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ABSTRACT The Internet of Things (IoT) is a ubiquitous system connecting many different devices—the
things—which can be accessed from the distance. The cyber-physical systems (CPSs) monitor and control
the things from the distance. As a result, the concepts of dependability and security get deeply intertwined.
The increasing level of dynamicity, heterogeneity, and complexity adds to the system’s vulnerability, and
challenges its ability to react to faults. This paper summarizes the state of the art of existing work on
anomaly detection, fault-tolerance, and self-healing, and adds a number of other methods applicable to
achieve resilience in an IoT. We particularly focus on non-intrusive methods ensuring data integrity in the
network. Furthermore, this paper presents the main challenges in building a resilient IoT for the CPS, which
is crucial in the era of smart CPS with enhanced connectivity (an excellent example of such a system is
connected autonomous vehicles). It further summarizes our solutions, work-in-progress and future work to
this topic to enable ‘‘Trustworthy IoT for CPS’’. Finally, this framework is illustrated on a selected use case:
a smart sensor infrastructure in the transport domain.

INDEX TERMS Anomaly detection, cyber-physical systems (CPS), Internet of Things (IoT), monitoring,
resilience, long-term dependability and security, self-adaptation, self-healing.

I. INTRODUCTION
Cyber-physical systems (CPS) [1]–[4] are the emerging smart
information and communications technology (ICT) that are
deeply influencing our society in several application domains.
Examples include unmanned aerial vehicles (UAV), wireless
sensor networks, (semi-) autonomous cars [5], vehicular net-
works [3] and a new generation of sophisticated life-critical
and networked medical devices [6]. CPS consist of collabo-
rative computational entities that are tightly interacting with
physical components through sensors and actuators. They
are usually federated as a system-of-systems communicating
with each other and with the humans over the Internet of
Things (IoT), a network infrastructure enabling the interop-
erability of these devices.

A. MOTIVATION FOR RESILIENT CPS
The advent of the Internet has revolutionized the commu-
nication between humans. Similarly, the CPS and IoT are

reshaping the way in which we perceive and interact with
our physical world. This comes at a price: these systems
are becoming so pervasive in our daily life that failures and
security vulnerabilities can be the cause of fatal accidents,
undermining their trustworthiness in the public eye.

Over the last years, popular mainstream newspapers have
published several articles about CPS that are recalled from
the market due to software and/or hardware bugs. For exam-
ple in 2015, The New York Times published the news [11]
about the finding of a software bug in Boeing 787 that could
cause ‘‘the plane power control units to shut down power
generators if they were powered without interruption for
248 days’’. The Washington Post has recently published an
article [12] about Fiat Chrysler Automobiles NV recalling
over 4.8 million U.S. vehicles for a defect that prevents
drivers from shutting off cruise control, placing them in a
potential hazard. The recent accident of Uber’s self-driving
vehicle killing a pedestrian shocked the world [13], raising
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FIGURE 1. Introduction to CPS and Internet of Things (IoT) and growing trends of connected devices and generated data. Data Sources: [7]–[10].

several concerns about the safety and trustworthiness of this
technology.

With the connection of a CPS to the Internet, security
becomes a crucial factor, too, that is intertwined with safety
(‘‘if it is not secure it is not safe’’ [14]). The tight interaction
between the software and the physical components in CPS
enables cyber-attacks to have catastrophic physical conse-
quences. The Guardian reported last year [15] that over half
a million pacemakers have been recalled by the American
Food and Drug Administration due to fears that hackers could
exploit cyber security flaws to deplete their batteries or to
alter the patient’s heartbeat. In 2015 the BBC announced [16]
that the black-out of the Ukraine power grid was the conse-
quence of a malware installed on computer systems at power
generation firms, enabling the hackers to get remote access to
these computers. In the same year two hackers have proved
in front of the media [17] that they could hijack a Jeep over
the internet.

The rise of the IoT, that is forecast to grow to 75 billions
of devices in 2025 (Fig. 1), is exacerbating the problem,
by providing an incredibly powerful platform to amplify
these cyber-attacks. An example is the MIRAI botnet that
in 2016 have exploited more than 400000 devices connected
through the IoT as a vehicle to launch some of the most potent
distributed denial-of-service (DDoS) in history [18].

Managing and monitoring such ultra large scale system
is becoming extremely challenging. A desired property to
achieve/enforce this is to be resilient, i.e., the service delivery
(or functionality) that can justifiably be trusted persists, when
facing changes [19]. In other words, the system shall remain
safe and secure in the advent of faults and threats (see Fig. 2
for some examples in the automotive domain) that could be
even unpredictable at design time or could emerge during
runtime [14], [19].

B. STATE-OF-THE-ART
Resilience has been identified and discussed as a chal-
lenge in IoT [14], [20]–[22]. However, it has been mostly
studied in other areas of computer science (see Table 1).
The majority of surveys focus on one building block of a
resilient system, e.g., a CPS, or one attribute of resilience.
For instance, some publications survey security by intrusion

FIGURE 2. Examples of faults and threats in a connected vehicle.

detection [23], [24] (e.g., based on machine learning / data
mining [25] or computational intelligence [26]). Recent sur-
veys on the IoT (Table 2) review definitions, state IoT and
research challenges or discuss technologies to enable inter-
operability and management of the IoT. However, to the
best of our knowledge, resilience, adaptation and long-term
dependability and security have not yet been discussed in the
context of IoT for CPS.

C. NOVEL CONTRIBUTIONS
This paper provides an overview of the state-of-the-art to
resilience - that is dependability and security - for the IoT.
We focus on resiliencemechanisms that can be applied during
runtime and may be extended to adapt, such that a system
undergoing changes remains resilient. We discuss a roadmap
to achieve resilience, and illustrate our recent work on this
topic with a case study. In particular:
• We summarize state-of-the-art methods and discuss
recent work on detection, diagnosis, recovery and/or
mitigation of faults. Due to the expected heterogeneous
architecture, we specifically target non-intrusive meth-
ods which reason and act in the communication net-
work or at the interfaces of the IoT devices.

• We state the challenges of these techniques when applied
in the IoT and depict a roadmap on how to achieve
resilience in an IoT for CPSs.
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TABLE 1. Comparison to resilience roadmaps and surveys (annotations: (1) terminology only).

TABLE 2. Comparison to IoT roadmaps and surveys.

FIGURE 3. Organization of the paper.

• Besides discussing several new perspectives, we fur-
ther demonstrate some of our key methods/solutions
and ongoing works on providing high resilience for the
information collected and employed by the IoT in an
automotive case study.

D. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows (see also Fig. 3).
The next two sections (Section II and Section III) introduce
the terminology around resilience, fault types and examples,
building blocks of resilient systems and architectural layers
to the readers. Section IV collects state-of-the-art techniques

for fault detection and recovery. Section V states research
challenges for resilience, and particularly for the long-term
dependability and security. Section VI discusses challenges
and our roadmap to resilience in IoT with several new per-
spectives. Section VII presents some of our key solutions
to this topic on the case study ‘‘resilient smart mobility’’.
Section VIII finally concludes the paper with a discussion of
the presented solutions and future work.

II. RESILIENCE
In order to provide a better understanding of resilient IoT, we
introduce resilience and its terminology in this section.
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A. ATTRIBUTES OF RESILIENCE
We desire the IoT for CPS to be dependable and secure
throughout its entire life-cycle. Avizienis et al. [27] define
the dependability property of a system to be the combina-
tion of following attributes: availability (readiness for cor-
rect service), reliability (continuity of correct service), safety
(absence of catastrophic consequences), integrity (absence
of improper system alterations), maintainability (ability to
undergo modifications and repairs). Security includes avail-
ability, integrity and confidentiality (the absence of unautho-
rized disclosure of information).
Robustness can be considered as another attribute of

dependability. It has its roots in the control theory or CPS
where a system is called robust if it continues to function
properly under faults of stochastic nature (e.g., noise). In
recent work on the concepts of cyber-physical systems-of-
systems (CPSoS) [4], robustness is extended to consider also
the security issues in CPS as well: ‘‘Robustness is the depend-
ability with respect to external faults (including malicious
external actions)’’. Figure 4 summarizes the attributes of a
resilient system.

FIGURE 4. Relation of system attributes in the context of resilience.

A fault-tolerant system recovers from faults to ensure
the ongoing service [27], i.e., achieving dependability and
robustness of a system.

The term resilience is often used by the security com-
munity to describe the resistance to attacks (malicious
faults). Laprie [19] defines resilience for a ubiquitous, large-
scale, evolving system: Resilience is ‘‘The persistence of
service delivery that can justifiably be trusted, when fac-
ing changes.’’. The author builds upon the definition of
dependability by giving the following short definition of
resilience ‘‘The persistence of dependability when facing
changes.’’

A ubiquitous, heterogeneous, complex system-of-systems
will typically change over time raising the need for the
dependability and security established during design time to
scale up. We therefore find the definition of resilience from
Laprie [19] a good fit to express the needs of an IoT for CPS.
A resilient IoT ensures the functionality when facing also
unexpected failures. Moreover, it should scale dependability

and security when it comes to functional, environmental and
technological changes [49] – we refer this capability to as
long-term dependability and security.

However, to ensure resilience in a system, two impor-
tant factors need to be analyzed: i) possible faults (the
sources of dependability and security threats, see Sec. III) and
ii) available detection and mitigation methodologies (tech-
niques and actions to apply, see Sec. IV).

III. FAULTS, ERRORS, FAILURES AND ATTACKS
A failure is an event that occurs when a system deviates
from its intended behavior. The failure manifests due to an
unintended state - the error - of one or more components of
the system. The cause of an error is called the fault [27].

TABLE 3. Main classifications of faults by [27] with examples.

The source of a fault (Table 3) may be internal or exter-
nal. Internal faults may be of physical nature (e.g., bro-
ken component connector) or introduced by the design
(software/hardware bug). External faults originate from the
environment (e.g., noise, radiation) or inputs (e.g., wrong or
malicious usage of the system). Faults can be mainly classi-
fied into transient and permanent faults. Although a transient
fault manifests only for a short period of time, it can cause an
error and might lead to a permanent failure. Physical faults
(internal/environmental) and inputs may be transient or per-
manent. Design faults are always permanent. Faults that can-
not be systematically reproduced are often called intermittent
faults (e.g., effects of temperature on hardware, a transient
fault like a short in the circuit activated by a specific input).
Such faults lead to so-called soft errors. A possible attack
scenario (that is a malicious external fault) is often referred
to as a (security) threat.
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FIGURE 5. Dependability failures and security threats with respect to CPS layers.

Consider the CPS/IoT infrastructure shown in Figure 5.
Faults (e.g., radiation or a malicious signal for an actuator)
may occur at different layers of the architecture (e.g., phys-
ical or control layer, respectively) [50]. The physical layer
is vulnerable to disruption, direct intervention or destruction
of physical objects (e.g., sensors, actuators and mechanical
components). The network layer (here: the IoT) connects the
devices. The monitors and controllers in the control layer are
vulnerable to uncertainties of the environment and manipula-
tion of measurements and control signals. The information
layer collects information and is particularly vulnerable to
privacy and integrity issues.

The next two sections state examples of known and emerg-
ing faults when the IoT meets CPS (see also Fig. 5).

A. DEPENDABILITY FAULTS IN IoT
The IoT is susceptible to communication failures particularly
due to its size and heterogeneity. Traditional CPS would
avoid or mitigate such failures by verification and sufficient
testing of the design and final implementation of the network
component. However, the IoT will evolve in technology and
grow in size over time. For instance, following faults may
occur per CPS layer:

• Physical Layer:
– Interference: Disruption of a signal. The number

of connected devices and subsequently the radia-
tion increases whichmay influence sensormeasure-
ments, transmitted messages or control signals [51].

• Network Layer:
– Message Collision: Similarly to interference,

the number of communicating devices might trig-
ger communication failures, e.g., collisions or an
overload of the network.

– Protocol Violation:Wrong message content due to
different protocol version or protocol mismatch.

• Control Layer:
– Deadline Miss: Late control signal reception. Con-

trol loops still have to follow the timing constraints
of a CPS application.

– Misusage: Send/set wrong inputs to a component,
e.g., due to wrong or incomplete syntactical and/or
semantic information about the device.

• Information Layer:
– Unavailability: Missing information caused by a

technology update. Things might be connected, dis-
connected or updated in the IoT.
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TABLE 4. Threat models for different CPS layers (M: Manufacturer, D: Designer, E: External Attacker).

B. SECURITY THREATS IN CPS
Security has been a topic since the beginning of computer net-
works identifying vulnerabilities (that is an internal fault or a
weak point in a system enabling an attacker to alter the
system [27]) and avoiding or mitigating malicious attacks
in devices. However, in CPS additional vulnerabilities arise
given the connection to the physical domain and the uncertain
behavior of the physical environment [38], [52]. For instance,
following attacks may be applied per CPS layer:

• Physical Layer: [53]–[55]
– Information Leakage: Steal critical information

from devices, e.g., secret keys or side channel
parameters [56]–[60].

– Denial of Service (DoS):Manipulate several param-
eters to perform a denial of service attack,
e.g., hack the power distribution network to drain
the energy [61], [62], destroy the sensors or actu-
ators (in case of physical access), add extra
power/communication load.

• Network Layer: W.r.t. security, this is the most vul-
nerable layer in a CPS because of the vast possibilities
of attacks on communication networks which emerged
over the years [63]–[66].

– Jamming:Overload the communication network by
introducing fake traffic [67]–[70].

– Collision:Manipulate the timing, power and/or fre-
quency of a network to trigger metastable states
which eventually lead to data collision or violation
of communication protocols [71]–[74].

– Routing ill-direct: Manipulate the routing mecha-
nism leading to data collision, data flooding and
selective forwarding of data [75], [76].

• Control Layer:
– Desynchronization: Violate the timing or manip-

ulate clocks [77]–[80]. This can also lead to a
DoS [81] and/or information leakage [82]–[84].

• Information Layer:
– Eavesdropping: Steal or sniff information. This is

one of the major threats related to privacy.

Moreover, information can also be manipulated to per-
form several attacks, i.e., jamming, collision or DoS.

The potential threats and consequences can be expressed in
security threat models for CPS [38]. To define a certain threat
model, the following factors have to be identified:

1) Source/Attacker:All the possible factors/actors which
intentionally disturbs or interrupts the behavior or func-
tionality of the CPS [38].

2) Attack Methodology: The methodology or frame-
work used to perform the attacks. However, it depends
upon the attacker’s capabilities (available computa-
tional power, access to CPS resources and layers, etc.)
motive (reason for the attack) [38] and the type of attack
vectors.

3) Consequences/Payload: The consequences of the
actions that a successful attack performs to achieve
its motive, e.g., compromising the confidential-
ity [85], integrity [86], availability [87], privacy [88]
and safety [89] of the CPS or information
stealing [38].

Table 4 provides a summary of the possible threat models for
each layer of CPS.

C. LONG-TERM DEPENDABILITY AND SECURITY THREATS
The IoT and CPS will undergo changes over time, espe-
cially when subjected to long operational duration (over
decades like in autonomous vehicles). Following aspects of
the change [49] might trigger faults (see examples per CPS
layer in Fig. 5).

1) Environmental: Uncertainty of the physical world.
Decay and aging of material and components.

2) Functional: Different and/or new applications and
requirements. Dynamic system, i.e., connecting/
disconnecting devices.

3) Technological: Different and/or new components
(e.g., maintenance, upgrades, demands), devices,
interfaces or protocols. Unknown attacks (zero-day
malware).

D. FAULT BEHAVIOR
A failure manifests in a wrong content or timing (early,
late or nomessage at all) of the intended service. Components
may contain an error detection mechanism and addition-
ally suppress wrong outputs. Such components are called
fail-silent . Some components may automatically stop their
execution on failures or halt crash, so-called fail-stop compo-
nents. However, an erroneous component may provide wrong
outputs, i.e., the service is erratic (e.g., babbling) which can
cause other services to fail. In the worst case the behav-
ior/output of the failed component is inconsistent to different
observers (Byzantine failure) [27], [28].
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TABLE 5. Keywords used to find relevant research.

TABLE 6. Collection and distribution of basic work (apart from derived
and optimized techniques) per publication type (ordered by publication
year, ascending).

IV. TECHNIQUES FOR RESILIENT IoT FOR CPS
There are various online and offline approaches to achieve
resilience in a system. Developers may try to prevent faults
(e.g., by an appropriate design, encryption or consensus),
tolerate faults (e.g., by switching to a redundant compo-
nent or another pre-defined configuration), remove/mitigate
faults (e.g., isolate faulty components to avoid the propaga-
tion of faults) or forecast faults (e.g., to estimate the sever-
ity or consequences of a fault) [27]. We want to focus on the
possibilities to fulfill the following requirements regarding
resilience:
• R1:Detection and identification of faulty, attacked or
failed components during runtime in the IoT.
Faulty or already failed components shall be detected to
be able to maintain or recover to a healthy system state
providing correct system services.

• R2: Autonomously maintain resilience in the IoT.
Ensure the functionality of a dynamic and heterogeneous
system in the presence of faults, i.e., recover from fail-
ures in an automatic fashion.

The following two sections give an overview about
methods split into detection and diagnosis, and recovery
or mitigation of failures. They summarize background and
terminology, highly-cited surveys (≥100 citations accord-
ing to Google Scholar), recent surveys (≥2015), recent
approaches not part of surveys / additional work, and
examples (see distribution in Table 6) given the keywords
in Table 5. Note that we tried to cite original publications and
no derivations of basic fault-tolerant techniques.

A. DETECTION AND DIAGNOSIS
Anomaly detection is the process to identify an abnormal
behavior or pattern. The abnormal behavior or service fail-
ure (e.g., wrong state, wrong message content) is caused
by a fault [27], e.g., a random failure, a design error or an
intruder. Though this definition probably complies with all

FIGURE 6. A taxonomy of methods for fault detection.

fault detection mechanisms listed in this section, the various
communities use different keywords depending on the appli-
cation or type of the mechanism. The related termmonitoring
is used in the field of runtime verification to refer to the act
of observing and evaluating temporal behaviors [29]. In the
security domain the phrase intrusion detection is used for
reasoning about threats.

Halting failures (fail-stop or fail-silent behavior) can be
detected by simple methods like watchdogs or timeouts.
Faults that manifest in erratic or inconsistent values or timing
need a behavior specification, model or replica to compare
against (we therefore focus on thesemethods). Such detection
methods can be roughly separated w.r.t. the knowledge used
to compare to the actual behavior (Fig. 6).

The expected or faulty behavior is represented either
via formal models or specifications (runtime verifica-
tion) [29], [30], signatures describing attack behav-
iors [23], [24], learned models (classification, statistics) [23],
[24], [31], [39], clusters or the data instances itself
(nearest-neighbor) [24], [31].

Another field of reasoning about failures is the root cause
analysis or fault localization which identifies the reason why
a fault occurs (e.g., a vulnerability of the system or the first
failed component which caused other components to fail due
to fault propagation).

1) REDUNDANCY
Additional information sources can detect many types of
faults [98]. A simple method to verify a message’s con-
tent or intermediate result is plausibility checking or majority
voting [28], e.g., by comparing a received message’s content
against redundant information sources (see also ‘‘agreement’’
in Sec. IV-B). Nevertheless, redundancy is typically the last
resort to increase the resilience or to ensure a specific level
of dependability because it is costly when it is added explic-
itly (e.g., triple modular redundancy often deployed in the
avionics [28]).

In hardware, fault detection by redundancy is also known
as lockstep execution where typically two computational
units run the same operations in parallel to detect faults [99],
[100]. When three replicas are used, the fault can be masked
by majority voting (under the assumption that only one com-
ponent can fail at the same time), see also Triple Modu-
lar Redundancy (TMR) in Section IV-B.
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However, some techniques exploit implicit or func-
tional redundancy that is already available in the system.
For instance, [92] combines anomaly detection with sensor
fusion. Their approach uses a particle filter fusing data of
different sensors and simultaneously calculating a value of
trust of the information sources derived from the normaliza-
tion factor, i.e., the sum of weights of the particles. When
the weights of the particles are high, the information source
match the prediction and are rated trustworthy. Dürrwang
et al. [101] propose to use hard-wired local data of an automo-
tive ECU to check the plausibility of a received control input.
Our method presented in Section VII is based and relies upon
implicit (and explicit) redundancy too.

2) SPECIFICATION
a: VERIFICATION OF SAFETY PROPERTIES
The IoT generally consists of spatially distributed and net-
worked CPS. At design time, the CPS behavior can be mod-
eled using hybrid systems, a mathematical framework that
combines discrete transition systems capturing the compu-
tational behavior of the software component with contin-
uous (often stochastic and nonlinear) ordinary differential
equations (ODEs) describing the behavior of the physical
substratum with which the software component is deeply
intertwined.

Although there has been a great effort in literature to
provide efficient computational techniques and tools [102]–
[109] to analyze safety properties in hybrid systems, the
exhaustive verification (i.e., model checking) is in gen-
eral undecidable [91]. The approaches currently available to
check safety properties are based on generating conservative
over-approximations of the state variables dynamics called
flow pipes [110] and on checking whether those intersect
the unsafe regions of interest. However, these methods are
generally limited to small scale CPS models. This limitation
becomes more evident when we want to study more com-
plex emergent behaviors, which result from the interactions
among system components and that can be observed only by
taking in consideration large scale CPS.

Hybrid systems are approximation models of the real CPS
behavior and so their analysis may be not always faithful due
to inevitable approximations errors (especially of the physical
behavior) in the modeling phase. Furthermore, CPS models
are not always available for intellectual property issues and
indeed CPS need to be studied as black box systems where
we are not able to observe the internal behavior.

b: RUNTIME VERIFICATION
A complementary approach to exhaustive verification is to
equip CPS with monitors that verify the correctness of their
execution. Monitoring consists of observing the evolution of
the discrete and continuous variables characterizing the CPS
behavior and deciding whether the observed trace of values is
good or bad. As Fig. 7 illustrates, these traces can be obtained
by simulating the CPS design or can be observed during the

CPS execution through the instrumentation of the system
under test (SUT) (more details concerning instrumentation
techniques can be found in [111]).

Runtime verification (RV) [29] is a specification-based
monitoring technique that decides whether an observed trace
of a SUT conforms to rigorous requirements written in a
formal specification language. The main idea of RV consists
in providing efficient techniques and tools that enable the
automatic generation of a software- or hardware-based moni-
tor [112], [113] from a requirement. RV can provide useful
information about the behavior of the monitored system,
at the price of a limited execution coverage.

RV is nowadays a very well-established technique, widely
employed in both academia and industry both before system
deployment, for testing, verification, and post-deployment to
ensure reliability, safety, robustness and security.

A typical example of formal specification language is the
Linear Temporal Logic (LTL) introduced by Pnueli in [114].
LTL provides a very concise and elegant logic-based lan-
guage to specify sequences of Boolean propositions and their
relations at different points in time. LTL considers only the
temporal order of the events and not the actual point in time
at which they really occur. For example, it is not possible to
specify that a property should hold after one unit of time and
before three and a half units of time.

Real-time temporal logics [115] overcome these limits by
embedding a continuous time interval in the until temporal
operator. Signal Temporal Logic [116], [117] is a popular
example of a real-time temporal logic suitable to reason about
the real-time requirements for CPS which has been proposed
for detection of threats [118].

Although reasoning about a single trace can provide an
insight about safety properties, this is generally not suffi-
cient to capture important information-flow security proper-
ties [119] such as noninterference, non-inference and infor-
mation leakage. These properties are called hyperproperties,
because in order to be verified, they need two or more execu-
tion traces of the system to be considered at the same time.
In order to specify hyperproperties, both LTL and STL have
been extended respectively in HyperLTL [120] and Hyper-
STL [121] adding in the syntax both universal and existen-
tial quantifiers over a set of traces. Runtime verification of
such specification languages is still an open challenge (some
preliminary results appeared in [122]), since the majority of
the monitoring algorithms available are usually developed to
handle only a single trace.

c: FALSIFICATION-BASED ANALYSIS AND
PARAMETER SYNTHESIS
As illustrated in Fig.7, the Boolean semantics of STL decides
whether a signal is correct or not with respect to a given
specification. However, this answer is not always informative
enough to reason about the CPS behavior, since the contin-
uous dynamics of these systems are expected to be tolerant
with respect to the value of certain parameters, the initial
conditions and the external inputs.
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FIGURE 7. Specification-based monitoring can be employed either during the CPS execution or at design-time during the CPS model simulation.

Several researchers have proposed to address this issue
by defining a quantitative semantics for STL [123], [124].
This semantics replaces the binary satisfaction relation with
a quantitative robustness degree function that returns a real
value (see Fig.7) indicating how far is a signal from satis-
fying or violating a specification. The positive and negative
sign of the robustness value indicates whether the formula is
satisfied or violated, respectively.

The notion of STL robustness was exploited in several
tools [125], [126] for falsification analysis [127] and param-
eter synthesis [128], [129] of CPS models. On one hand,
trying to minimize the robustness [125] is suitable to search
counterexamples in the input space that violates (falsifies)
the specification. On the other hand, maximizing the robust-
ness [126] can be used to tune the parameters of the system
to improve its resilience. To this end, a global optimization
engine is employed to systematically guide the search.

d: SIGNATURE-BASED INTRUSION DETECTION
Signature-based intrusion detection compares pre-defined
behavior (known as golden behavior or signature) to iden-
tify the abnormal event during runtime [23]. Though these
techniques effectively identify the intrusion with a small
number of false positives they require a precisely calibrated
signature [93]. Therefore, such techniques are not feasible if
designers and IP providers are not trusted. Suchmisuse-based
intrusion detection typically cannot handle zero-day attacks
that are new unknown attacks. It is therefore often combined
with anomaly detection (e.g., in [130]).

3) ANOMALY-BASED DETECTION
a: STATISTICAL TECHNIQUES
In statistical anomaly detection the data is fit into a statistical
model. If a test instance occurs in the low probability region
of the model, i.e., it is unlikely to be generated by the model,

then it is claimed to be an anomaly. Statistical models can be
specified with parameters when the underlying distribution
is known (e.g., is Gaussian). The parameters are trained by
machine learning (ML) algorithms [31] or estimation [39]
describing the correct behavior of the system. The inverse of
the test instance’s probability to be generated can directly be
used as anomaly score. Statistical tests can also be used to
label or score a test instance (e.g., box plot rule).

The model can be expressed by the data itself, e.g., in a
histogram, by kernel functions or particles, which is typically
used when the distribution of the data is unknown. The test
instances or samples may be evaluated by statistical hypoth-
esis tests. For instance, the Wilcoxon signed-rank test [131]
compares two related samples to determine if they have the
same underlying distribution (which is unknown and does not
have to be the normal distribution).

The principal component analysis (PCA) is used to project
the data to lower dimensions, i.e., it reduces the dimension-
ality of the data to a set of uncorrelated variables. A test
instance can be marked anomalous when the projection on
the components result in a high variance meaning that the test
instance does not fit the typical correlation of the data.

However, simple tests, Gaussian models and histograms
are nowadays mostly replaced by (deep) neural networks
which stand out handling multivariate and non-linear data.

b: MACHINE LEARNING OR DATA MINING
Typical anomaly detection techniques based on machine
learning can be used with data where no domain knowledge
is available (e.g., black-box components like IP cores). The
models may be updated during operation. When the desired
behavior is known it can be expressed as formal model
(specification-based monitoring).

Classification-based anomaly detection learns a model
(SVM, neural network, Bayesian networks, rules or decision
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trees) given labeled training data (e.g., states and observations
of the system) to cluster the test data into normal classes and
anomalies or outliers [31]. Instead of labeling a test instance
to a class, one may use scores representing the likelihood
of a test instance being an anomaly. For instance, Lee and
Xiang [132] use recurrent neural networks to detect anoma-
lies in real-time data. The networkmodels short and long term
patterns of time series and serves as a prediction model of the
data. The error between predicted and actual value serves as
an anomaly score.

Nearest-neighbor-based detection techniques measure the
distance from a data instance under test to k neighbors to iden-
tify anomalies. Different metrics (e.g., euclidean distance) are
applied to specify an anomaly score - that is the likelihood
of a data instance to be an anomaly. Another approach is to
measure the density that is the number of instances in the area
specified by the data instance under test given a radius. The
Nearest-Neighbor’s complexity increases with the power of
two of the number of data instances. Unsupervised.

Data instances are first distributed into clusters (by clus-
tering algorithms, e.g., expectation maximization, k-means,
self-organizing maps, many of which use distance or density
measures). An anomaly is a data instance that does not fit into
any cluster.

c: INFORMATION-THEORETIC
By investigating the information content described by, e.g.,
the entropy of the information, one may draw conclusion
about anomalies in the data (for information-theoretic mea-
sures characterizing regularity in data see [133]). When the
entropy exceeds a threshold the test instance is marked as
anomaly. The threshold is defined by the set of anomalies.
In highly irregular data the gap between threshold and maxi-
mum entropy may be low (the set of true anomalies is small).

4) FAULT-LOCALIZATION
When the fault detection only gives us the information about
a failure happened in a subsystem, we need means to identify
the exclusive part causing the failure.

This is often performed by root cause analysis [134]
or fault-localization [135]–[141]. In the software engi-
neering community there is a considerable amount of
literature about (semi-)automatic techniques assisting the
developer to localize and to explain program bugs (for
a comprehensive survey we refer the work in [141]).
Awell-established statistical approach, is the spectrum-based
fault-localization (SFL) [139], a technique that provides a
ranking of the program components that are most likely
responsible for the observed fault.

This approach has been employed recently also to localize
faults in Simulink/Stateflow CPS models [135]–[138], [140],
displaying a similar accuracy with the same method applied
to software systems [137]. Although the classical SFL is
agnostic to the nature of the oracle and only requires to
know whether the system passes or not a specific test case,
Bartocci et al. [135] have introduced a novel approach where

the oracle is a specification-based monitor. This enables to
leverage the trace diagnostic method proposed in [142] and
to obtain more information (for example the segment of time
where the fault occurred) about the failed tests improving the
fault-localization.

Often this approach is only applied offline for debugging
processes, however, it can be used to isolate a failed HW/SW
component from the system to avoid fault propagation or trig-
ger its recovery.

B. RECOVERY OR MITIGATION
Broadly speaking, a system can be adapted by changing its
parameters or its structure (architecture) [32], [36]. Following
four action types of possible re-configurations are defined
in [37] (splitting structural adaptation into further classes):
re-parameterization to change the parameters of a com-
ponent, re-instantiation to create and remove components,
rewiring to redirect connections between components or relo-
cation to migrate functionality to another platform. The lat-
ter three action types require redundancy to some extent.
We extend and refine these types in the following (Fig. 8).

FIGURE 8. A taxonomy of methods for recovery or mitigation.

Unless otherwise stated, the adaptation can be applied
on different architectural levels of the system. For instance,
the change of the clock speed or other hardware parameters
is the re-parameterization on the physical level of a device.
Changing the receiver of a software component’s output is
rewiring on the process/task level.

1) RE-PARAMETERIZATION
In general, a re-parameterization (or reconfiguration)
switches to another configuration of one or more components
that is typically no longer the optimal setting, i.e., the quality
of service is decreased (graceful degradation). Adaptation of
parameters requires knowledge about the underlying algo-
rithm of the erroneous component and is therefore typically
performed by the component itself or within a subsystem.
The configuration can be selected by optimization [143],
or a reasoner based on a set of rules, an ontology or a
logic program [37]. Approaches from the control theory use
state observers or estimators to derive parameters to mitigate
stochastic faults [39]. For instance, an adaptive Kalman fil-
ter (AKF) [144] changes its filter parameters during runtime
based on the inputs. For instance, the measurement covari-
ance can be increased when an input signal gets worse or even
permanently fails (cf.: a traditional KF or state estimator
mitigates noise and transient failures only).
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2) RUNTIME ENFORCEMENT
Runtime enforcement [95], [97] merges runtime verification
with adaptation. This powerful technique ensures that a pro-
gram conforms to its specification. A so-called enforcer acts
on the interface of a component changing inputs or outputs to
comply with a set of formal properties. The enforcer uses an
automaton and/or rules to correct the IO in case of faults. This
approach has been pioneered by the work of Schneider [145]
on security automata which halt the program whenever it
deviates from a safety requirement. Since then, there has been
a great effort in the RV community to define new enforcement
mechanismswith primitives [146]–[150] or that support more
expressive specifications [151]–[153].

3) REDUNDANCY
Redundant components ensure availability (passive) and
increase reliability (active). Failed components can be
re-instantiated, replaced by spares, mitigated by vot-
ing or fusion, rewired or relocated [37], [41].

a: RE-INSTANTIATION OR RESTART
A straightforward fault-tolerance method is to restart a failed
software component. The tasks or the system typically saves
checkpoints or output messages of components on a periodic
basis to roll back to a healthy state [154]. The restart might be
combined with a re-parameterization. Checkpointing/restart
techniques are well studied for operating systems [155] and
may be applied on fog nodes or cloud servers. The pri-
mary/backup approach activates a typically aperiodic backup
task if the primary task fails [156]. Adaptations in hardware
and software also mitigate reliability threats while consider-
ing the optimization cost constraints [157]–[159]. Similarly,
runtime reconfiguration polices have also been proposed to
mitigate the reliability threats in microprocessors [160].

b: REPLACEMENT OR COLD/HOT SPARES
The simplex architecture [161] considers two redundant sub-
systems. A highly dependable subsystem jumps in when
the high-performance subsystem fails. Triple modular redun-
dancy (TMR) replicates HW and/or SW components to
mask failures (through a voter, i.e., includes detection).
The replicates are in the best (but most costly) case
diverse w.r.t. their design such that also design and input
errors can be masked [28]. Such hardware redundancy is
typically added during design time and used in closed,
non-elastic systems. To exploit these techniques, several reli-
ability resilient microprocessor designs [162]–[164] and cor-
responding software layer controls [165]–[167] have been
proposed to ensure the resilience towards reliability threats,
i.e., soft errors. Typically, TMR-based solutions possess a
large area and power overhead. However, adaptive-TMR
solutions [168] can trade-off between power budget and
reliability threats. Similarly, software and hardware error
masking techniques [163], [169] exploit the dark silicon
(under-utilized areas) in multi-core systems [170] to mitigate
faults. However, an IoT orchestrator can maintain a directory

of available services and redirect resource requests if neces-
sary.

Implicit redundancy like related observations in a system
(in contrast to traditional redundancy that is the explicit repli-
cation of components) can be exploited by structural adap-
tation. A substitute component is instantiated to replace the
failed component which includes also rewiring and possibly
also a relocation [171], [172] (see Sec. VII for an example).

c: AGREEMENT/VOTING OR FUSION
Byzantine failures (inconsistent failures to different observers)
typically caused by malicious attacks can be detected and
tolerated using replicas (here: redundant services on different
nodes of a distributed system) by agreement or consensus on
the outputs [94]. The output of redundant components can be
combined or fused, e.g., via filters or fuzzy logic [42]. How-
ever, through recent implementations and usage in cryptocur-
rencies [173], [174] the attention is shifted towards smart
contracts and blockchains which ensure authentication and
integrity of data [44], [46], [47], [96]. Basically, a blockchain
is a series of data records each attached by a cryptographi-
cally secure hash function which makes it computationally
infeasible to alter the blockchain. However, blockchains
suffer from complexity, energy consumption and latency and
therefore currently cannot be used for real-time anomaly
detection or applied by simple nodes with low computational
power and restricted battery power budgets [96]. However,
it is already examined to manage access to data (autho-
rization), purchase devices or computing power or manage
public-key infrastructure in the IoT [44], [175], [176].

d: REWIRING OR REDIRECTION
Broken links in mesh networks are typically reconfigured
using graph theory considering node properties and applica-
tion requirements [177]. A software component may route the
task flow to a recovery routine [41].

e: RELOCATION
Migration of software components or tasks are stud-
ied in the field of resource optimization, utilization and
dynamic scheduling on (virtual) machines. Optimization
algorithms [143], multi-agent systems [178] or reinforce-
ment learning [179] find a new task configuration utilizing
resources in case of a platform failure. Tasks may also be
migrated in advance when the health state decreases [154].
Cloud applications boost and emerge new technologies like
containerization, resource-centric architectures andmicroser-
vices which ease service orchestration in complex and elastic
systems. Dragoni et al. [180] prognosis increased dependabil-
ity using microservices which focus on small, independent
and scalable function units (cf. fault containment units in
Kopetz [28]), however, security remains a concern.

V. LONG-TERM DEPENDABILITY AND SECURITY
During design time only a subset of failures and threats can be
considered, however, the changes of the system itself or the

13270 VOLUME 7, 2019



D. Ratasich et al.: Roadmap Toward the Resilient IoT for CPSs

environment can not be predicted which may lead to new
possible fault scenarios. Moreover, over the period of time
(especially when considering systems deployed for several
decades like autonomous vehicles), new attacks can emerge
(adversarial machine learning, though, ML is decades old
theory), new vulnerabilities in the system can be unleashed
(some recent examples are Spectre and Meltdown in decades
old technology of high-end processors), and attackersmay get
more powerful and intelligent (e.g., learning based attacks).

We therefore believe that the IoT needs enhanced
self-adaptation techniques (may be cognitive in nature) to
achieve long-term dependability and security. For instance,
apart from traditional fault-tolerance like backup hard-
ware/software components or checkpointing and restarting,
self-healing is a promising approach which is related to
self-adaptation and self-awareness. Self-aware systems learn
the models of the system itself and its environment to reason
and act (e.g., self-healing) in accordance to higher-level goals
(e.g., availability) [36]. The key feature of self-* or self-X
techniques is continuous learning and optimization which is
performed during runtime to evolve the models upon system
changes.

To design and build a long-term dependable and secure IoT
of smart CPS, the following research questions need to be
addressed first:
A) How to detect and separate subsystem failures and

minimize the failure dependencies of the subsystems?
How to guarantee the resilience of the system when
applying machine learning and/or self-adaptation?

B) How to detect and recover compromised components
with minimal performance and energy overhead? How
to learn from unknown attacks on-the-fly and devise
appropriate mitigation strategies online, e.g., online
on-demand isolation, new fail-safe modes, etc. besides
investigating fast learning of on-going attacks to mini-
mize the attack surface?

C) How to ensure the robustness of the resilience mecha-
nisms itself?

To address these challenges, following techniques are envi-
sioned to ensure long-term dependability and security.

A. VERIFICATION AND VALIDATION
Ensuring the complex dependencies and integrity of several
components and subsystems within a system is a very chal-
lenging research question. The state-of-the-art on dependabil-
ity and security assurance is based on model-driven design
that consists of specifying rigorously the structure and the
behavior of the systems using formal models. These models
are amenable to formal verification techniques [181]–[184]
that can provide comprehensive guarantees about correctness
of the system’s properties. The accuracy of these models and
the test coverage limit the validity of the assurance.

The addition of data-driven learning-enabled subsystems
introduces uncertainty in the overall design process and
may result in an unpredictable emergent behavior. This is
because the operational behavior of these subsystems is a

function of the data they train upon and it is very difficult to
predict.

This lack of predictability force to think novel approaches
for ensuring long-term dependability and security. Here we
could envision at least two possible interesting research direc-
tions to pursue.

One idea could be to take inspiration by the natural
immune systems that protect animals from dangerous for-
eign pathogens (i.e., bacteria, viruses, parasites). In our case,
we can think to have a specialized subsystem that learns
both how the surrounding environment evolves and how to
best react to attacks. However, this approach would leave the
system vulnerable during the learning process.

Another possible direction is to provide mechanisms to
enforce dynamic assurance of security and dependability at
runtime. A similar approach in control theory can be found
in the Simplex Architecture [161] (SA). SA consists of a plant
and two version of the controllers: a pre-certified baseline
controller and a not certified high-performance controller.
A decision module decides whether to switch between the
two controllers depending on how much close is the high-
performance controller to violate the safety region. In our
case, we could envision a dedicated decision module (for
example a runtime monitor) enabling a certain degree of
autonomy and trust to its subsystems depending on howmuch
the overall system is far to violate a certain safe and secure
operating conditions.

B. INTELLIGENT AND ADAPTIVE SYSTEMS
Long-term dependability and security can be achieved by
intelligent and adaptive systems (i.e., so-called smart or cog-
nitive systems) that consider uncertainties and changes
throughout the lifecycle, and increase their inherent robust-
ness levels on-the-fly autonomously through continuous
self-optimization and self-healing.

Many of the techniques presented in the last section do not
handle dynamic systems or systems that evolve over time.
However, the approaches can be evaluated and extended by
artificial intelligence, or new techniques developed to cope
with the elasticity of the IoT.

Machine learning-based fault detection and recovery are
replacing traditional (pre-configured) techniques because of
their ability to extract new and hidden features from the com-
plex and enormous amount of data [185], [186]. To design
intelligent and adaptive ML-based secure sub/-systems, first
a trained model must be acquired with respect to safe, secure
and dependable behavior while considering uncertainties,
unforeseen threats and failures, and design constraints. Next,
the trained model is integrated within these sub/-systems for
online threat and fault detection under the area and power
constraints. However, ML-based techniques typically do not
consider the limited computational resources, complexity,
probably poor interoperability or real-time constraints of the
IoT. Therefore, one has to apply scalable and/or distributed
techniques.
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C. ROBUSTNESS
The subsystem ensuring resilience shall be robust against the
elasticity or dynamicity of the system. The machine learning
models need to be updated or reconstructed from the basic
building blocks on system changes. Models like deep neural
networks (DNNs) and recurrent neural networks (RNNs) are
effective in classifying real-world inputs when trained over
large data sets. Unfortunately, the decision-making systems
using NNs cannot be analyzed and rectified due to the cur-
rently used black-box models of NNs.

However, AI systems used in industry (in particular
safety-critical CPS) need to follow the strict regulations
and are expected to explain the reasoning behind their
decision-making which is not viable when using ML-based
systems [187]. Recent advances in AI, e.g., biologically
inspired NNs, may provide the necessary information to get
certified. For instance, Hasani et al. [188] are able to interpret
the purpose of individual neurons and can provide bounds on
the dynamics of the NN.

Moreover, a NN has several security and reliability
vulnerabilities w.r.t. data, e.g., data poisoning, model stealing
or adversarial examples [61], [189]. To ensure the robust-
ness in such NN-based decision system, several counter-
measure have been proposed. A common approach is to
encrypt the data or underlying model [190]–[192]. How-
ever, encryption works as long as the encryption techniques
and confidence vectors remain hidden from the adversary.
Moreover, it requires additional computational resources
for encryption and decryption. Other approaches are, e.g.,
watermarking [193], [194], input transformation [195] and
adversarial learning [196], [197]. Note that these counter-
measures protect the NNs against known attacks only. There-
fore, to ensure the robustness also under unknown attacks
and unforeseen circumstances formal verification-based
approaches [198], [199] are emerging as an alternate
solution.

VI. ROADMAP
We are investigating techniques for anomaly detection and
self-healing to ensure resilience in IoT for CPS.

A. GOALS
The overarching goal of our research is to provide guide-
lines, methods and tools to enable a safe and secure IoT for
CPS.

Our contributions are two-fold. We increase the depend-
ability of the IoT (and in further consequence, the CPSs using
it) by self-healing and the security by developing (semi-)
automatic configuration, testing and threat detection.We plan
to address the following research questions:

• How to improve the resilience of the IoT by
fail-operational mechanisms?

• How to verify and monitor IoT components?
• How to detect anomalies in the IoT with minimum per-
formance and energy overhead?

• How to ensure high resilience even under unpredictable
attack and failure scenarios?

• What architectural requirements are necessary to ensure
resilience with these mechanisms?

In summary, the key research goals of our contribution are:
• Propose novel design methodologies and architectures
for scalable resilience in IoT for CPS.

• Propose an energy-efficient analysis (verification) and
threat detection.

• Propose a framework to design low power and
ML-based run-time anomaly.

• Propose amethodology to identify and assert the runtime
safety and security properties.

• Propose a self-healing mechanism for the IoT.

B. CHALLENGES
The resilience of systems using anomaly-based detection
and self-healing raise the following research questions and
challenges.
• C1: Resource Limitations. The majority of IoT com-
ponents are resource-constrained devices. The developer
often has to trade off power, time and costs against
resilience. Typically, small IoT devices like commer-
cial off-the-shelf (COTS) microcontrollers may provide
insufficient capabilities. Some technologies might there-
fore need hardware implementations (e.g., RV monitor)
or should be designed as a lightweight and fully dis-
tributed, layered, or clustered service (e.g., a monitor per
subsystem).
For instance, one major challenge in anomaly detection
is the data acquisition under the consideration of power
and design constraints. This raises following research
questions:
1) How to extract/acquire and analyze a particular

characteristics during run-time while considering
the design and power constraints?

2) How to reduce the area and energy overhead of
the data acquisition, i.e., power-ports, for runtime
measurement and modeling?

• C2-1: Interoperability and Complexity. The IoT is a
large dynamic network of heterogeneous components.
In particular, COTS or components protected by intellec-
tual property (IP) may not provide a proper specification
of its behavior for some of the detection and adapta-
tion methods. Furthermore, new devices or subsystems
may introduce unknown interfaces (here: unknown to
the resilience-enabling technologies). In particular, this
raises following research questions:
1) How to identify the reference communication

behavior without any reference system?
2) How to model the communication behavior which

can be used to identify the anomalous behavior?
In anomaly detection, for instance, one of the major
challenge is to identify the appropriate golden/reference
behavior which can be used to compare with
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FIGURE 9. A brief history of computer systems and our roadmap towards resilient IoT for CPS.

online/offline behavior. This raises following particular
research questions:
1) How to model/identify the reference/golden

behavior that covers the key characteristics and can
be scalable?

2) How to obtain the labeled data for supervised train-
ing to extract the reference model?

3) Which modeling techniques and correspond-
ing characteristics are appropriate to iden-
tify the anomalous behavior with complete
coverage?

• C2-2: Interoperability and Sharing. The devices of a
CPS are specified during design time having a specific
application in mind. The things of an IoT will most
likely be shared between applications while different
fog/cloud applications might request different QoS of
the devices, e.g., regarding dependability. The methods
therefore must also consider and combine the require-
ments of different applications and the value of trust
of the information (e.g., used to derive actions). Due
to the vast size of an IoT, a central mechanism most
likely will not be able to cope with all the input data
necessary to achieve resilience (considering memory
and time constraints).

• C3: Real-Time and Scalability. One major shift
from sensor networks to the IoT is the control and
manipulation of actuators from the distance, i.e., the IoT
comprises a cyber-physical system. The CPS typ-
ically has to satisfy time constraints (rates, dead-
lines) in order to function correctly. In such real-time
applications the probing of information by a moni-
tor or changes in the system (e.g., connection of new
things, updates, recovery) shall not influence the tim-
ing behavior of the CPS. Furthermore, the timeli-
ness to detect and react to critical failures has to be
considered.

However, the complexity and dynamicity of the network
will leave the door ajar for some faults, e.g., physical faults,
design errors or zero-day malware. Therefore a proper never-
give-up strategy [28] to cope with unconsidered failures has
to be developed.

C. MILESTONES
Figure 9 depicts the evolution of embedded systems
(milestones as junctions), their goals and requirements (as
lines). The lower part of Fig. 9 summarizes our milestones
(1.i-iv, 2.i-iii, 3) given below.
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1) How to improve the resilience of the IoT by
fail-operational mechanisms? How to monitor IoT
components?

The IoT will most likely contain many heterogeneous com-
ponents with different capabilities of resilience. We therefore
consider fail-operational mechanisms that target the depend-
ability of the information exchanged between IoT compo-
nents. The mechanism shall be applicable within the fog
and/or cloud running on an independent component or may
be applied in an IoT device itself if the performance require-
ments for the mechanism are satisfied.

We use given implicit redundancy of information provided
by distinct IoT components to self-heal the IoT. To this end,
the major effort lies in i) developing and extending our redun-
dancy model, ii) implementing a self-adaptive fault detection,
iii) applying fault diagnosis, and iv) recovery considering
currently available information.
2) How to verify IoT components? How to detect

anomalies in the IoT with minimum performance
and energy overhead?

We propose a methodology which consists of the following
phases: i) security vulnerability analysis, ii) low-power and
iii)ML-based anomaly detection.

The first phase of the proposed methodology is to analyze
the IoT for CPS for the security vulnerabilities. Unlike the
traditional simulation and emulation techniques, we plan to
leverage the formal verification for analyzing the security
vulnerabilities. After identifying the security vulnerabilities
and the corresponding parameters, i.e., communication and
side-channel parameters, the next step is to use this informa-
tion to develop online anomaly detection techniques. In this
project, we plan to leverage two key characteristics, i.e., com-
munication behavior and power (dynamic and leakage) to
develop the low power and ML-based anomaly detection
techniques.
3) What architectural requirements are necessary to

ensure resilience with these mechanisms?
Finally we collect the architectural requirements of our
developed mechanisms to be added to design guidelines for
resilient IoT.

In the following, we present a case study to demonstrate
how the above mechanisms can be employed in a real-world
use case to detect, diagnose and mitigate faults.

VII. CASE STUDY: RESILIENT SMART MOBILITY
To illustrate the effectiveness of our approach, we perform a
case study on mobile autonomous systems, i.e., vehicle-to-
everything (V2X) communication in automated driving. The
network connects sensors, controllers and actuators, build-
ings, infrastructure and roadside systems.

In particular, let’s consider vehicles driving on a high-
way (Fig. 10). Radar sensors are mounted along the street
and form a collaborative sensor field. In order to improve
object detection and classification, a multi-object track-
ing scheme is employed, which uses subsequent sensor

FIGURE 10. Visualization of the use case.

measurements in the form of prediction and update cycles
to estimate vehicle locations. The tracking data can be used
for, e.g., traffic congestion forecast or accident investigations.
A set of radar sensors is connected to a fog node, that is
a computing unit and IoT gateway in the near area of the
sensors. The tracker - a software component running on a fog
node - tracks the vehicles on the road segment covered by
the associated radars. Some vehicles (e.g., autonomous cars)
are equipped with distance sensors like radar, lidar or depth
cameras. The fog node(s) of these cars can connect to near
fog nodes of the street (directly over a vehicular network
called VANET, or via the mobile network over the cloud).
Additional MEMS sensors can support energy management,
health and comfort in road transportation.

We assume the IoT infrastructure (things, fog, cloud, net-
work) is given and propose methods to increase the resilience
of the IoT.

Failures of the radar sensors in our example will lead to
inaccurate or even unusable tracking results. Failure sce-
narios like communication crashes and dead batteries (fail-
silent, fail-stop) are relatively easy to handle (e.g., watch-
dog/timeout). However, the sensor measurements received
by the tracker running in the fog node may be erroneous
due to noise (e.g., communication line, aging), environmental
influences (e.g., dirtying of the radar) or a security breach
(e.g., hacked fog node that collects data of a group of sensors).
To detect a failure of the sensor one has to create particular
failure models for each possible hazard (c.f., aging, dirtying
and a security breach). A simple method detecting a faulty
sensor value in different failure scenarios is to check against
other information sources, i.e., exploit redundancy. However,
explicit redundancy that is replicating observation compo-
nents is costly.

Self-healing can be applied to react also to failures not
specifically considered during design-time. A very promising
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way of achieving self-healing is through structural adap-
tation (SHSA), by replacing a failed component with a
substitute component by exploiting implicit redundancy (or
functional and temporal redundancy) [200]. We use a knowl-
edge base [171], [172] modeling relationships among sys-
tem variables given that certain implicit redundancy exists
in the system and extract a substitute from that knowledge
base using guided search (Sec. VII-B). The knowledge base
can also be used to monitor the system by comparing the
information of variables against each other, i.e., to detect
failures (Sec. VII-A).
SHSA can be encapsulated in separate components listen-

ing and acting on the communication network of the IoT,
e.g., as tasks monitor, diagnose and recover running on a fog
node (Fig. 11).

FIGURE 11. Overview of the self-healing components and proposed
integration into a fog node.

SHSA monitors the information communicated between
components (typically the sensor measurements or filtered/
estimated observations), identifies the failed component and
replaces messages of the failed component delivering an erro-
neous output by spawning a substitute software component.
SHSA considers the currently available information in the
network, i.e., can be applied in dynamic systems like the IoT
(components may be added and removed during runtime).
The knowledge base, in particular the relationships between
the communicated information, can be defined by the applica-
tion’s domain expert or learned (approximated by, e.g., neural
networks, SVMs or polynomial functions, see also [200]).

Alternatively, the monitor and diagnose task may be
installed in the cloud analyzing the logged tracks to trigger
maintenance of radar sensors. The requirements needed by
SHSA regarding the architecture of the system (e.g., commu-
nication network) and a reference implementation of SHSA
can be found in [200].

A. DETECTION AND DIAGNOSIS
In our future work, we want to use the SHSA knowledge base
described below to perform plausibility checks upon related
information.

As our focus is on adaptation of the software cyber-part in
a CPS (cf. dynamic reconfiguration of an FPGA), we assume
that each physical component comprises at least one soft-
ware component (e.g., the driver of the radar in the vehi-
cle) and henceforth, consider the software components only.

The CPS implements certain functionality, e.g., a desired
service (e.g., collision avoidance). The subset of components
implementing the CPS’ objectives are called controllers.

1) SHSA KNOWLEDGE BASE
A system can be characterized by properties referred to
as variables (e.g., the position and velocity of a tracked
vehicle). The values of system variables are communicated
between different components typically via message-based
interfaces. Such transmitted data that is associated to a vari-
able, we denote as information atom, short itom [201]. A vari-
able can be provided by different components simultaneously
(e.g., two radars with overlapping field of view). Each soft-
ware component executes a program that uses input itoms
and provides output itoms. An itom is needed, when it is
input of a controller. A variable is provided when at least one
corresponding itom can be received.

Variables are related to each other. A relation is a func-
tion or program (e.g., math, pseudo code or executable python
code) to evaluate an output variable from a set of input
variables.

FIGURE 12. Knowledge base. Ellipses are variables, boxes are
relationships (functions). The variables are annotated with possible
itoms. Bold itoms are available in the scenario in Fig. 13.

FIGURE 13. An exemplary scenario from the use case. Visualization of
itoms variable|itom from the knowledge base in Fig. 12.

The knowledge base is a bipartite directed graph (which
may also contain cycles) with independent sets of variables
and relations of a CPS. Variables and relations are the nodes
of the graph. Edges specify the input/output interface of
a relation. For instance, Fig. 12 models the relationships
between the variables in the tracking use case (only rele-
vant nodes, relationships and edge directions for the scenario
in Fig. 13 are shown). The knowledge base can also be
encoded by a set of rules, e.g., written in Prolog. It is then
possible to further customize the model, e.g., to follow the
requirements and constraints of a CPS application.
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FIGURE 14. A monitor checking the position of a vehicle using different
itoms. The itoms are first transferred into the common domain
(here: position of the vehicle (x, y, v )) and compared against each other.

A proper data association identifies which itoms or mea-
surements represent the same variable, e.g., links the different
position itoms (x, y, v)|∗ to each other. For instance, the GPS
position (x, y, v)|GPS of a vehicle (transmitted by the vehi-
cle itself) has to be linked to the corresponding radar track
(x, y, v)|radar (provided by the radar).
Subsequently, the redundant itoms can be used, e.g., tomon-

itor a radar sensor, to substitute a failed radar or to increase
the accuracy of a tracking application by sensor fusion.

The interested reader is referred to [171] and [172] for
more details on the SHSA knowledge base.

2) FAULT DETECTION BY REDUNDANCY
An itom has failed, when it deviates from the specifica-
tion. Our monitor uses the knowledge base to periodically
perform a plausibility check to identify a failed itom. The
automatic setup of a runtime monitor follows successive
procedure:
• Select the variable to be monitored (typically the corre-
sponding variable to the itom under test), e.g., the posi-
tion of a vehicle.

• Collect the provided itoms (e.g., subscribe to all avail-
able messages). Note, the availability of variables may
change from time to time which should trigger a new
setup of the monitor.

• Extract relations of the monitored variable and available
variables from the knowledge base (similar to the search
of valid substitutions in Sec. VII-B).

The instantiated monitor for the position of a vehicle is
depicted in Fig. 14. At each time step the relations are exe-
cuted to bring the available itoms (provided variables) into the
common domain (variable to be monitored) where the values
are compared against each other. Themonitor returns the fault
status or a confidence / health / trust value for each itom used
in the plausibility check.

The confidence may be expressed by a distance met-
ric or error between the itoms in the common domain. The
trust or confidence of a radar may be accumulated from
the individual confidence values of the tracked vehicles,
i.e., the vehicles in the field of view of the radar. As soon as
the confidence falls below a specific threshold for a specific
amount of time the status of the respective itom is classified
as failed.

The monitor can identify failed itoms in the common
domain, however, when the output of a relation mismatches
in the common domain, all inputs of the relation are marked
faulty. To avoid additional monitors (a monitor for each input
variable is necessary to identify the failed itom) a fault local-
ization can be performed.

3) ANOMALY DETECTION
In addition to SHSA, we are developing a low power runtime
anomaly detection and ML-based runtime anomaly detec-
tion [52] to ensure: i) a secure and safe platform for automated
driving, and ii) secure V2X communication.

a: LOW POWER
To address the key challenge of power overhead in CPS,
we propose a methodology that leverages the traditional
low-power online anomaly detection techniques, in particu-
lar, assertions, sensor-based analysis and runtimemonitoring.
In this methodology, the first step is to identify an appropri-
ate detection scheme based on the security threats, security
metrics and design constraints. Second, based on the selected
technique, the setup of corresponding assertions or sensor-
based runtime monitoring is developed and implemented.

FIGURE 15. The effects of trust-hub Trojan benchmarks (i.e.,
MC8051-T200 and T400) on the communication behavior of MC8051 for
Gaussian and Exponential input data distribution and an Overview of the
motivational case study of an MC8051-based communication network.

We propose to use communication behavior-based asser-
tions to identify the online anomalies with low power and
area overhead. To illustrate the effect of intrusions on com-
munication behavior, we analyzed the effects of several
MC8051 trust-Hub benchmarks on an MC8051-based com-
munication network. The analysis in Fig. 15 shows that
in case of a denial-of-service attack, output packets of the
communication channel are less than the input ones. How-
ever, in case of flooding, jamming, and information leakage
attacks the traffic in the communication channel is more
than the input data injection. Therefore, it can be concluded
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that the communication behavior can be used to identify the
anomalous behavior. However, extracting the communication
behavior without any golden circuit is not straight-forward
which raises the following research challenges:

1) How to identify the reference communication behavior
without any reference circuits/systems?

2) How to statistically model the communication behavior
which can be used to identify the anomalous behavior?

3) How to measure and analyze the communication for
low power runtime anomaly detection?

b: MACHINE LEARNING
With the increasing trend of connected devices, the number of
communication channels also increases exponentially. Thus,
communication behavior-based assertions are not feasible
to handle the large number of communication channels and
corresponding communication data. Therefore, to increase
the scope of the online anomaly detection for larger CPS
with big data analysis, in this project, we propose to explore
machine learning algorithms to extract the hidden features
from the side-channel parametric and communication behav-
iors (i.e., power and communication behavior). The first step
to develop a ML-based anomaly detection is to select an
appropriate ML algorithm based on the design constraints,
security threats and complexity of the measured data. Then,
train and implement the ML algorithm based on measured
data with minimum power and area overhead.

To illustrate the effect of intrusions on power profile, we
analyzed the MC8051 with and without trust-Hub bench-
marks, i.e., MC8051-T200 and T400, in Xilinx power ana-
lyzer. The experimental analysis in Fig. 16 shows that
intrusions in MC8051 have a significant impact on the power
distribution with respect to different pipeline stages (see
labels 1 to 4). Therefore, it can be concluded that the power
profiling of the processing elements/controllers in CPS can
be used to identify the abnormalities.

FIGURE 16. Effects of trust-hub Trojan benchmarks (i.e., MC8051-T200,
T300 and T400) on Power Correlation with respect to Pipeline Stages for
Different Instructions, i.e., MOV, ADD, INC, JMP.

Though the power profiling of the microprocessor can
be used to detect an anomalous behavior, power-based ML
training and runtime measurement is not easy. Therefore,
the following research challenges must be considered while
designing the ML-based online anomaly detection:

1) How to extract the power profiles of the processing
elements (controllers in CPS) for efficientML training?

2) How to reduce the area and energy overhead of
power-ports for runtime measurement and modeling?

4) FAULT LOCALIZATION [135]
The fault detection mechanisms described in the last sec-
tions can identify failed data on the communication network.
In order to recover the failed component responsible for the
wrong information we have to apply fault localization.

The engineers often design CPS using the MathWorksTM

Simulink toolset to model their functionalities. These mod-
els are generally complex hybrid systems that are often
impossible to analyze only by using the reachability analysis
techniques described before. A popular technique to find
bugs in Simulink/Stateflowmodels is falsification-based test-
ing [125], [126], [202]. This approach consists in monitor-
ing an STL property over traces produced by systematically
simulating the CPS design using different set of test cases.
For each generated trace the monitor returns a real-value that
provides an indication as how far the trace is from violation.
This information can be used to guide the test case generation
to find an input sequence that would falsify the specification.
However, this approach does not provide any information
concerning which is the failed component and the precise
moment in time that is responsible for the observed violation.
To overcome this shortcoming, Bartocci et al. [135] have
recently introduced a new procedure that aids designers in
debugging Simulink/Stateflow hybrid systemmodels, guided
by STL specifications. This approach combines a trace diag-
nostics [142] technique that localizes time segments and
interface variables contributing to the property violations,
a slicing method [203] that maps these time segments to the
internal states and transitions of the model and a spectrum-
based fault-localization method [139] that produces a ranking
of the internal states and/or transitions that are most likely to
explain the fault.

B. RECOVERY OR MITIGATION
A failed itom can be replaced by a function of related itoms.
To this end, the knowledge base is searched for relationships
using provided variables and spawns a substitute.

1) REPLACEMENT
The substitute search algorithm traverses the knowledge base
(Fig. 12) from the failed but needed information as root to
find a valid substitution [172].

A substitution of a variable is a connected acyclic
sub-graph of the knowledge base with following properties:
i) The output variable is the only sink of the substitution.
ii) Each variable has zero or one relationship as predecessor.
iii) All input variables of a relation must be included (it fol-
lows that the sources of the substitution graph are variables
only).

A substitution is valid if all sources are provided, otherwise
the substitution is invalid (Fig. 17). Only a valid substitution
can be instantiated (to a substitute) by concatenating the
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FIGURE 17. A valid substitution for the failed street radar. Old data from
the predecessor radar is used to forward estimate the position of the
vehicles.

relationships which take the selected itoms as input (e.g., best
itoms of the source variables).

Substitutions can be found by depth-first search of the
knowledge base with the failed variable as root. The search
may stop as soon as all unprovided variables are substi-
tuted [171]. In [172] we present a guided search approach
using a performance measure for substitutions.

The result of the search - the substitution - is instantiated
in a substitute [200]. In particular, the substitute subscribes to
the input itoms and concatenates the functions or programs
from the relationships. The substitute then periodically pub-
lishes the output. To avoid inconsistencies and fault prop-
agation, the failed component (probably publishing erratic
messages) should be shut down as soon as possible.

VIII. CONCLUSION
This paper summarizes the state-of-the-art of detection and
recovery to react to failures in IoT for CPS. We further
presented the main challenges and a roadmap towards a
resilient IoT. The summary of the main challenges identified
for existing and new resilience methods are:
• Limited resources of computation and power (e.g., for
runtime data acquisition).

• Limited knowledge of device and interface semantics
(e.g., to retrieve a reference behavior for anomaly detec-
tion or model the redundancies in the system).

• Ensure and do not alter (real-time) behavior by
adding or applying resilience techniques.

• Provide long-term dependability and security, that
is, ensure resilience also after environmental, func-
tional or technological changes of the system.

• Adaptation, verification, validation and robustness of the
resilience techniques.

Moreover, we introduced some of our key solutions on an
automotive example. The SHSA knowledge base presented
in Section VII describes implicit and explicit redundancy
in a communication network. It can therefore be exploited
to monitor, replace or fuse information. Because SHSA is
based on redundancy it can handle various fault scenarios.
Especially permanent faults in the IoT can be detected and
recovered given some redundancy exists. As long as the
failed components can be isolated and replaced by redun-
dant information the methods can handle physical, devel-
opment or interaction faults manifested as failures at the
components’ interfaces.

The monitors tackle the requirement on fault detection
by voting over redundant information or comparing it to
some reference behavior (R1). An additional fault localiza-
tion identifies and triggers a disconnection of the failed com-
ponent to avoid fault propagation. The substitution replaces
failed information with redundant one (R2).

The presented techniques need a reference behavior, com-
mon understanding of the information or access to relevant
redundancy (C2). Therefore, the IoT should provide proper
interoperability (e.g., in form of standards). Under some con-
straints (bounded or static SHSA knowledge base, estimation
of the worst-case execution time of relationships) SHSA is
suitable for real-time applications [171]. However, solutions
to increase scalability have to be investigated (C3). Moreover,
the individual IoT devices might not have the resources to
implement detection and recovery (C1). In future work we
therefore want to focus on a distributed approach of the
mechanism (e.g., by splitting the knowledge base for sub-
systems, or monitor in a distributed fashion like agreement
protocols do).
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