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ABSTRACT Keystroke biometrics is a well-investigated dynamic behavioral methodology that utilizes the
unique behavioral patterns of users to verify their identity when tapping keys. However, the performance of
keystroke biometrics is unreliable due to its high error rate and low robustness. In this paper, we propose
differential evolution and adversarial noise-based user authentication (DEANUA), which is a verification
scheme for enhancing reliability by reducing the error rate and improving robustness. We investigate the
current mainstream features and build a more comprehensive feature set that composed of 146 features.
Then, we use a differential evolution method to select an optimized feature set. With the support vector
regression method on this feature set, we achieve an equal error rate (EER) of 0.12660% and also a
31.25% energy consumption reduction rate. In this paper, the model is trained with the training samples
collected from one situation, but the model is used in various situations. Thus, the robustness of the model
is inadequate. We constructed the adversarial noise samples to simulate users’ behavioral characteristics in
different situational contexts. We use the adversarial noise samples to test the models in a strict experimental
environment, which raises the EER by 83.59%, to 10.9299%. Then, we enhance the model with adversarial
noise samples to obtain an EER of 8.70932%, which is a reduction of 20.32%.

INDEX TERMS Keystroke biometrics, touchscreen, authentication, behavioral recognition.

I. INTRODUCTION
Smartphones that store large amounts of private data are
very popular, with 344.3 million sold worldwide in the first
quarter of 2017 (1Q17) [1]–[3]. Normally, mobile devices
are protected by static mechanisms like a personal identifica-
tion number (PIN), fingerprint, and face recognition [4]–[7].
However, they are not entirely secure. Passwords can be
guessed [8] or be attacked by side channels [9]. As for finger-
print authentication, the system can be spoofed by imitating
the ridge and valley structure of the fingertip, which may
have been generated from a latent fingerprint [10]. Facial
recognition systems are also vulnerable to spoofing attacks,
where a photo, video, or a 3D mask of a legal user’s face
can be utilized to gain illegitimate access to the system [11].
In order to overcome the weaknesses of static authentication
systems, dynamic behavioral biometric techniques have been
developed with the aim of being more difficult to imitate.

Keystroke biometrics has long been an active research
topic in behavioral biometric techniques [12]–[17]. It can
be classified into two groups: login authentication, and

continuous authentication. This paper focuses on the login
verification process. Research on virtual keystroke bio-
metrics on touch screens first appeared in early 2008.
Saevanee and Bhatarakosol [18] implemented a method,
which aims to detect and authenticate the user on the basis of
key hold-time, inter-key duration, and finger pressure. They
achieved an Equal Error Rate (EER) of 1% on the basis of
finger pressure. In 2014,Meng andWong [19] implemented a
scheme known as a touch dynamics-based authentication sys-
tem. They used a Particle Swarm Optimization-Radial Basis
Function Network (PSO-RBFN) with 21 features including
pressure, speed, x-y coordinates, and gesture type, to achieve
an EER of 2.46%. In 2016, Sitová et al. [20] collected data in
both walking and sitting contexts and investigated why their
features perform better in walking. They obtained an EER
of 7.16% when walking and 10.05% when sitting. In 2017,
Crawford and Ahmadzadeh [21] conducted a user study on
the effects of movement while typing for authentication.
They developed a two-stage approach to determine the user’s
behavioral context before classifying their typing behavior.
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They first inferred the user’s position with an Area Under
Curve (AUC) of 90%; then they classified the user’s typing
pattern with an AUC of 93%.

Overall, most previous efforts have achieved an EER
of around 0.5-10%. However, the European standard for
access-control systems (EN-50133-1) specifies a false-alarm
rate of less than 1%, with a miss-rate of no more than
0.001% [22]. So, there is a clear need for further research to
improve accuracy. Also, many studies in keystroke biometrics
have used the impostor’s data as training samples for their
classification. However, in the real world, most impostors
will be new to the user’s phone. Therefore, we need to deter-
mine how well the model will perform if the impostors are
unknown during the training process.

Most work has studied keystroke authentication in one
body position, but in daily life, the phone is used in var-
ious activities. Keystroke and touchscreen biometric mod-
els may be disturbed by different body motion conditions,
e.g., lying, sitting, standing, and walking. Some innovative
research has been done to conduct experiments in realistic
contexts. As mentioned before, Sitová et al. analyzed their
features in detail and achieved the best EER of 7.16%. They
also measured the energy consumption of the accelerometer
and gyroscope, sampled at 100Hz, 50Hz, 16Hz and 5Hz,
finding that the energy overhead at 16Hz is 7.9%. If we
need to collect accelerometer and gyroscope data all day
for activity recognition, it will lead to a massive energy
cost.

In Crawford et al.’s work, they determined the user’s posi-
tion with an AUC of 90% and the user’s typing pattern with
an AUC of 93%. As the accuracy of activity recognition is
less than the accuracy of authentication, this means activ-
ity recognition may itself lead to more errors. Therefore,
we propose a separate model for different circumstances.
In addition, we use Adversarial Noise (AN) samples, which
refer to crafting units such that they can indicate the user’s
actions in various body motion conditions. They are intended
to cause misclassifications initially, and so to improve the
training of our model. Similar experiments on PINs 1-1-1-1,
3-2-4-4 and 5-5-5-5 are conducted to allow comparison with
Zheng et al. [23]’s work. Our contributions are summarized
as follows.
• Reducing the error rate:We believe that a good feature
set can improve the verification results. We investigate
many relevant feature sets and build a more compre-
hensive one. Then we choose the typical feature opti-
mization methods and conduct experiments to compare
them. The feature ranking method only considers the
relations between the feature and the result but ignores
the interaction between features. Here, we collect as
many as 146 features and test different feature selec-
tionmethods including Pearson [24], Differential Evolu-
tion (DE) [25] and Binary Particle Swarm Optimization
(BPSO) [26]. We use a DE feature selection method to
find the best group of features. Then, after applying DE,
a Support Vector Regression (SVR) method is used to

achieve an EER of 0.12660% with impostors known to
the model, and 6.35464% with unknown impostors.

• Improving the robustness: It is hard to collect and
analyze data in all real situation contexts. However,
we can analyze the distribution of data in different
contexts and simulate samples. Generative Adversar-
ial Networks (GANs) have been implemented using a
system of two neural networks contesting with each
other in a zero-sum game framework [27]. Inspired by
GAN, we analyze each feature in all the samples from
a user to find its robust distribution interval and build
adversarial noise samples using the interval to imi-
tate adversarial noise(AN) samples from various body
positions. Then, we can generate adversarial samples
to test the authentication model and enhance it. After
adding adversarial noise samples to the validation set,
the EER increased by 173.45% compared with the
baseline method, whereas it only increased by 83.59%
with Support Vector Regression (SVR). Hence, the SVR
model has a stronger generalization ability than the base-
line model with samples in different body motion con-
ditions. Validation samples with adversarial noise cause
misclassification and increase the error rate. Therefore,
we add adversarial noise to the training process to aug-
ment training the model in different body motion con-
ditions. This improves the robustness of the model, and
the EER declined by 20.32% with SVR.

The paper is structured as follows.We review related research
in Section 2. Then, we present a description of the Differ-
ential Evolution and Adversarial Noise-based User Authen-
tication (DEANUA) scheme and evaluation methods in
Section 3. Next, we introduce our dataset and methods in
Section 4. In Section 5, we describe the authentication exper-
iments and results. We draw conclusions in Section 6.

II. RELATED WORK
This section reviews related works in virtual keyboard
keystroke dynamics arranged roughly in chronological and
thematic order.

Maiorana et al. [28] focused on keystroke biometrics for
user authentication on mobile devices. They proposed a sta-
tistical approach to guarantee verification rates when the
number of enrollment acquisitions is low. Focusing on the
use of alphabetical passwords, their database contained data
acquired from forty users. They obtained an EER of 13.59%.

Trojahn and Ortmeier [29] developed a mixture of a mix-
ture of handwriting-based and keystroke-based verification
methods using capacitive displays. They proposed several
new features like pressure during typing, fingertip size, and
the physical characteristics of the mobile device. In their
experiments, 18 users entered a specified sentence with
11 characters, ten times. They obtained their lowest EER
of 1.13% with an RBFN method.

Zheng et al. [23] recruited 80 participants to an experiment
using sensors such as an accelerometer, gyroscope, and the
touch screen sensor on the smartphone to describe the user’s
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FIGURE 1. DEANUA Scheme.

unique behavioral patterns. Five different PINs: 3-2-4-4,
1-1-1-1, 5-5-5-5, 1-2-5-9-7-3-8-4 and 1-2-5-9-8-4-1-6 were
used in their study. The authors used a one-class learning
method based on nearest neighbor distance. The best EER
was 3.58% for PIN 3-2-4-4. The other results were 7.34% for
5-5-5-5, 6.96% for 1-1-1-1, 4.55% for 1-2-5-9-7-3-8-4 and
4.45% for 1-2-5-9-8-4-1-6.

Giuffrida et al. [30] implemented an Android prototype
system known as Unagi. Their implementation supported
several feature extraction and detection algorithms for evalua-
tion. They chose ‘‘internet’’ and ‘‘satellite’’ as passwords and
focused on sensor-enhanced features. They also improved the
accuracy of traditional keystroke dynamics, which previously
had an EER greater than 7%, by two orders of magnitude.

Kambourakis et al. [31] proposed a methodology using
only behavioral features, for example, distance and speed,
corresponding to the way that the user interacts with the
virtual keyboard. The authors designed two scenarios for both
typical alphanumeric passwords and the variety of characters.
Random forest(RF) [32], K-Nearest Neighbor(KNN) [33]
and Multi-Layer Perceptron(MLP) [34] were used in the
experiment. The best EER for the first and second scenarios
was 26% and 13.6% respectively.

Morales et al. [35] presented user authentication using
Keystroke Biometrics Ongoing Competition (KBOC). Their
data included keystroke sequences from a legal user and
impostors in a fixed text scenario. Thirty-one different algo-
rithms were tested to find the one that gave the best accuracy
and robustness. Their lowest EER was 5.32%. They also
examined multisession variability by month of the year, and
the accuracy degradation was less than 1% for probes.

Ataş [36] focused on hand tremor-based biometric
recognition. They argued that hand tremor could help to
authenticate users due to its unique characteristics. Fast
Fourier transformation, discrete wavelet transformation, and
1-D local binary patternmethodswere used to extract features

from spatiotemporal hand tremor signals. They were able to
exceed a 95% accuracy rate in classification tests.

The reliability of an authentication system is evaluated in
terms of its error rate and robustness. However, the accu-
racy rate for access control systems has not yet reached
the European standard, and the robustness of the model in
different body motion conditions is rarely mentioned. We are
concerned that a two-stage authentication for different body
motion conditions may bring more errors with activity recog-
nition and it will waste a lot of energy if we record the
phone status continuously. From the accuracy perspective,
we aim to refine the features and select the most useful set
of features to obtain a lower EER than has been achieved
in previous research. In addition, we also consider situations
with unknown impostors and achieve energy use reduction.
Concerning robustness, we add adversarial noise to test and
strengthen the robustness of the model for all body motion
conditions.

III. DESCRIPTION OF DEANUA SCHEME
The DEANUA scheme not only emphasizes the significance
of accuracy but also pays attention to robustness. As shown
in Figure 1, we split the DEANUA scheme into the training
and test phases. In the training process, we first improve
the accuracy by DE feature selection and pass the selected
feature set (the selected feature IDs) on to the test section.
Then we add AN samples to test the robustness of the model.
If the model performs worse with the AN testing samples,
we retrain the model with more AN samples to enhance the
robustness of the model. After the robustness enhancement
process, the model is retrained and passed on to the test
section. In the testing process, the input data is from the user
test data. After feature extraction and selection, the authen-
tication model and threshold can help to classify the user
into an impostor or legal user. Finally, the DEANUA scheme
decides whether to unlock the mobile device or not.
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A. ACCURACY IMPROVEMENT
In the training process, we focus on improving accuracy.
As we believe that every acceleration that occurs between the
user pressing and releasing a key contains useful information,
we refine the features by adding more time features and every
acceleration feature in every directional axis. It is necessary
to choose a feature selectionmethod that finds themost useful
group of features. We prefer the DE feature selection method
in this case, not only for its ability to take into account the
relations between features but also its rapid processing speed
and excellent overall performance.

Support Vector Regression (SVR) can determine the prob-
ability of a sample being from the legitimate user. Therefore,
it can be used to find the best threshold for classifying the
current user into an impostor or legal user. SVR will be
used to calculate the user’s input score from zero to one.
Zero indicates an impostor while one identifies the legal user.
We set the optimum threshold between 0 and 1 to classify
the user’s input as that of the lowest EER. If the user’s input
score is below the threshold, the result indicates an impostor.
Otherwise, it will be the legal user. Additionally, we choose
SVR not only for its great accuracy and robustness but also
for its ease of use and quick calculation.

B. ROBUSTNESS ENHANCEMENT
The authentication model will be passed on to the robust
testing process. Our experiment shows that different physical
activities are associated with different but essentially similar
biometric patterns such that biometric models may be dis-
turbed by body motion conditions. We construct adversarial
samples according to the distribution of each feature in the
original samples. In the robustness test, the adversarial noise
will only be added to the validation samples to test whether
the EER will decrease or not. If the EER goes down, this
indicates that the model is not sufficiently robust for all body
motion conditions and we will retrain the model with AN
samples.

C. EVALUATION METHOD
Considering the practicability of authentication, we want to
build models with different levels of knowledge of impos-
tors. We have three levels: knowing all impostors, knowing
half of the impostors, and knowing none of the impos-
tors. We apply the verification process (VP) introduced in
Mondal and Bours’s [37] work. In verification pro-
cess 1 (VP1), all impostors are included in the training
process as shown in Figure 2. We then calculate the result
using validation samples from known users and impostors.
In verification process 1 (VP1), all the impostors’ typing
behavior has been learned in the training process as shown
in Figure 2. In verification process 2 (VP2), half of the
impostors’ typing behavior has been learned in the training
process as shown in Figure 3. In verification process 3 (VP3),
none of the impostors’ samples are included in the training set

FIGURE 2. Verification process 1.

FIGURE 3. Verification process 2.

FIGURE 4. Verification process 3.

as shown in Figure 4. VP3 is more in line with the real-life
scenario. All VPs have the same number of authorized users.

We use the Equal Error Rate (EER) to evaluate the perfor-
mance of our model. EER is an algorithm used to predeter-
mine the threshold for the rate of false acceptances and false
rejections. The False Acceptance Rate (FAR) is the propen-
sity of a security system to mistakenly verify an unauthorized
person while the False Rejection Rate (FRR) is the propensity
of a security system failing to admit an authorized person. The
EER is the point at which the FAR and FRR are equal. They
are defined as follows:

FAR =
Num(̂y == 1&&y == 0)

Num(y == 0)
(1)

FRR =
Num(̂y == 0&&y == 1)

Num(y == 1)
(2)

where Num stands for the number of cases. ŷ represents the
predicted value and y is the actual value.

IV. DATASET AND METHODS
We enlisted 104 participants for our experiments and used
PIN codes 1-1-1-1, 3-2-4-4, and 5-5-5-5. Most of the par-
ticipants were college students aged between 20 and 25 as
shown in Table 1. The number ofmale and female participants
was 47 and 57 respectively. Participants in our study were
asked to enter an error-free PIN code at least 20 times, which
means some of them may input more than 20 attempts if
they wished. We collected a total of 6311 error-free actions.
Our application automatically records the user’s acceleration,
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TABLE 1. Participants information.

pressure, size, and time data during the process. We refer to
an action as a complete instance of a password input.

A. FEATURES
We build a more comprehensive feature set through the cur-
rent feature set research. Based on the raw data, we arranged
the features into four groups: time related, acceleration, pres-
sure, and size. We extracted more time-oriented features as
Sheng et al. [38] did in their work, as shown in Figure 5.
We also believe that all the acceleration measurements have
the potential to provide useful information, not just their min-
imum, maximum and mean values. Therefore, we refined the
feature groups by adding three more groups of acceleration
values in each spatial axis. As a result, the number of features
increased from 63 to 146. We describe them as follows:

FIGURE 5. Time feature.

• Time
We describe time features in Figure 5. We divide one
4-digit PIN code into two parts. For ‘‘3-2-4-4’’, the first
two digits ‘‘3-2’’ contain time features including ’dwell
time’ (DT), ’flight time’ FT A, FT B, FT C and FT D as
shown in Figure 5. In total, there are 10 time features in
each trial.

• Acceleration
We record acceleration features in two parts. The first
part consists of acceleration in each axis for every digit.
Most of the key-hold times can have more than three
groups of accelerations sampled at 100Hz. We record

the first three groups of acceleration features during the
key-hold time. As we have four digits, three axes, and
three groups of linear and angular accelerations, we have
72 features in the first part of the PIN. The second part
contains the press time, release time, maximum, min-
imum, average, and standard deviation of accelerations
for every digit. Therefore, we get 48 features for the sec-
ond part, and 120 acceleration features are recorded in
total.

• Pressure
There are four pressing and four releasing times in a
4-digit PIN code. So, we record eight pressure features
in each trial.

• Size
Each time the user presses or releases a key, the mobile
device receives a press size feature. So, there are eight
size features in each trial.

B. FEATURE SELECTION
In order to optimize our extensive feature set, we want to find
the best feature selection method. We choose the most typical
methods and conduct experiments as shown in Table 2 and
Table 3. For a given measure of quality, DE can optimize
solutions to a problem by attempting to improve solutions
iteratively. It holds a population of candidate solutions and
creates new candidates by combining existing ones according
to an algorithm. Then, it retains the solution which gives
the best results on the optimization problem. We selected
DE for the following three reasons: 1) Alternative feature
ranking methods like Pearson [24] and Chi-square [39] only
consider the relationship between the feature and the result,
but DE also takes the relations between features into account;
2) genetic algorithms (GA) [40] and Binary Particle Swarm
Optimization (BPSO) [26] can also be used to select the best
group of features, but the influence of population size on
processing time in GA is exponential; 3) the solution time for
BPSO and DE increases linearly with population size [41]

TABLE 2. Feature selection comparison.
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FIGURE 6. Battery consumption of SVR method with 146 features.

TABLE 3. Time test on BPSO and DE.

and out of these two, the reason why we do not choose BPSO
is that BPSO is slower than DE and it does not perform well
as DE.

In our DE method, each chromosome has a list of 146 ran-
dom integers valued 0 or 1, in which 0 stands for discarding
this feature and 1 means applying this feature in later classi-
fication work. Our goal is to find the most significant feature
group that gives the lowest EER on the validation samples.
We experimented to verify whether the combination of more
features with DE feature selection is a good choice. As shown
in Table 2, the original 63 features can only obtain an EER
of 3.06371% for 3-2-4-4, but 146 features can reach an EER
of 2.71304%. Then, after using the feature selection methods,
further DE selection can provide the best EER of 0.12660%
compared with Pearson and BPSO. In Table 2, we highlight
the best EER for each PIN code with bold font and underline.

The results of the comparison between different feature
selection methods are shown in Table 2. We select the DE
feature selection method on this basis. DE can also help
to reduce the energy consumption. System files record the
battery consumption rate and tools like Battery Historian [42]
can use this data to analyze battery usage. We record it as
the accumulation of battery consumption after 20 trials on
the Android system. Battery Historian can help us analyze the
system file and determine the battery consumption as shown
in Figure 6. We tested the phone with 146 features and found

the battery consumption to be 0.16% according to the system
file. After the DEmethod was applied, this reduced to 0.11%.
Hence, the battery consumption could be reduced by 31.25%
with the DE method because fewer features are utilized.

C. ADVERSARIAL NOISE
It is hard and inconvenient to collect data for all bodymotions,
but we can analyze keystroke data distribution in different
contexts and simulate the original samples with adversarial
noise(AN) samples. To deal with authentication for different
bodymotion conditions, we provide onemodel for all activity
types because activity recognition may introduce errors and
use a lot of energy if we record the phone status continuously.
We had the same user enter 3-2-4-4, 20 times in four situa-
tions: lying, sitting, standing, and walking. We then selected
ten random features in different body motion conditions as
shown in Figure 7.We can see from the figure that though dif-
ferent body motion conditions have different feature distribu-
tions, they are alike in some key regards. Therefore, we apply
adversarial noise according to these factors to represent the
user’s individual pattern.

FIGURE 7. Keystroke data distribution in different situational contexts.
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FIGURE 8. Data Noise Boxplot.

We randomly selected one feature for analysis in Figure 8.
Q1 represents the 25th percentile of the feature’s statistical
distribution. Q3 represents the 75th percentile of the feature’s
distribution. The interquartile range (IQR), also known as the
mid-spread or middle 50%, is equal to the difference between
the 25th and 75th percentiles, IQR = Q3 - Q1. Since the IQR
for each feature in each body motion condition can represent
the user’s behavioral pattern, the union of IQRs for each
feature in all body motion conditions is also a part of the
user’s behavioral pattern. Adversarial noise is defined as a
random value between the minimum of Q1 in 4 situations
and the maximum of Q3 in 4 situations, as shown in the
equation:

ANj = Random(
⋃

n=lay,sit,stand,walk

(Q1n,Q3n)) (3)

where j belongs to the group of feature IDs after DE selection.
As IQR is a trimmed estimator and is the most significant
robust measure of scale, we believe the union of IQRs for
each feature in all body motion conditions is also robust for
the user’s keystroke biometrics.

V. AUTHENTICATION EXPERIMENTS
Our authentication process is shown in Figure 9. We first
evaluate the performance of the authentication model, and
record the result as EER. Then validation samples with
AN are also tested with the authentication model and
the result is recorded as EERwithAN . If EERwithAN is
larger than EER, the model will be retrained with AN
to improve its robustness. If EERwithAN is smaller than
EERwithAN_Pre, the scheme will continue to retrain the
model. The loop will end if EERwithAN is larger than
EERwithAN_Pre. After its robustness has been verified,
the authentication model will then be passed on to the
test process. We will describe these procedures in more
detail in the following subsections with a default input
of 3-2-4-4.

A. AUTHENTICATION ACCURACY
Table 4 shows the EERs from Zheng et al.’s [23] work
and the results from our data using Zheng’s method as
a baseline along with results using other classification

methods, including SVR, Scaled Euclidean(SE) [43],
Scaled Manhattan(SM) [43], KNN [33], and RF [32].
These classifiers are used in Sitová et al.’s [20] work and
Kambourakis et al.’s [31] work. The kernel used in the
SVR model is ‘‘rbf’’, we use a coefficient of 0.0 and a
gamma of 0.00685. In Table 4, ‘‘(a)’’ indicates using all
146 features and ‘‘(b)’’ represents using the selected features
after DE. We highlight the lowest EER for every row in
bold font and the lowest EER for each PIN code with an
underline.

In VP1, we assume that all impostors are known to the
model. After the DE phase, the SVR method gives the best
EER of 0.12660% which is 98.10% lower than the EER
of 6.66667% in the baseline method. The baseline method
has the advantage in the VP2 and VP3 stages that it chooses
thresholds using the distance from each sample to the near-
est legal user’s sample. As it largely relies on the target
user’s training samples, if we can find the maximum dis-
tance of every legitimate user’s sample to its nearest legit-
imate sample, not including itself, we can directly choose
the maximum distance to be a good threshold. However,
the baseline method was found to have poor generalization
ability for different body motion conditions in the robustness
test.

Table 4 shows the value of every EER for each PIN code.
Figure 10 describes the trade-off between FRR and FAR in
all three PIN combinations using SVR. There are six fig-
ures altogether, showing false rates and thresholds for every
PIN code in each verification process before and after the
DE phase. We deem an input action with a score above the
threshold to come from a legal user. Otherwise, it is from an
impostor.

B. ROBUSTNESS TEST
To handle different input positions, we analyze multiple
samples from different body motion conditions and create
adversarial noise samples according to the original samples.
Then, the adversarial noise samples are added to the valida-
tion set. We can assess whether or not the model is robust
enough to handle all body motion conditions through the new
validation set.

Table 5 shows the robustness in VP3 for models both with
and without adversarial noise test samples. The lowest EER
for each PIN code in every row is emphasized with bold
font, and we highlight the best EER, with AN test samples,
using underscores. Here, the EER has increased by 173.45%
from the baseline. However, the EER with SVR has only
increased by 83.59%, so SVR has a better generalization
ability for all body motion conditions. Figure 11 shows the
false rates and thresholds with adversarial noise validation
samples.

C. STRENGTHENING ROBUSTNESS
As shown in the previous experiment, body motion con-
ditions can have a significant influence on the robust-
ness of the model. Hence, AN samples are added to
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FIGURE 9. Authentication Flow Chart.

TABLE 4. EER comparison.

the training samples to help the model perform better in
different circumstances. Each group of AN samples is the
same size as the original training set. We add AN sam-
ples group by group to find the best authentication model
with the lowest EER as shown in Table 6. When the num-
ber of AN sample groups reaches three, the EER stops
declining.

In this table, ‘‘(a)’’ represents the original training samples,
and ‘‘(b-e)’’ stands for the combination of ‘‘(a)’’ and AN
samples. ‘‘*2’’ indicates the number of AN the sample group.
‘‘(d)’’ consists of the original training samples and three
groups of adversarial samples have the best EER of 8.70932%
for 3-2-4-4, 9.42637% for 5-5-5-5 and 10.0965% for 1-1-1-1.

TABLE 5. EERs with and without AN (validation only).

The false rates and thresholds of ‘‘(d)’’ and ‘‘(e)’’ with the
SVR method are shown in Figure 12.

It can be seen from Table 6 and Figure 12 that almost
all the models have a slight improvement after retraining
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FIGURE 10. False Rates and Thresholds in SVR. VP = Verification Process, a = 146 features, b = feature group selected by DE.

FIGURE 11. EERs with AN (validation only). VP = Verification Process, a = 146 features, b = feature group by DE.

with samples of various body motion conditions, not only
the SVR model. Also, SVR has the best performance in
EER for the PIN 1-1-1-1, a reduction of 7.03%, and the

EER for 5-5-5-5 decreases by 19.20%. The most surprising
result is the EER of 8.70932% for 3-2-4-4, which is reduced
by 20.32%.
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FIGURE 12. EERs with AN in SVR. VP = Verification Process, a = 146 features, b = feature group by DE, AN*n = train samples with n groups of AN.

TABLE 6. EERs with AN.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose the DEANUA scheme, which
focuses on accuracy and robustness in smartphone keystroke
dynamics. We conduct experiments to obtain 6311 4-digit
PIN code trials. During the feature selection process, a DE
technique is applied to select useful features from all 146 can-
didates. The best EER obtained from the SVR was 0.12660%
for the code 3-2-4-4 in VP1, which provides a 98.10% reduc-
tion in ERR compared with the baseline method. The DE
feature selection method also reduces energy consumption
by 31.25%. In many applications, minimizing FAR is more
important than FRR. When the lowest FAR of 0.02817% is
obtained, the FRR reaches 1.66667%. While this still does
not meet the EU recommendations, we have demonstrated
progress toward it in our mobile biometric authentication
study.

The DEANUA scheme has not only improved the accuracy
but also enhances robustness in all body motion conditions.

Adversarial noise, which is created according to the distri-
bution of samples in different contexts can lead to misclassi-
fications. Hence, we added adversarial noise to the training
samples to help the model perform better in different body
motion conditions. Finally, the DEANUA scheme achieved
an EER of 8.70932% in VP3, which means we can protect
the user without prior knowledge of the impostors, in all body
motion conditions.

As for future work, data can be recorded not only under
laboratory conditions but also in the real world, and user
identification with keystroke dynamics can satisfy the need
for recognizing multiple users of the same mobile device.
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