructed from a string T generated by a binary mem-
oryless source. However, the strings in the suffix tree are
highly dependent on each other; thus, Wn is difficult to ana-
lyze accurately. Therefore, to study Wn, the parameter Mn
is defined to have the same asymptotic distribution as Wn;
thus, the problem is reduced to a simple asymptotic equiv-
alence problem by analyzing the random tree constructed
from n independent sequences generated by memoryless
sources.

First, a mathematical expression is presented to analyze
the problem. Let 0 < p < 1, q = 1 − p. Define X (j) as
the sequence X (j)

1 X (j)
2 X (j)

3 . . ., where {X (j)i |i, j ∈ N} is a set
of independent and identically distributed random variables

on {0, 1}, and P
{
X (j)i = 0

}
= p. Let l(n)j = sup{i ≥

0|X (j)1 . . .X (j)i = X (n+1)1 . . .X (n+1)
i }.

Define Ln = max j≤nl
(n)
j . Search each of the first n strings

for the matching prefixes which match the prefixes in the
(n+1)th string. Then the length of the longest matching prefix
is calculated and recorded as Ln. Finally, Mn = #{j|1 ≤ j ≤
n, l(n)j = Ln} is defined; thus, Mn represents the number of
the longest matching prefixes of the length Ln. Let M0 =

0. If the string X (1), . . . ,X (n) is a suffix of T , then Mn is
asymptotically equivalent to the Wn defined above.
Cj1,...,jk is the length of the longest identical prefix in

k strings X (j1), . . . ,X (jk ), and l(n)j = Cj,n+1. In the tree
constructed by (n + 1) strings, the depth of the kth string,
Dn+1(k), is the path length from the root node of the tree to
the leaf node containing the kth string. GivenDn+1 (n+ 1) =
max
1≤j≤n

Cj,n+1 + 1, Ln = Dn+1 (n+ 1) − 1 can be obtained.

Therefore, Mn = #{j|1 ≤ j ≤ n,Cj,n+1 + 1 = Dn+1 (n+ 1);
that is,Mn represents the size of the subtree starting from the
newly inserted branch node.

The exponential generation function is defined as

G (z, u) =
∑

n≥0
E[uMn ]

zn

n!

and Wj (z) =
∑

n≥0
E[(Mn)

j]
zn

n!
,

where the plural u ∈ C and j ∈ N. If f : C → C, then the
recursive relationship

E [f (Mn)] = pn (qf (n)+ pE [f (Mn)])+ qn (pf (n)

+ qE [f (Mn)])+
∑n−1

k=1

(n
k

)
pkqn−k

× (pE [f (Mk)]+ qE [f (Mn−k)]) (2)

holds for all n ∈ N. If f (0) = 0, then the recursion is also
true when n = 0. To verify the recursion, the possible value
of X (j)1 is considered only when 1 ≤ j ≤ n+ 1.
First, if n ∈ N, then

E
[
uMn

]
= pn

(
qun + pE

[
uMn

])
+ qn

(
pun + qE

[
uMn

])
+

∑n−1

k=1

(n
k

)
pkqn−k

(
pE
[
uMk

]
+qE

[
uMn−k

])
(3)

If j ∈ N and n ≥ 0, then

E[(Mn)
j]

= pn(qnj + pE[(Mn)
j])+ qn

(
pnj + qE

[
(Mn)

j
])

+

∑n−1

k=1

(n
k

)
pkqn−k

(
pE
[
(Mk )

j
]
+qE[(Mn−k )

j]
)

(4)

The asymptotic solution of these recursive relationship can
be derived by using the research results of Ward and
Szpankowski [24].

Let zk = 2krπ i
ln p hold for all k ∈ Z , and ln p

ln q =
r
s (r, s ∈ Z ).

Then,

E
[
(Mn)

j
]
= 0 (j)

q
(
p
q

)j
+ p

(
q
p

)j
h

+ δj

(
log 1

p
n
)

−
1
2
n
(
d2

dz2
δj

(
log 1

p
z
))∣∣∣∣

z=n
+ O

(
n−2

)
(5)
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where

δj(t)=
∑

k 6=0
−
e2krπ it0(zk + j)(pjq−zk−j+1 + qjp−zk−j+1)

p−zk+1 ln p+ q−zk+1 ln q
(6)

0 is the Euler gamma function.

The term − 1
2n
(
d2

dz2
δj

(
log 1

p
z
))∣∣∣

z=n
in the (5) satisfies

O(n−1). δj is a periodic function with a small fluctuation
range. If ln p/ ln q is an irrational number, then δj (x) → 0
when x →∞. The asymptotic distribution ofMn is described
as follows.

Let zk = 2krπ i
ln p hold for all k ∈ Z , and ln p

ln q =
r
s (r, s ∈ Z ).

Then,

E
[
uMn

]
= −

qln (1− pu)+ pln(1− qu)
h

+ δ
(
log 1

p
n, u

)
−

1
2
n
(
d2

dz2
δj

(
log 1

p
z, u

))∣∣∣∣
z=n
+ O(n−2) (7)

where (8), as shown at the bottom of this page. 0 is the Euler
gamma function. The following equation (9) can be obtained,
as shown at the bottom of this page. Then, (10), as shown
at the bottom of this page. If ln p/ ln q is irrational and u is
fixed, then δ (x, u) → 0 when x → ∞. And P (Mn = j) ≈
pjq+qjp

jh . Therefore, it is completely possible to use the

multiplicity of matching in LZSRD compression for error
correction.

V. EXPERIMENTAL AND PERFORMANCE ANALYSIS
The Canterbury Corpus [25] and the Calgary Corpus [26] are
the collection of files used for benchmarking lossless data
compression algorithms. The two corpora are used to conduct
experiments in this study. The standard LZSS encoder uses a
sliding window with a length of 32 KB, and the maximum
length of the matching phrase is 256.

A. EMBEDDING CAPABILITY OF LZSS
LZSS is a sliding window dictionary coding method. At the
initial stage of compression, the number of the longest match-
ing phrases is small because there are not many entries in
the dictionary. As the compression progresses, the dictionary
fills up and the number of longest matching phrases gradually
increases and tends to be stable. The proposed method in this
study uses the check code carried in the redundant to protect

FIGURE 6. Relationship between the number of embedded bits and the
file length.

the data. The embedding capability of the LZSS compressed
data is tested at first. In the experiment we measure the
log2(r). Figures 6(a) and 6(b) show, respectively, the aver-
age of the number of the bits that can be embedded in the
compressed data when the files in the Canterbury Corpus
and the Calgary Corpus are compressed into LZSS files.
Figure 6 clearly shows that the number of bits embedded in
the file F increases linearly with the length |F | of the file. The
packet data with the length of 255-2e requires 2e parity bits
to correct e errors. Correcting e errors is possible as long as
the embedding rate of the compressed data is not less than
2e/(255-2e). The experimental results show that when the
number of the longest matching phrases in compressing data
by LZSS is stabilized, the embedding rate can be satisfied in
each data packet, when e = 2 or even bigger than 2.

δ(t, u) =
∑

k 6=0
−

e2krπ it0 (zk)
(
q (1− pu)−zk + p (1− qu)−zk − p−zk+1 − q−zk+1

)
p−zk+1 ln p+ q−zk+1 ln q

(8)

E
[
uMn

]
=

∑∞

j=1

pjq+ qjp
jh

+

∑
k 6=0
−
e
2krπ itlog 1

p
n
0 (zk)

(
pjq+ qjp

)
(zk)j

j!
(
p−zk+1 ln p+ q−zk+1 ln q

)
 uj + O(n−1) (9)

P (Mn = j) =
pjq+ qjp

jh
+

∑
k 6=0
−
e
2krπ itlog 1

p
n
0 (zk)

(
pjq+ qjp

)
(zk)j

j!
(
p−zk+1 ln p+ q−zk+1 ln q

) + O
(
n−1

)
(10)
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B. ERROR REPAIR CAPABILITY OF LZSRD
In this section, the error repair capability of LZSRD is com-
pared with that of the method proposed in [8]. The method
proposed in [8] utilizes compression coding and grammar
rules to determine the error position and correct the errors.
The present work uses the residual redundancy left by the
LZSS encoder to carry the verification information to find
and repair errors.

To test the error repair capability, all files in the Canterbury
Corpus and the Calgary Corpus are compressed into LZSS
files, and errors of different quantity are introduced to and
randomly distributed in the LZSS compressed files. Every
time the quantity of the injected errors (represented by bit
error rate (BER)) changes, 100 experiments are performed
on each compressed file. In the experiments, LZSRD and
the method proposed in [8] are used to repair the errors and
decompress the files. The average probability of successful
error correction and decompression of the files is calculated
and recorded.

FIGURE 7. Comparison of error repair capabilities.

A comparison of the experimental results of the two meth-
ods is shown in Fig. 7. The blue and red curves repre-
sent the average probability of the successful decompression
of LZSRD and the method proposed in [8], respectively.
As shown in Fig. 7, when BER = 6 × 10−4, the method
proposed in [8] can hardly decompress the file correctly,
and the probability that LZSRD can successfully decompress
is approximately 0.9. Therefore, the error repair capability
of LZSRD is considerably higher than that of the method
proposed in [8] because the latter cannot find a replacing
error that does not destroy the dictionary structure; moreover,
the error bit may be corrected only when the interval between
the error bits is greater than the error detection delay. As BER
increases, the error bits cannot be corrected once the interval
is less than the error detection delay. Therefore, the error cor-
rection capability of the method proposed in [8] is low. The
proposed method in the present study can repair the errors
and successfully decompress data as long as the number of
errors in each packet data does not exceed the verification
capability.

C. PRACTICALITY OF LZSRD
All files in the Canterbury Corpus and the Calgary Corpus are
compressed into the LZSS files. Some uniformly distributed

error bits are added to each LZSS file to generate a corrupted
LZSS file. When BER = 10−5, LZSRD and the method
proposed in [8] are used to correct the errors and decompress
the file. The average probability of successful error correction
and decompression of the files is calculated and recorded.

FIGURE 8. Relationship between error correction rate and length of
compressed file.

The experimental results are shown in Fig. 8. The blue and
red curves represent the average probability of the successful
decompression of LZSRD and the method proposed in [8],
respectively. As shown in Fig. 8, as the length of the com-
pressed file increases, the error correction capability of the
method proposed in [8] decreases exponentially. This result
is caused by the fact that if the position of the error bit in the
LZSS file is random, then the error repair rate of the method
proposed in [8] is less than 1. This method will eventually fail
when the length of the LZSS file is infinite because its error
correcting mode can only correct up to 1 bit at a time. The RS
code used in this study has stable error repair capability, and
the error correction rate is only affected by the BER and thus
hardly affected by the file length.

VI. CONCLUSION
LZSS is a widely used lossless data compression method in
the field of general compression. However, the propagation
of errors in the decompression process limits its applica-
tion. To effectively repair the errors of LZSS compressed
data, the existing methods need add extra information bits
to protect data. These methods decrease the compression
performance and are incompatible with standard algorithms.
To address these shortcomings, this study proposes a new
scheme compatible with the standard LZSS algorithm. It does
not change the encoding rules and data format, so the data
compressed by the new method can still be decompressed by
the standard LZSS decoder. The new scheme does not require
any additional bits. It has great error repair capability and
does not affect the compression performance.
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