IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 21, 2018, accepted January 2, 2019, date of publication January 10, 2019, date of current version January 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2891762

HW-CDI: Hard-Wired Control Data Integrity

YONGSUK LEE AND GYUNGHO LEE

Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea

Corresponding author: Gyungho Lee (ghlee @korea.ac.kr)

This work was supported by the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology

under Grant NRF-2015R1A2A2A01003242.

ABSTRACT Ensuring that a program follows an uncompromised control flow at the machine instruction
level can provide sound protection from control flow attacks that transfer a control flow to the attacker’s
flow during program execution. This paper proposes an enhanced control data protection for control flow
integrity called hard wired control data integrity (HW-CDI). The HW-CDI hides the control data via encoding
with a key and requires proper decoding with the key for a correct control flow transfer. A unique aspect
of HW-CDI is that this key changes in terms of not only the location but also the value of the control data.
This paper describes the features necessary to make HW-CDI, an effective approach for securing program
control flows with low-performance overhead. More specifically, this paper describes how to incorporate
the HW-CDI into the processor’s instruction pipeline so that it becomes an integral part of indirect branch
instruction execution. It also provides information on how to generate the encoding/decoding keys without
additional instrumented code. The HW-CDI is able to differentiate control flow transfer instances, providing
context-based protection at negligible performance overhead.

INDEX TERMS Control data, control flow integrity, indirect branch, instruction set architecture, software

security.

I. INTRODUCTION

Control flow attacks that change the “‘program control flow”’,
i.e., the sequence of instructions to be executed for a program
at run-time, represent one of the prevalent types of on-going
threats to modern computer systems. Many researchers have
made efforts to develop various defenses; however, control
flow attacks have become more sophisticated, outpacing the
defenses. There have been various mitigation strategies such
as stack smashing protection (SSP) [1], data execution pre-
vention (DEP) [2], and address-space layout randomization
(ASLR) [3]. However, memory exploit vulnerability and trial-
and-error replay attacks, including side-channel attacks, can
bypass both ASLR and SSP [4]-[8]. Additionally, code reuse
attacks (CRAs) bypass the DEP [4].

CRAs [9], [10] find the address of a short sequence of
instructions (called a “gadget”) that ends with an indirect
branch instruction such as call, ret, or jmp from the code
already existing in the memory. These gadgets are like virtual
machine instructions, and CRAs link the gadgets to perform
an arbitrary functionality (“Turing complete”). CRAs have
evolved into more sophisticated types [4], [7], [11]-[14] from
the original return oriented programming (ROP) [10]. For
example, the BROP attack [4] showed that a generalized ROP
attack is practical without knowledge of the code binary in the
memory.

Control flow integrity (CFI) [15], which ensures program
control flow at runtime to follow the control flow information
described in the program at the machine instruction level,
can represent the basic principle for protection against CRAs.
CFI performs instrumenting of the program to validate a
control flow transfer per a control flow graph (CFG) gener-
ated from the program. Two issues arise in implementing the
CFTI: firstly, how to check every control flow, and secondly,
how to generate a precise and complete CFG. For practical
implementations of CFI, these two issues are handled in a
less than desirable manner [4], [11]-[13], [16]. CFI uses
the static analysis to determine the target address of indirect
branch instructions, which leads to overly permissive checks.
Additionally, the need for the inline code instrumentation to
check the legitimacy of each control flow transfer at run-time
incurs performance overhead, which can be significant [15].
Also, having a “shadow” call stack, a protected copy of the
return address stack, has been found to be essential for better
protection [11], [15], [17], [18]. Although it is helpful to have
more comprehensive identification of each control transfer
distinctively using hardware support or heuristics, it is still
possible to exploit CRAs that evade the recent sophisticated
CFI implementations [4], [11]-[13], [19]. Additionally, in
the Intel x86 instruction set architecture (ISA) of variable
instruction length, an attack can “create” indirect branches

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission. 10811

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2825-370X

IEEE Access

Y. Lee, G. Lee: HW-CDI

by fetching the instruction byte from the middle of multi-
byte instructions [10]. These unintended branch instructions
are difficult to handle because it is difficult, if not impossi-
ble, to deduce the correct location to insert the inline code
instrumentation to check them.

A desirable program control flow protection scheme
should be based on precise and complete control flow infor-
mation and should be able to handle the dynamics of program
control flows with minimal performance overhead. However,
the existing protection schemes are either based on incom-
plete and imprecise CFG or have high performance over-
head. We believe that a fine-grained control flow protection
in hardware is needed to handle the dynamics of program
control flows at a low performance overhead. This paper
introduces a hardwired-control data integrity (HW-CDI) pro-
tection scheme to ensure control flow integrity with little
performance overhead that is based on precise and complete
information of dynamic control flows.

HW-CDI blocks the memory exploits for control flow
attacks via encoding and decoding the program control data,
i.e., function pointers and target addresses for indirect branch
instructions, with dynamically varying keys generated from
the location and value of the control data. For each encod-
ing/decoding process, HW-CDI generates a different key
to identify each control flow transfer instance distinctively,
making the key an identifier (ID) of each control flow transfer
instance. This also makes the return stack obfuscated with
respect to the return addresses it holds: Each stack loca-
tion is differentiated per the return address it holds, making
the shadow stack not essential for control flow integrity.
HW-CDI provides the integrity of the control data to ensure
fine-grained control flow integrity at the machine instruction
level at runtime. This paper describes the features utilized
to incorporate the HW-CDI as an integral part of an indirect
branch instruction execution.

While existing schemes for control flow integrity and con-
trol data protection utilize additional code, sometimes with
added hardware features to reduce the overhead, instrumented
for checking the integrity on top of existing machine instruc-
tions, HW-CDI incorporates the integrity checking into an
inherent part of indirect branch instruction execution in the
processor’s instruction pipeline. Making the integrity check-
ing an inherent part of a machine instruction that changes
program control flow is the unique aspect of HW-CDI, which
allows a tighter protection and a less overhead than existing
protection schemes.

The contributions of this paper are as follows:

e This paper introduces the concept of obfuscating
control data based not only on location but also on
value.

e This paper describes a hardware efficient dynamic key
generator that can be integrated into the processor’s
instruction pipeline so that the HW-CDI can be an
integral part of machine instruction execution.

e This paper shows that HW-CDI prevents control flow
attacks such as return-to-libc and CRAs with little

10812

performance overhead and without the need for a
shadow stack.

The remainder of this paper is organized as follows.
Section II provides background information on control flow
integrity along with several existing schemes for control flow
protection. Section III describes our control flow protec-
tion scheme, HW-CDI, and introduces the concept of hard-
wired control data integrity along with details for encoding/
decoding processes for the program control data and how to
incorporate the processes in the processor’s instruction execu-
tion pipeline. Section IV demonstrates the effectiveness of the
proposed HW-CDI scheme in terms of its efficacy on attack
prevention, while Section V shows the impact of HW-CDI on
a pipelined processor’s instruction execution performance.
Section VI discusses desirable aspects of a program con-
trol flow protection scheme and compares HW-CDI with
other well-known existing control flow protection schemes.
Finally, Section VII offers concluding remarks.

Il. CONTROL FLOW INTEGRITY AND CONTROL

DATA INTEGRITY

To ensure that software behaves as intended, one may want
to ensure control flow integrity, i.e., that each control flow
transfer follows the legitimate control flows described in the
software. For control flow integrity, one may collect all legit-
imate control flow transfers and check if a specific control
flow transfer instance is one of them. CFI [15] is a well-
known software approach to ensure control flow integrity.
CFI determines where an indirect instruction can branch to
per a static analysis. In practice, static analysis of the program
control flow has its limits; there are cases in which it cannot
determine all possible target address values of an indirect
branch. The indirect branch target is often determined at
runtime.

CFI implementations [20], [21] seek to minimize the per-
formance overhead of the validation. This is done by classi-
fying the return addresses and the function pointers into a few
different groups; each group has its unique identifier (ID), and
the CFG is represented with the IDs (coarse grain) instead
of the specific locations of indirect branches and its target
addresses (fine grain). Most CFI implementations classify
possible branch target locations into only two or three groups:
a function pointer can branch to any function in the same
group, and the return instructions can return to any return site.
The coarse-grained CFI allows attackers to generate ‘“‘new”’
control flows by swapping the source addresses or target
addresses from the same group.

To ameliorate the coarse-grained CFI, heuristics about
the legitimacy of the target addresses have been intro-
duced [22], e.g., a return target should be the location below
the corresponding call site. Additionally, hardware assistance
including efforts to utilize branch prediction and monitoring/
debugging features have been proposed for less perfor-
mance overhead and better distinction of the control flow
transfers [22], [23]. Coarse-grained CFI implementations
with the hardware support cause generally less performance

VOLUME 7, 2019

Y. Lee, G. Lee: HW-CDI

IEEE Access

overhead; however, the vulnerability of the CFI implementa-
tions remains more or less intact [17], [24].

CET from Intel is a well-known CFI scheme [25] and is
a hardware supported variation of Microsoft’s control flow
guard [26]. CET is a coarse-grained CFI in that it coa-
lesces the indirect branch target addresses together without
the information on which the indirect branch is associated
with which target addresses. It is essentially a single ID CFI
with the shadow call stack: Its protection efficacy is limited,
though the shadow call stack in CET provides good protection
for the return targets. However, providing a safe shadow call
stack in the memory is not trivial [22]. Hardware-enforced
CFI (HCFI) [24] is similar to the CET but attempts to be
closer to the original software-based CFI [15] with a some-
what limited implementation of the shadow call stack. Note
that HCFI is also a coarse-grained CFI, which leads to the
same vulnerability of software-based CFI implementations.

CFI has recently shifted away from coarse-grained CFI to
fine-grained CFI [18], [27]-[30] by identifying each control
flow transfer distinctively. Fine-grained CFI may be less
vulnerable to those attacks targeting the coarse-grained CFI
implementations, but they are prone to high performance
overhead, and it is still possible to exploit CRAs that evade
the fine-grained CFI implementations [4], [11], [12], [14].
CFI schemes including fine-grained ones are for user level
programs and cannot protect the control data at the kernel
level. The ret2usr attack [31] compromises the control data
only in the kernel (e.g., a kernel function pointer or return
address).

Relying on the static CFG as the reference for CFI, whether
it is coarse-grained or fine-grained, is based on the assump-
tion that the software is immutable. This implies that it cannot
be used for self-modifying code or for the code generated
just-in-time. Software-based CFI policies typically verify
each indirect branch target by executing the instrumented
code before the execution of an indirect branch instruction.
This may introduce a risk of TOCTOU (time-of-check and
time-of-use) vulnerability.

Control flow integrity can be assumed if the integrity of
the control data is maintained. Maintaining the integrity of all
program data has been studied from early on, e.g., the trusted
computing proposal by the US Air Force in 1973 [32].
It is difficult to maintain the data integrity for general pro-
gram data despite many proposals for tracking data flows
and sophisticated memory protection [33]-[37]. Ensuring
the integrity of program data in general is difficult to do,
especially without incurring a significant overhead [33].
For example, Intel’s MPX for memory safety is reported
to incur 15% to 400% performance overhead [38]. Control
data integrity (CDI) schemes seek to ensure uncompromised
control data at runtime. CDI has a limited scope in ensuring
data integrity; it ensures the integrity of function pointers and
target addresses for indirect branch instructions [18], [39],
which allows the run-time protection to be more precise but
with less overhead. This paper proposes CDI as an intrinsic
part of indirect branch instruction execution in a way similar

VOLUME 7, 2019

to the virtual address to physical address translation via TLB
(Translation Lookaside Buffer) for every memory access in
modern processors.

Ill. HARD WIRED CONTROL FLOW INTEGRITY (HW-CDI)
HW-CDI is designed to enforce each control transfer to be
legitimate without adding the instrumentation code for the
control flow validation. It does not utilize a static CFG for
the reference control flow. Instead, it obfuscates the control
data via encoding with a key and mandates decoding with the
key. In describing the HW-CDI, we use the Intel x86 instruc-
tions [40] for examples, but the general principle of HW-CDI
can apply to any instruction set architecture (ISA).

A. BASIC APPROACH

The static CFG used in most CFI schemes may be imprecise
and incomplete because of its conservative nature and lack
of dynamic information. In addition, checking the control
data against the CFG requires an added instrumented code,
which incurs not only performance overhead but also the
potential risk of TOCTOU. The HW-CDI approach involves
encoding control data when it is stored to the memory and
decoding it when it is read from the memory. This hides the
control data value until the last minute before loading it to
the program counter. However, obfuscating the data incurs
a difficulty in managing the key for encoding and decod-
ing and leads to the overhead associated with encoding and
decoding. Additionally, relying on a single key for the whole
program execution may make it an easy target for a replay
attack [4].

Consider an example of CRA [11] in Fig. 1 The attack cre-
ates a loop by compromising the return address for the second
call in the return stack: Calling Function_A for the second
call returns to RA for the first call instead of RA,. Most CFI
schemes check the legitimacy of the source-target address
pair, i.e., whether it is a valid branch site and its proper
target address. Because RA| and RA; are both legitimate
for the ret instruction of Function_A, the attack bypasses

Code area
call A
RA, Function_A
call A ret
RA, " Q

FIGURE 1. A CRA example [11]: A loop can be formed by returning from
the second call to the return site, RA1 of the first call (©), instead of its
proper return site RA2 (®).

10813

IEEE Access

Y. Lee, G. Lee: HW-CDI

the CFI schemes. To provide proper protection, one needs
context information to distinguish the return addresses for the
corresponding calls. CFI schemes suggest having the shadow
stack, i.e., a protected copy of the return stack. The shadow
stack provides a clean uncompromised return address match-
ing the current call-return sequence. Having a shadow stack
is considered essential for proper implementation of the CFI
[11], [13], [15], [17], [18]. The industry has recently provided
provisions to facilitate the shadow stack, e.g., Control-flow
Enforcement Technology [25]. However, the shadow stack
not only introduces a significant overhead but is also difficult
to properly manage [41].

HW-CDI varies the encoding key dynamically by gener-
ating the key from the control flow information of a given
indirect branch instance. Control data and their association
with a particular control flow transfer are hidden via encod-
ing. In the example in Fig. 1, each call instance encodes its
return address with its own key before saving it to the return
stack. In other words, the encoding key represents the context
of a particular call sequence. This differentiates HW-CDI
from previously proposed control data protection schemes
[1], [23], [42], [43]. At the return after finishing Function_A,
the ret instruction decodes the return address with the key
before loading the return address to the program counter. With
RA | and RA; encoded with different keys, the two returns for
the first call and the second call are differentiated. Passing
the key from the encoding to its corresponding decoding is
essential and may require a complete pointer variable tracking
that is often difficult to realize in practice. Additionally,
managing many different keys is a difficult task to properly
perform in practice. HW-CDI uses the target address for an
indirect branch and the memory location holding the target
address together to generate the key. Note that for a specific
control flow transfer, the memory location and the value for
the target address should remain the same when they are used
and when they are defined prior to use.

In the example in Fig. 1, when the upper call instruction
is executed, it generates a dynamic key with RA;| and the
address of the top of the stack at which RA; is to be saved.
At the ret instruction after finishing Function_A, HW-CDI
decodes the top of the return stack using not only the address
of the top of the stack but also the encoded return address
saved. In other words, the address of the top of the stack
and the return address itself, the invariants for the call-return
sequence, are utilized as the seed for generating and restoring
the key. For a general indirect branch, the memory location
for storing the target address before an indirect branch and
the target address itself together make the seed for generating
the encoding key.

HW-CDI attempts to have the indirect branch instruction
itself do the decoding as a part of its execution, which obviates
the need for inserting additional instrumented code. Several
potential scenarios can exist for managing the key, and the
next section describes the details of the scheme that we
propose for the Intel x86 ISA.

10814

B. ENCODING AND DECODING

HW-CDI obfuscates the target address for indirect branch
instructions via encoding when it is stored in the memory.
Indirect branch instruction, such as call or return, needs to
decode the stored target address before loading it to the
program counter for a control flow transfer. One may have
the compiler add an instrumented code for the encoding
and decoding, but HW-CDI does the encoding and decoding
without the instrumented code. For example, consider a call-
return sequence: The call instruction itself may encode the
return address before saving it into the return stack, while the
return instruction decodes it before loading it to the program
counter. HW-CDI intends to have the encoding and decoding
as an integral part of the indirect branch instruction execution
with a key that is unique to a particular call-return sequence.
For a call-return pair, the address for the top of the stack
and the return address itself, the invariants for the call-return
sequence, can be utilized as the seed for generating and
restoring the key.

However, unlike the return address, it is not trivial to have
the encoding key be the same for the decoding of a generic
target address. For general indirect branches, the relationship
between who defines the target and which indirect branch
instruction uses it needs to be established. The encoding
may have the key explicitly passed to the decoding, which
will create another level of attack vulnerability and addi-
tional overhead. Another option would be to have all the
writes to the memory encode data and the corresponding
reads of the memory decode the data first prior to actual
use as in the schemes for general data integrity [44]-[47],
which will cause another level of complexity and overhead.
HW-CDI introduces variants of the instruction for accessing
the memory, e.g., a variant of mov in Intel x86 ISA, emov for
storing control data to the memory with encoding and dmov
for loading control data from the memory with decoding.
To make a proper control flow transfer, the encoded con-
trol data needs to be decoded before being loaded into the
processor’s program counter. For this, HW-CDI enhances the
indirect branch instructions (jmp, call, and ret) with decoding
functionality. Note that for the ret, the return address saved
in the runtime stack is encoded at the call without using a
separate emov instruction.

Table 1 shows typical control flow transfer cases of
setjmp/longjmp and call/return. The control data stored by
the emov instruction are encoded first (with a dynamically
changing key value, which is described later in the follow-
ing subsection) before being moved to the memory, and the
indirect branch instruction decodes the control data prior to
loading it into the program counter as an intrinsic part of its
execution.

The new emov instruction is reserved for storing the control
data, i.e., the address pointing to the target address of an
indirect branch. This instruction is introduced to avoid instru-
mented code inserted for the encoding. Without the emov,
the compiler can identify the instruction that defines the target

VOLUME 7, 2019

Y. Lee, G. Lee: HW-CDI

IEEE Access

TABLE 1. Control flow transfer examples: (a) setjimp/longjmp,

(b) function pointer. With HW-CDI, emov instruction stores a function
pointer or a branch target address after encoding it. HW-CDI enhances
indirect branch instructions, e.g., jmp, call, with decoding of the control
data encoded by the emov instruction.

without HW-CDI
setjmp

mov %ecx, 20(%eax);

with HW-CDI

emov %ecx, 20(%eax);
//store %ecx with encode to 20(%oeax)

longjmp

mov 20(%edx), %secx;

Jmp *%becx;

/lcopy pointer of 20(%edx) to %ecx
//decode pointing %eecx data and jump

(2)

without HW-CDI
mov 8funl, 12(%esp);

with HW-CDI
emov Sfincl, 12(%esp);
//store address of $funcl with encode to
12(%esp)

mov 12(%esp), %oeax; /lcopy pointer of 12(%esp) to %eax

call *%eax; /lcall pointing of %eax data with decode

and store return address with encode

(b)

for a particular indirect branch and inserts the instrumented
code. However, this introduces additional overhead and
presents a potential vulnerability for the TOCTOU. Addition-
ally, note that the control flow transfer via the indirect branch
instructions is primarily “indirect” with Intel x86 ISA, mean-
ing that it branches via the pointer as shown in Table 1
instead of to the target directly. When a compiler generates
an assembly code, it is aware of the control data via the use-
define chain data structure. So, the compiler can find the
proper pointer as the control data for an indirect branch stored
by the emov instruction. If an indirect branch instruction uses
the target address in the register directly instead of indirectly
via the pointer, the compiler may replace the memory read to
the register prior to the indirect branch with dmov instruction.

C. KEY FOR ENCODING AND DECODING

HW-CDI maintains a pool of keys and generates a specific
key dynamically per the control data value, i.e., the target
address itself and the address holding the target address for
the indirect branch. This specific key makes the identifier (ID)
of each control flow transfer because the key may be different
for different control transfer instances. Even for the same
indirect branch instruction, the key may change if its target
address changes.

For a fast and low-cost key generation, HW-CDI performs
XOR-ing of the two values from the tables (see Fig. 2).
The XOR operation possesses three desirable characteristics.
First, it is a simple operation causing little delay. Second,
it is invertible, which allows the extraction of the original
value. This characteristic enables the HW-CDI to convert a

VOLUME 7, 2019

Encoding process

memory memory
address(/;) | target address(£,) ' dynamic ID pddress(/,)
mapping table
g for data(Ty)
@ -

» | mapping table | 4
for address(T,)

Encoding/decading unit

Decoding process
memory

address(/,) dynamic ID

reverse
l» @ —»| mapping table
T for data(T,)

original
target address(z,)

> mapping table
for address(T,)

Encoding/decoding unit

FIGURE 2. Encoding and decoding of control data for ID.

particular ID, i.e., the encoded target, to its original value
of the target. Finally, the XOR operation scatters the result-
ing bit pattern [48] providing a randomization effect, which
motivates the encryption schemes to be generally based on
XOR operations.

For the decoding, HW-CDI has to determine the original
value of the control data from the encoded control data value.
When the processor executes an indirect branch instruction,
only the encoded control data value (ID) and its address are
available. HW-CDI accesses the mapping table T, with the
address to get the mapped value for the address used in the
encoding. Then, HW-CDI performs XOR-ing of the mapped
value from T, with the ID from the memory, which gives the
proper index for the reverse mapping table for data (T;) to
recover the original control data.

Fig. 3 illustrates the encoding and decoding processes with
the mapping tables. They are a simplified scheme of a typical
hardware realization of the Advanced Encryption Standard
(AES) [49]. This paper assumes the size of the mapping tables
of Tgq and T, to be 8bits * 28 = 256bytes, which can be
implemented with a fast SRAM with a linear indexing. We
assume that the table T, would be implemented in content-
addressable memory (CAM). The table T; has a tag for each
entry that is merely an index value of Ty, and the tag holds the
contents of the corresponding Ty entry for the reverse map-
ping. We assume that the tables T4 and T, are initialized at the
start of a process with 8-bit random numbers. We assume that

10815

IEEE Access

Y. Lee, G. Lee: HW-CDI

Encoding
Address?/f
63 55 0
[[7:0] Mapping Table (T,)
£[15:8]
mdo encoded address
1[63:55] 9 [rc#lmde] . [ma]
63 55 0
11111111 [Md255
7 0
ID(Identifier)
Target address(z. M
i i S ©——»[md#md#] . [mdf]
o 53 0 1 to memory
£[7:0] Mapping Table (Ty)
£[15:8
[! O[Cmdo encoded data
£[6355) >t s [ndF[md?] - md#]
63 55 0
11111111 [md258]
7 0
Decoding
Address%/ﬁ
63 55 0
;;[1750]8 Mapping Table (T,)
i] rnd0 encoded address
163:55] >4y [nd#lmd#] _ [md#]
63 55 0
11111111 [mMd255
7 0
v ID(Identifier)
o [md#[rd#] ... [md#]
from memory
v
encoded data
[nd#rnd#] ..
63 55 0
Reverse Mapping Table (T,) eD[7:0]
. 0 eD[15:8]
t,[7:0] T, Tag
£15:8] (00000000)| (md0) bIeass
(00000001)|(Rnd1) eDI63:33]

£[63:55] - Tag
255 (011 1111)[nd255

Ori?inal Data

63 55 0

FIGURE 3. Mapping tables, Ta, Tqand Ty, for encoding and decoding. Note
that the reverse mapping table T; is implemented in content addressable
memory (CAM).

the random numbers are unique, i.e., there are no two same
values in the tables, which is necessary for a correct reverse
mapping. The encoding and decoding can be described as
follows (ID is the encoded value of the control data):

Encoding: Tq(t,) @ Ta(l;) = 1D

Decoding: T:(ID € Ta(l,)) = 1, where €P is exclusive-or.
Note that T; is a CAM and gives the index value of T4 via tag
matching with ID @ Ta(l,).

We assume that the tables Tq and T, are initialized with
8-bit random numbers. To access the mapping tables, the con-
trol data and its address are divided into 8 bit subunits. All
eight subunits (for 64-bit address and data) access the table in
parallel (CAM with an eight ported read is readily available as
can be seen in the Translation Lookaside Buffer (TLB) design

10816

for the virtual-to-physical address translation in modern pro-
cessors). We may have the table index in 16 or more bits with
an increase in the table size for a higher entropy of random-
ness or use the AES instructions [38]. However, HW-CDI
aims to have the decoding be an intrinsic part of an indirect
branch instruction execution; a larger table index or the use
of AES may introduce a delay in the processor’s instruction
pipeline.

D. INSTRUCTION PIPELINE

HW-CDI aims to have the encoding/decoding done in a single
clock cycle and strives to have the encoding/decoding done as
an intrinsic part of a machine instruction execution. HW-CDI
incorporates the encoding/decoding process into the proces-
sor’s instruction pipeline. For illustration purpose, consider a
simple five stage instruction pipeline [50].

Fig. 4 illustrates HW-CDI implementation of the encoding
process in the processor’s instruction execution pipeline per
the simple five stage pipeline. HW-CDI generates the key
after the Execute (EX) stage, because the effective address is
available after the EX stage. We add the Encoding (EC) stage
after the EX stage. For the decoding, HW-CDI generates the
key after the Memory (M) stage because it needs the encoded
data read from the memory. We add the Decoding (DC) stage
after the M stage as shown in Fig. 5.

Encoding(emov and call)

Encoding

Generate IDs

Fetch Decode Execute (only emov and caf) Memory
_.| Function address queue Load/Store
Unit [- queue
(Store for control data ;
HW-CDI) AWCol | 1o
: Unit -

Units

FIGURE 4. Encoding with HW-CDI; the features for the HW-CDI encoding
process are in blue shade.

Decoding(call, ret, jmp) Decoding
(only callret and jmp

Fetch Decode Execute Memory at mis-prediction)

Load/Store
queue

Function
Unit

(Load)
: ad HW-CDI
Function Unit
Units Validate ID

Memory access error

Memory
via D-Cache;

branch mis-prediction

Branch Predictor

(BTB/RAS) And

Verification and
Recover

FIGURE 5. Decoding with HW-CDI; the features for the HW-CDI decoding
process are in blue shade.

The actual instruction pipeline varies from processor to
processor. However, the incorporation of the HW-CDI into
the processor’s instruction pipeline seems straightforward
because HW-CDI does not introduce any conditions to
impede the flow of the instruction pipeline. As long as the

VOLUME 7, 2019

Y. Lee, G. Lee: HW-CDI

IEEE Access

table access for the key generation does not incur a signif-
icant delay, the performance impact by HW-CDI should be
insignificant. Considering the TLB access or the tag access
of the first level cache in modern processors, the table access
for the key generation and the encoding should be feasibly
performed in one cycle.

One important aspect to emphasize is that the decoding is
not in the normal flow of the instruction pipeline in mod-
ern pipelined processors. Most modern pipelined processors
are with branch prediction; the instruction pipeline for the
next instruction moves on with the predicted target address
without waiting, while the verification of the prediction goes
on in the background. The delay incurred by the decoding
in HW-CDI does not materialize if the branch prediction is
correct. For the same reason, the delay caused by the encoding
for the call instruction also does not materialize because
the processor fetches the target instruction for the call with
the predicted target address without waiting. Only when the
branch prediction fails, the decoding delay introduced by
HW-CDI may affect the performance: In terms of instruction
pipeline delay, HW-CDI creates a delay effect akin to an
increased mis-prediction penalty for indirect branch instruc-
tions including return instruction.

IV. EFFECTIVENESS AGAINST CONTROL FLOW ATTACKS
The threat model assumed in our study is a usual one uti-
lized in most research works on user level software security
[4], [14], [18], [24], [27], [44]: The attacker has no control
over the operating system to ensure that the attacker has no
ability to tamper with the mapping tables, T,, Tq and T, that
HW-CDI utilizes for encoding and decoding the control data.
Note that the mapping tables are software transparent, which
are not a part of the processor’s memory space and accessible
only by the processor as a part of an instruction execution.
Some protection schemes [11], [17], [19] need additional
assumption in the threat model: Memory pages are protected
by data execution prevention (DEP) [2], which disallows exe-
cution of data as instructions. Most modern processors pro-
vide a NX (No Execute) bit so that the operating system marks
the data area as non-executable. However, the protection of
DEP is not essential for HW-CDI. Attackers can overwrite
the program control data such as a return address or inject a
malicious code into the run-time stack by exploiting memory
vulnerabilities, e.g., overflowing a buffer near the control
data or by dereferencing a data pointer compromised to point
to the control data stored in the memory. HW-CDI disallows
any control flow transfer by an indirect branch instruction
without properly decoded target address.

In CRAs, the attacker compromises one of the target
addresses first, usually one of the return addresses, for an
indirect branch instruction. HW-CDI obfuscates the target
address via encoding it with a key, and the key for the encod-
ing and decoding changes; different keys correspond to dif-
ferent target address values and the memory locations holding
them. Even if an attacker determines the key for a particular
memory location holding the encoded target address via a

VOLUME 7, 2019

replay attack or a side-channel attack, the key leaked to the
attacker is an inappropriate one. As the target address or the
location holding the target address changes, HW-CDI man-
dates a different key. Additionally, HW-CDI does XOR-ing
of the results from the mapping table accesses to obfuscate
the mapping tables (T, and Tq4) against the attacker’s guessing
attack.

Note that the attackers need to determine the key from the
mapping tables to perform proper decoding and to have a
control flow transfer to the attacker’s flow. As described in the
previous section, the two key tables are software-transparent;
the tables can be read only as an integral part of indirect
branch instruction execution or a memory operation to store
the control data. With the mapping table size as suggested
in the previous section, the attacker needs (2%)%/2 guesses
for a repeating trial and error attack because each 8-bit
section of the eight sections needs to be guessed correctly.
As with any encryption schemes, the keys can leak, but it
does not seem straightforward, and one may increase the table
size to make the encryption entropy higher. Also note that
the tables are reinitialized whenever the program (re)starts.
To reduce the chance of a successful attack further, one
may refresh the mapping tables instead of keeping the table
contents during the whole period of program execution. For
example, the compiler may insert a table re-generation point
when there are no pending indirect branches using the control
data encoded, i.e., the variables for the control data are no
longer alive. One may even force re-encoding and re-storing
the target addresses per a newly generated table during the
program execution at the cost of higher overhead.

HW-CDI generates the encoding key to make a
dynamic ID; each control flow transfer instance has a differ-
ent key from the others. These IDs of control flow instances
are different one from another and provide advantages over
other CFI schemes. This can prevent a control flow transfer
branching to a compromised address in a fine grain manner as
in an ideal fine-grained CFI. Also, HW-CDI saves each return
address differentiated through the encoding key, making the
shadow stack non-essential for control flow integrity.

Consider again the CRA example of Fig. 1, redrawn here
as Fig. 6. The ret instruction in ‘Function_A’ has targets
RA;| and RA;. HW-CDI uses the return address and its
location in the stack together to generate the dynamic key.
When the upper call instruction in the code area is executed,
it generates a dynamic ID with the return address RA; and
its location in the return stack PA (@ in Fig. 6). HW-CDI
generates a different key with RA; and PA for @ in Fig. 6.
HW-CDI differentiates dynamic instances of the same static
control flow transfer and disallows the CRA to create a loop
by replacing RA; with RA;.

For dynamically generated target addresses, e.g., object
addresses in the viable, HW-CDI differentiates them with the
keys generated dynamically, which disallows the attack com-
promising the vtable [14]. HW-CDI also validates unintended
instructions from the middle of multi-byte instructions [10].
CFI schemes with a static CFG are not able to validate

10817

IEEE Access

Y. Lee, G. Lee: HW-CDI

Code area
call A
; Runtime stack
RA, Function_A
return address PA
(RA; or RA,)
t
call A e
RA, e Loaded by ret
: in Function_A

@ 1 1D(&PA) ® &RA)
@1 1D(&PA) © &RA,)

&) : encoded by mapping table
@ : exclusive-OR

FIGURE 6. Dynamic Key (ID) for the same ret instruction; each instance of
the two returns will have a different key from the other instance.

the unintended instruction. Below is a code example of an
unintended instruction of ret.

1: £7 ¢7 07 00 00 00 test $0x00000007, Yoedi
2:0f9545 ¢3 setnzb -61(%ebp)

3:£7¢7 07 00 00 00 Of movl $0x0f000000, (Yoedi)

4: 95 xchg Yoebp, Yoeax
5: inc %ebp
6: c3 ret

A hexadecimal representation of ““setnzb -61(%ebp)”’on
line 2 is “Of 95 45 ¢3” on line 2. The “c3” byte is the ret
instruction in Intel x86. An attack sets up a compromised
address at the top of the stack, and point a to the byte of “c3”
will cause the processor to follow a compromised control
data that the attacker wants. However, the HW-CDI incor-
porates the ret instruction execution with the CFI validation
process and does not allow the unintended ref to bypass the
CFI validation.

To determine the efficacy of HW-CDI for various control
flow attack methods, we utilized the RIPE test suite [53],
which consists of 850 control flow attacks. Of 850 exploits in
RIPE tested on the Fedora 12 with DEP and ASLR enabled,
127 exploits made successful attacks despite protection from
DEP and ASLR. The successful exploits are on 10 return
addresses, 40 function pointers, 40 vulnerable structures and
37 base pointers. Table 2 shows the control flow attack meth-
ods along with the exploit types. While HW-CDI is able to
prevent all 127 exploits listed, the existing CFI schemes have
been reported to not be able to do so [11], [13], [14].

V. PERFORMANCE

Because HW-CDI is implemented as an integral part of the
machine instruction execution, the performance overhead
is lower than that of other CFI schemes. The performance
overhead comes from the one additional pipeline stage for
the encoding or the decoding, which does not materialize
unless the immediately following instruction(s) needs the
encoded or decoded control data.

10818

TABLE 2. Attack methods that HW-CDI prevents per RIPE [53] test suite
exploits: for each attack method, the exploited control data types are
marked with “Q". The types of control data are: RA = Return Address,
FP = Function Pointer, LB = Longjmp Buffer, VS = Vulnerable Structure
and OBP = Old Base Pointer.

Control data types

Attack methods RA P IB | VS | OBP
Code inject [51] OO | O O
Return-to libe [52] Ol KOS O
Return-oriented programming [10] O O
jump-oriented programming [9] O (@] (@]
Out of control [13] O |0 | O
Control flow bending [11] @) O O
Counterfeit Object-Orient
ed Prograjmnm; [14] o o O

The actual control transfer can occur only after the decoded
control data value is available to update the program counter.
However, one should note that the branch predictor can sig-
nificantly reduce the potential overhead. From a software
security perspective, entries in the branch target buffer (BTB)
and Return Address Stack (RAS) represent uncompromised
addresses because every BTB entry from the past target
address is already a validated one if the validation process
is in place. The decoded value goes to the BTB or the RAS
if the branch prediction turns out to be incorrect at the time
of verifying the prediction. RAS and BTB are software-
transparent storage and can be employed to detect potential
malicious control flows and unusual return paths because
a target address for such cases has never been executed,
which causes a mis-prediction. RAS provides a prediction
success rate of 98% or above in general [23], which will
drastically reduce the needs for the control flow validation
for CFI. Note that since the control data are function point-
ers and return addresses, it is less likely that dependencies
between the instruction defining the control data and the
indirect branch instruction using it within the pipeline timing
window of one cycle will cause an extra delay over the case
of no encoding applied. The major performance effect of
HW-CDI is more or less the same as the case with the mis-
prediction penalty for indirect branch instructions but a one
cycle increase, which is the delay for the decoding.

The wusual metric for measuring the processor’s
performance is cpi (cycles per instruction), i.e., the number
of processor cycles for the execution of a machine instruction
on average during a program execution [50]. We utilized
the Simplescalar-3.0 simulator [54], simulating a 4-wide
issue out-of-order 9 stage pipeline core with 64KB L1 data
and instruction caches. To obtain a more concrete idea
of the performance overhead in terms of cpi, we studied
SPEC2000 CPUint benchmark programs. Each benchmark
was simulated for one billion committed instructions after
fast-forwarding for the first 100 million instructions. The
evaluation environment assumed for the processor is as
follows:

VOLUME 7, 2019

Y. Lee, G. Lee: HW-CDI

IEEE Access

Pipeline — 4-issue, 9-stage

Issue queue size — 16

Reorder buffer size — 64

Branch predictor — gshare predictor with 4096 counters and

16-entry RAS

Mis-prediction penalty — 5 cycles

L1 caches — 64 KB Inst/64 KB Data, 4-way, 2 cycle hit

latency

Memory — dual ported with 100-cycle latency

We assumed a one cycle performance penalty in our
experiments for each of the decoding and the encoding
stages as described in the previous section. Our experimen-
tal results show that the performance overhead in terms
of cpi is 0.19% on average with the highest overhead of
0.5% for perlbmk (see Fig. 7). The overhead observed was
0.23% for gcc and 0.09% for gzip (see Fig. 7). Compared
to HW-CDI, the average overhead of the original CFI [15]
for the SPEC2000 CPUint benchmark programs is reported
to be 21% (11% for gcc and 5% for gzip). Although recent
CFI implementations are with less performance overhead,
HW-CDI still produces less overhead than the recent CFI
implementation (see the next section).

1526 952 116 1.68 17.23 10.78 19.73 101 21 1426 3.92 13.94 10.88

1
0995
099
0985
098
097
0.965
0.96
0955
095
§ & & & ¥ & s

Normalized CPI
e
o

& S N o & $
& & £ & o) R N p O
& N 2 @ & N N

© Kia ?}@ v Q

N

FIGURE 7. Normalized cycles per instruction (CPI) overhead of HW-CDI.
Atop the bars for each program is the mis-prediction rate (%) for indirect
branches including the return.

VI. DISCUSSION: COMPARISON WITH

RELATED WORKS

As noted earlier, most CFI schemes rely on the instrumen-
tation, inserting a few instructions to perform CFI checks on
indirect branches with respect to a static CFG. The instrumen-
tation can be done as part of a compiler optimization step,
static binary rewriting, or through dynamic library transla-
tion. The use of a static CFG as the reference for checking
each control flow limits the scope of the protection because
dynamically linked routines are not included. In addition, one
needs to make a conservative estimation for the details of
program control flows, which may allow illegitimate con-
trol flows from attacks. The instrumented checks may rely
on runtime data structures in writable memory area, which
can be exploited for CRAs [55], [56] and incur significant
performance overhead as noted previously. Another aspect of
most CFI schemes is that they are coarse-grained, coalescing

VOLUME 7, 2019

the target addresses into two or three groups, which allows
sophisticated CRAs as mentioned earlier.

A desirable control flow protection scheme should have the
following characteristics:

e It is based on precise and complete information on
program control flows, not only static flows but also
dynamic flows, and

e It checks each control flow for its legitimacy with
little or no additional instrumented code and should
incur little performance overhead.

Our HW-CDI is not based on a CFG generated from a
program a prior to its execution and instead uses the encoding
to protect the program control data that a machine instruction
uses for its target address for a control flow transfer. As a
result, HW-CDI is able to handle the dynamics of control flow
changes at run time per the control flows exactly as described
in the program without additional instrumented code inserted.
HW-CDI does the checking of each control flow in hardware
as an intrinsic part of an indirect branch instruction execution,
which facilitates no additional instrumented code for the
checking and allows little performance overhead as shown in
the previous section.

HW-CDI has an order of magnitude or two less perfor-
mance overhead than the CFI implementations with added
instrumentation for control-flow validation. For example,
an early CFI implementation with a static CFG [15] reported
an average overhead of 21%, while recent coarse-grain
CFI implementations have reported lower average overhead
of 1% [24] and 2.14% [57] by utilizing heuristics on indi-
rect branch behavior along with hardware support. Hardware
CFI [58] is another attempt to have the CFI based on a static
CFG implemented more precisely by introducing a set of
new machine instructions. Hardware CFI reports an average
overhead of 1.75% for several programs from the SPEC
CPU2006 benchmark. Note that these schemes are coarse-
grained protection. The coarse-grained CFI protections are
based on incomplete control flow information and allow
attackers to generate “new’’ control flows by swapping the
source addresses or target addresses from different control
flows.

A fine-grained CFI proposal called CCFI [18] is similar to
our HW-CDI in the sense that it enforces a fine-grained CFI
by hiding the control flow objects via encryption. However,
CCFI is based on a static CFG and is not able to handle
the dynamics of control flow at run-time. CCFI also needs
additional instrumented code inserted: CCFI compute and
store a message authentication code of control data that is
encrypted using the AES-NI instruction [40] and is stored
with the checksum. In doing so, CCFI prevents hijacking of
a control flow, but involves a relatively higher performance
overhead than other CFI schemes. CCFI reports a rather high
average overhead of 52% on SPEC CPU2006.

Another scheme similar to HW-CDI is CPI [27], which
collects and identifies all of the sensitive code pointers into a
safe region to prevent attackers from overwriting the control
data. CPI needs additional instrumented code for the checking

10819

IEEE Access

Y. Lee, G. Lee: HW-CDI

and is reported to have an average overhead of 8.4% for
SPEC CPU2006. CPI is based on static data flow analysis
of a program and has been demonstrated to be subverted [56],
though it is claimed that the CPI implementation, using either
hardware-enforced segmentation or software fault isolation,
cannot be subverted [59].

ARM v8.3 architecture includes a feature that allows the
attachment of a cryptographic checksum to the control data
(pointer authentication) [60]. The checksum will be recalcu-
lated and verified via a separate AUTH instruction before the
control data are used. An attacker without the key for the
checksum is not able to create valid pointers for use in an
exploit. This may allow the implementation of CPI and CCFI
with less performance overhead. However, these schemes are
based on static information and need additional instrumented
code inserted.

As noted earlier, HW-CDI described in this paper is with
code examples for the Intel x86 ISA that allows an indirect
branch instruction to specify a memory operand as the pointer
to its target address. Modern commercial processors other
than Intel x86 ISA mostly have RISC style ISA, and RISC
style ISA like ARMvS8-A ISA, requires the target address of
an indirect branch instruction to be loaded to the processor’s
register from the memory prior to the indirect branch instruc-
tion execution [50]. To have HW-CDI with RISC style ISA,
dmov instruction is essential for reading the encoded control
data with the decoding. The dmov instruction replaces the
normal instruction for loading data from the memory to the
processor’s register for a specific indirect branch instruction.
Note that a dmov instruction with decoding can be fused
together with the following indirect branch instruction that
uses the decoded target instruction as in the case of fusing the
memory read with its dependent next instruction [50]. As a
result, there is little to no change in terms of implementa-
tion complexity and performance overhead when HW-CDI is
implemented for processors with RISC style ISA.

One aspect of HW-CDI that distinguishes it from other
existing schemes is that HW-CDI differentiates control flow
transfer instances. HW-CDI varies the key not only depending
on the location but also on the value of the control data. This
provides context information that differentiates control flow
transfers from each other. If an attack swaps two legitimate
control data values, the attack would fail under HW-CDI,
while it goes through under most existing schemes including
CCFI and the pointer authentication of ARM v8.8.

Although HW-CDI can protect program control flow with
little performance overhead, it is not a panacea for all pos-
sible control flow attacks. Like other control data protection
schemes cited in this paper, it is not able to protect the control
data defined indirectly from non-control data. Also, note that
HW-CDI needs recompilation of a program, which requires
the program source code.

VIi. CONCLUSION
This paper has introduced a HW-CDI scheme that provides
protection for the control data as an intrinsic part of machine

10820

instruction execution, in a manner similar to the virtual-to-
physical address translation via TLB. An instruction storing
the control data encodes it with a key as a part of its execution,
and an indirect branch instruction using the control data
decodes it prior to loading it to the program counter for a
control flow transfer. We have proposed necessary features
for enhanced control data protection with HW-CDI. A unique
aspect of HW-CDI is that the key for the encoding varies not
only depending on the location but also on the value of the
control data. This facilitates distinction of the control flow
transfers from each other. While an attack attempts to com-
promise the control data, HW-CDI mandates different keys
for different control data, making the change of the control
transfer to the attacker’s way infeasible with the compromised
control data.

This paper has shown that HW-CDI can be incorporated
into the processor’s instruction pipeline with little overhead,
allowing a fine-grained CFI without the need for the instru-
mented code to validate each control flow transfer instance.
HW-CDI can make a more precise and comprehensive con-
trol flow protection than the existing CFI schemes at less
overhead.

REFERENCES

[1] C. Cowan et al., “StackGuard: Automatic adaptive detection and pre-

vention of buffer-overflow attacks,” in Proc. 7th Conf. USENIX Secur.

Symp., San Antonio, TX, USA, vol. 7, 1998, p. 5. [Online]. Available:

https://dl.acm.org/citation.cfm?id=1267554

Microsoft. (2006). Data Execution Prevention (DEP). [Online]. Available:

https://support.microsoft.com/en-us/help/875352/a-detailed-description-

of-the-data-execution-prevention-dep-feature-in

[3] PaX Team. (2003). Address Space Layout Randomization (ASLR).
[Online]. Available: http://pax.grsecurity.net/docs/aslr.txt

[4] A.Bittau, A. Belay, A. Mashtizadeh, D, Maziéres, and D. Boneh, ‘“Hacking
blind,” in Proc. IEEE Symp. Conf. Secur. Privacy, San Jose, CA, USA,
May 2014, pp. 227-242.

[5] T. Hobson, H. Okhravi, D. Bigelow, R. Rudd, and W. Streilein, “On the
challenges of effective movement,” in Proc. 1st ACM Workshop Moving
Target Defense, Scottsdale, AZ, USA, 2014, pp. 41-50.

[6] J. Seibert, H. Okhravi, and E. Soderstrom, ‘“Information leaks without
memory disclosures: Remote side channel attacks on diversified code,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Scottsdale, AZ,
USA, 2014, pp. 54-65.

[71 K. Z. Snow, L. Davi, A. Dmitrienko, C. Liebchen, F. Monrose, and
A. R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Proc. IEEE Symp. Conf.
Secur. Privacy, Berkeley, CA, USA, May 2013, pp. 574-588.

[8] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter, “‘Breaking the memory secrecy assumption,” in Proc. 2nd Eur.
Workshop Syst. Secur., Nuremburg, Germany, 2009, pp. 1-8.

[9] S. Checkoway, L. Davi, A. Dmitrienko, A. R. Sadeghi, H. Shacham, and
M. Winandy, “Return-oriented programming without returns,” in Proc.
17th ACM Conf. Comput. Commun. Secur., Chicago, IL, USA, 2010,
pp. 559-572.

[10] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),”” in Proc. 14th ACM Conf. Comput.
Commun. Secur., Alexandria, VA, USA, 2007, pp. 552-561.

[11] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, ““Control-
flow bending: On the effectiveness of control-flow integrity,” in Proc. 24th
Conf. USENIX Secur. Symp., Washington, DC, USA, 2015, pp. 161-176.

[12] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in Proc. 23rd Conf. USENIX Secur. Symp., San Diego, CA,
USA, 2014, pp. 401-416.

2

—

VOLUME 7, 2019

Y. Lee, G. Lee: HW-CDI

IEEE Access

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in Proc. IEEE Symp Secur.
Privacy, San Jose, CA, USA, May 2014, pp. 575-589.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. R. Sadeghi, and T. Holz,
“Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in C+4+ applications,” in Proc. IEEE Symp. Secur.
Privacy, San Jose, CA, USA, May 2015, pp. 745-762.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proc. 12th ACM Conf. Comput. Commun. Secur., Alexandria,
VA, USA, 2005, pp. 340-353.

N. Carlini and D. Wagner, “ROP is still dangerous: Breaking modern
defenses,” in Proc. 23th Conf. USENIX Secur. Symp., San Diego, CA,
USA, 2014, pp. 385-399.

L. Davi et al., “HAFIX: Hardware-assisted flow integrity extension,” in
Proc. 52nd Annu. Design Autom. Conf., San Francisco, CA, USA, 2015,
pp. 1-6.

A. J. Mashtizadeh, A. Bittau, D. Mazieres, and D. Boneh, “CCFI:
Cryptographically enforced control flow integrity,” in Proc. 22th
ACM Conf. Comput. Commun. Secur, Denver, CO, USA, 2015,
pp. 941-951.

M. Theodorides and D. Wagner, “Breaking active-set backward-edge
CFL,” in Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust, McLean,
VA, USA, May 2017, pp. 85-89.

C. Zhang et al., “Practical control flow integrity and randomization for
binary executables,” in Proc. IEEE Symp. Secur. Privacy, Berkeley, CA,
USA, 2013, pp. 559-573.

M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in
Proc. 22rd Conf. USENIX Secur. Symp., Washington, DC, USA, 2013,
pp. 337-352.

Y.-J. Park, Z. Zhang, and G. Lee, ‘“Microarchitectural protection against
stack-based buffer overflow attacks,” IEEE Micro, vol. 26, no. 4,
pp. 62-71, Jul./Aug. 2006, doi: 10.1109/MM.2006.76.

Y. Lee and G. Lee, “Detecting code reuse attacks with branch predic-
tion,” IEEE Comput., vol. 51, no. 4, pp. 40-47, Apr. 2018, doi: 10.1109/
MC.2018.2141035.

N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis,
“HCFI: Hardware-enforced control-flow integrity,” in Proc. 6th ACM
Conf. Data Appl. Secur. Privacy, New Orleans, LA, USA, 2016, pp. 38—-49,
doi: 10.1145/2857705.2857722.

Intel. 2017. Intel Control-Flow Enforcement Technology Preview.
Accessed: Jun. 1, 2018. [Online]. Available: https://software.intel.
com/sites/default/files/managed/4d/2a/

Microsoft. MSDN Control Flow Guard. Accessed: Dec. 21, 2018.
[Online]. Available: https://msdn.microsoft.com/en-us/library/windows/
desktop/mt637065(v=vs.85).aspx

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in Proc. 11th USENIX Conf. Oper. Syst. Design
Implement., Broomfield, CO, USA, 2014, pp. 147-163.

Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen and M. Franz, “Opaque
control-flow integrity,” in Proc. Netw. Distrib. System Secur. Symp.,
San Diego, CA, USA, 2015, pp. 1-15.

B. Niu and G. Tan, “RockJIT: Securing just-in-time compilation
using modular control-flow integrity,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Scottsdale, AZ, USA, 2014,
pp. 1317-1328.

C. Tice et al., “Enforcing forward-edge control-flow integrity in GCC &
LLVM,” in Proc. 23rd Conf. USENIX Secur. Symp., San Diego, CA, USA,
2014, pp. 941-955.

V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, ‘“kGuard:
Lightweight kernel protection against return-to-user attacks,” in
Proc. 21st USENIX Conf. Secur. Symp., Bellevue, WA, USA, 2012,
pp. 1-16.

J. Anderson, “Computer security technology planning study,” Air Force
Electron. Syst. Division, Tech. Rep. ESD-TR-73-51, 1972.

D. Ahn and G. Lee, ““A memory-access validation scheme against payload
injection attacks,” IEEE Trans. Dependable Secure Comput., vol. 12, no. 4,
pp. 387-399, Jul./Aug. 2015, doi: 10.1109/TDSC.2014.2355844.

J. R. Crandall and F. T. Chong, “Minos: Control data attack prevention
orthogonal to memory model,” in Proc. 37th Annu. IEEE/ACM
Int. Symp. Microarchitecture, Portland, OR, USA, Dec. 2004,
pp. 221-232.

H. Kannan, M. Dalton, and C. Kozyrakis, ‘“Decoupling dynamic infor-
mation flow tracking with a dedicated coprocessor,” in Proc. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., Lisbon, Portugal, Jun./Jul. 2009,
pp. 105-114.

VOLUME 7, 2019

(36]

(371

(38]

(39]

(40]

[41]

[42]

(43]

(44]

[45]

[46]
[47]

(48]

(49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

F. Qin, C. Wang, Z. Li, H.-S. Kim, Y. Zhou, and Y. Wu, “LIFT: A low-
overhead practical information flow tracking system for detecting security
attacks,” in Proc. 39th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2006, pp. 135-148.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, ““Secure program exe-
cution via dynamic information flow tracking,” in Proc. 11th Int. Conf.
Archit. Support Program. Lang. Oper. Syst., Boston, MA, USA, 2004,
pp. 85-96.

O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
MPX explained: A cross-layer analysis of the intel MPX system stack,” in
Proc. ACM Meas. Anal. Comput. Syst., vol. 2, no. 2, pp. 28-1-28-30, 2018.
G. Lee and C. Pyo, “Encoding function pointers and memory arrangement
checking against buffer overflow attack,” in Proc. 4th Int. Conf. Inf.
Commun. Secur., 2002, pp. 25-36.

Intel 64 and IA-32 Architectures Software Developer’s Manual. Accessed:
Dec. 21, 2018. [Online]. Available: http://www.intel.com/content/dam/
www/public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-instruction-set-reference-manual-325383.pdf

T. H. Y. Dang, P. Maniatis, and D. Wagner, “The performance cost of
shadow stacks and stack canaries,” in Proc. 10th ACM Symp. Inf., Comput.
Commun. Secur., Singapore, 2015, pp. 555-566.

O. Aleph, “Smashing the stack for fun and profit,” Phrack Mag., vol. 7,
no. 49, pp. 14-16, 1996.

C. Cowan, S. Beattie, J. Johansen, and P. Wagle, ‘“Pointguard TM: Pro-
tecting pointers from buffer overflow vulnerabilities,” in Proc. 12th Conf.
USENIX Secur. Symp., Washington, DC, USA, 2003, pp. 91-104.

X. Chen, H. Bos, and C. Giuftrida, “CodeArmor: Virtualizing the code
space to counter disclosure attacks,” in Proc. IEEE Eur. Symp. Secur.
Privacy, Paris, France, Apr. 2017, pp. 514-529.

S. Crane et al., “Readactor: Practical code randomization resilient to
memory disclosure,” in Proc. IEEE Symp. Secur. Privacy, San Jose, CA,
USA, May 2015, pp. 763-780.

D. Grawrock, Dynamics of a Trusted Platform: A Building Block
Approach, 1st ed. Santa Clara, CA, USA: Intel, 2009.

Trusted Platform Module Library: Part 1: Architecture, Family 2.0, Level
00, 01.16 ed, Trusted Comput. Group, Beaverton, OR, USA, 2014.

A. Gonzalez, M. Valero, N. Topham, and J. M. Parcerisa, “Eliminating
cache conflict misses through XOR-based placement functions,” in Proc.
11th Int. Conf. Supercomput., Vienna, Austria, 1997, pp. 76-83.

P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen, “Design
and implementation of low-area and low-power AES encryption hardware
core,” in Proc. 9th EUROMICRO Conf. Digit. Syst. Design, Dubrovnik,
Croatia, 2006, pp. 577-583.

L. John Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 5th ed. San Mateo, CA, USA: Morgan Kaufmann, 2011.
Y. Ahn, Y. Lee, J.-Y. Choi, G. Lee, and D. Ahn, “Monitoring translation
lookahead buffers to detect code injection attacks,” Computer, vol. 47,
no. 7, pp. 66-72, Jul. 2014.

M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning, “On the
expressiveness of return-into-libc attacks,” in Proc. 14th Int. Conf. Recent
Adbv. Intrusion Detection, Menlo Park, CA, USA, 2011, pp. 121-141.

J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen, “RIPE:
Runtime intrusion prevention evaluator,” in Proc. 27th Annu. Comput.
Secur. Appl. Conf., Orlando, FL, USA, 2011, pp. 41-50.

D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” ACM
SIGARCH Comput. Archit. News, vol. 25, no. 3, pp. 13-25, Jun. 1997.

M. Conti et al., “Losing control: On the effectiveness of control-flow
integrity under stack attacks,” in Proc. 22nd ACM SIGSAC Conf. Comput.
Commun. Secur., Denver, CO, USA, 2015, pp. 952-963.

1. Evans et al., “Missing the point(er): On the effectiveness of code pointer
integrity,” in Proc. IEEE Symp. Secur. Privacy, San Jose, CA, USA,
May 2015, pp. 781-796.

V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP
exploit mitigation using indirect branch tracing,” in Proc. 22nd USENIX
Conf. Secur. Symp., 2013, pp. 447-462.

Y. Jin, D. Sullivan, O. Arias, A.-R. Sadeghi, and L. Davi, “Hardware con-
trol flow integrity,” in Proc. Continuing Arms Race, Code-Reuse Attacks
Defenses, 2018, pp. 181-210.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, and D. Song,
“Poster: Getting the point(er): On the feasibility of attacks on code-
pointer integrity,” in Proc. 36th IEEE Symp. Secur. Privacy, 2015,
pp. 1-2. [Online]. Available: http://www.ieee-security.org/TC/SP2015/
posters/paper_48.pdf

Pointer Authentication on ARMvS.3 Design and Analysis of the New
Software Security Instruction, Qualcomm Product Secur., San Diego, CA,
USA, 2017.

10821

http://dx.doi.org/10.1109/MM.2006.76
http://dx.doi.org/10.1109/MC.2018.2141035
http://dx.doi.org/10.1109/MC.2018.2141035
http://dx.doi.org/10.1145/2857705.2857722
http://dx.doi.org/10.1109/TDSC.2014.2355844

IEEE Access

Y. Lee, G. Lee: HW-CDI

10822

YONGSUK LEE received the M.S. degree in
computer science and engineering from Korea
University, Seoul, South Korea, in 2011, where he
is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineer-
ing. His research interests include computer archi-
tecture, trusted computing, and systems security.

GYUNGHO LEE received the Ph.D. degree in
computer science from the University of Illinois
at Urbana—Champaign, in 1986. He is currently
a Professor with the Department of Computer
Science and Engineering, Korea University. His
research and teaching interests include computer
architecture, especifically in the areas of micro-
processor architecture, systems security, and code
optimization. He is a Fellow of the American
Association for the Advancement of Science.

VOLUME 7, 2019

	INTRODUCTION
	CONTROL FLOW INTEGRITY AND CONTROL DATA INTEGRITY
	HARD WIRED CONTROL FLOW INTEGRITY (HW-CDI)
	BASIC APPROACH
	ENCODING AND DECODING
	KEY FOR ENCODING AND DECODING
	INSTRUCTION PIPELINE

	EFFECTIVENESS AGAINST CONTROL FLOW ATTACKS
	PERFORMANCE
	DISCUSSION: COMPARISON WITH RELATED WORKS
	CONCLUSION
	REFERENCES
	Biographies
	YONGSUK LEE
	GYUNGHO LEE

