

Received December 20, 2018, accepted January 1, 2019, date of publication January 10, 2019, date of current version February 4, 2019. *Digital Object Identifier* 10.1109/ACCESS.2019.2891673

Modified Grasshopper Algorithm-Based Multilevel Thresholding for Color Image Segmentation

HONGNAN LIANG, HEMING JIA[®], (Member, IEEE), ZHIKAI XING, JUN MA, AND XIAOXU PENG College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China Corresponding author: Heming Jia (jiaheming@nefu.edu.cn)

ABSTRACT Multilevel thresholding is an important approach for image segmentation which has drawn much attention during the past few years. The Tsallis entropy method is implemented for its effectiveness and simplicity. Although it is efficient and gives an excellent result in the case of bi-level thresholding, its evaluation becomes complexity when the number of thresholds increases. To overcome the problem, the metaheuristic algorithms are applied in this search area for searching the optimal thresholds. In this paper, a modified grasshopper optimization algorithm (GOA) is adopted to render multilevel Tsallis cross entropy more practical and reduce the complexity. The Levy flight algorithm is employed to modify the original GOA and balance the exploration and exploitation of the GOA. Experiments are conducted between five state-of-the-art metaheuristic algorithms and the proposed one. In addition, the proposed approach is compared with thresholding techniques depending on between-class variance (Otsu) method and the Renyi entropy function. Both real life images and plant stomata images are used in the experiments to test the performance of the algorithms involved. Qualitative experimental results show that the proposed segmentation approach has a fewer iterations and a higher segmentation accuracy.

INDEX TERMS Multi-threshold color image segmentation, Tsallis entropy method, grasshopper optimization algorithm, Levy flight.

I. INTRODUCTION

Image segmentation is a fundamental field in image analysis science, which plays an important role in image processing. There are primarily four types of segmentation methods: thresholding, boundary-based, region-based, and hybrid techniques [1]–[5]. Boundary-based methods assume that the pixel properties, such as intensity, color, and texture, change abruptly between different regions [6]–[10]. Region-based methods assume that neighboring pixels within the same region should have similar values [11]–[13]. Hybrid methods tend to combine boundary detection and region growing together to achieve better segmentation.

Among image segmentation methods, thresholding segmentation has received widely attention because of its simplicity, small storage space, fast processing speed, and ease in manipulation [14]. Thresholding methods involve selecting a set of thresholds using some characteristics defined from images [15]–[17]. Multilevel thresholding is an extension of bi-level thresholding for separating the color image into more than two classes. Among the thresholding techniques, Tsallis [18] and Otsu methods are the most popular ones. Otsu method maximizes the between class variance function, whereas, Kapur method maximizes posterior entropy of the segmented classes to find optimum thresholds [19]. Computational complexity of Tsallis and Otsu methods increases exponentially with the increasing numbers of thresholds due to exhaustive search.

Due to the small difference between the target and the background of a complex image, the bi-level thresholding cannot exactly find the optimal threshold. The multithreshold image can be divided into multiple regions to find the foreground and background in the image. Especially, under the circumstance of segmenting complex images, such as medical image, satellite image and plant image segmentation, the multi-threshold image segmentation method can segment the target region accurately. However, as the number of threshold increases, the computed amount of algorithm increases and the operation time becomes slow. It is a critical and challenging task for traditional exhaustive methods because of the high computational costs. In such case,

IEEE Access

FIGURE 1. Grasshopper growth cycle.

FIGURE 2. Levy's flight path.

TABLE 1. Parameters and references of the comparison algorithms.

Algorithm	Parameters	Value
GOA	c _{max}	1
	c	0.0004
WOA[56]	a	[0.2]
	b	1
	1	[-1,1]
FPA[57]	Р	0.5
PSO[58]	Swam size	200
	Cognitive, social	2,2
	acceleration	0.95-0.4
	Inertial weight	
BA[59]	β	(0,1)
MGOA	Levy	0.8

metaheuristic methods drew much attention in recent years. In 2018, Raja et al. [20] proposed firefly algorithm and Tsallis entropy based approach. The proposed method offers an average enhancement of cluster classification by 4.44% in terms of silhouette index. In 2016, Alva et al. [21] proposed Half-life Constant Particle Swarm Optimization and Tsallis entropy based approach. This method solves multidimensional problems. In 2016, Sarkar et al. [22] proposed a novel approach for unsupervised classification of land cover study of hyper-spectral satellite images to improve separation between objects and background by using multilevel thresholding based on the maximum Renyi entropy. He and Huang [23] proposed a modified firefly algorithm (MFA) to find the optimal multilevel threshold values for a color image. The MFA algorithm is an effective method for multilevel color image thresholding segmentation. In 2016,

FIGURE 3. The test images.

Muangkote *et al.* [24] proposed an improved version of the moth-flame optimization (MFO) algorithm for image segmentation to effectively enhance the optimal multilevel thresholding of satellite images. Experimental results indicate that the MTMFO more effectively and accurately identifies the optimal threshold values. In 2018, Pare *et al.* [25] proposed a modified fuzzy entropy (MFE) functional. MFE function is the difference of adjacent entropies, which is optimized to provide thresholding levels, such that all regions have almost equal entropies. V. K. Bohat [26] proposed a novel thresholding (TH) heuristic for multilevel thresholding problem. The proposed algorithm has higher image segmentation accuracy and shorter CPU time.

Therefore, traditional entropy based criterion has been coupled with different meta-heuristic techniques to improve the performance of multilevel thresholding in terms of stability and threshold selection [27]–[29]. Metaheuristics algorithms have handle the optimization problems by mimicking physical or biological phenomena. In the last couple of years, few works have been accomplished in favor of multilevel segmentation of colored images due to the exponentially increasing complexities involved in the computation of threshold values. Evolutionary techniques such as an ant colony algorithm (ACO) [30]. ACO imitated ants to find the shortest path social behavior, Particle Swarm Optimization (PSO) algorithm [31]–[34] simulated the behavior of birds
 TABLE 2. The optimal fitness value and threshold value of each algorithm under Tsallis.

K	GOA				WOA				FPA			
	R	G	В	F	R	G	В	F	R	G	В	F
Test1							10.05.188			44.00	10.01	
4	40 80 161	46 89 137	48 86 132	26.000	40 90 162	46 89 137	48 87 133	26 2206	38 89	45 89	48 81	25.0427
0	18 20 62	208	206	26.899	18 42 60	208	207	26.2306	153 223	138 208	131 208	25.8427
0	85 111 146	95 120	29 49 69		97 131 178	28 32 74	274708		28 50	29 30	52 54 78 94	
	191 232	147 182	141 179		218 243	148 183	143 181		126 171	118 141	121 158	
		228	227	30.9266		229	228	30.1564	229 232	179 226	184 221	29.2066
10	14 32 51	23 42 60	22 39 55		5 21 41 62	22 41 60	26 43 59		15 45	27 47	26 48	
	72 94 119	79 98 118	72 90 111		87 118 157	77 96 115	75 92 111		61 83	48 65	65 88	
	151 188	139 164	133 162		193 217	138 163	133 161		92 93	82 96	101 105	
	219 242	196 233	190 233	34 3662	241	196 235	196 255	34 3542	120 143	127 170	221 225	33 5411
12	12 27 44	19 33 47	21 34 47	5115002	14 30 47	19 36 52	20 33 47	5115512	19 21	22 42	28 33	5515 111
	62 81 100	59 74 90	61 74 88		65 83 100	67 83 99	62 77 92		41 59	63 71	35 49	
	120 139	107 124	103 118		124 152	116 134	109 128		92 110	82 104	57 79	
	164 190	144 169	134 157		182 208	153 177	149 175		136 152	121 151	95 102	
	217 240	201 237	188 231	37 9479	228 240	208 239	207 241	37 4725	230 238	218 232	166 230	35.9612
Test2				51.5475				51.4125	250 250	210 252	100 250	55.9612
4	115 161	103 140	62 93 119		113 161	106 141	60 91 118		110 161	100 139	63 93	
	181 210	161 185	144	25.5954	181 210	162 186	144	25.5599	181 210	161 185	119 144	25.3401
8	74 116 145	64 105	28 61 81		70 106 109	16 51 103	20 57 80		69 109	43 80	29 66	
	161 173	128 143	97 114		151 167	129 145	96 112		134 153	106 128	85 101	
	225	184 208	155 146	29 6095	221	191	120 142	29 5949	196 220	169 188	150 256	28 334
10	38 73 92	57 80 99	42 54 57	29.0090	81 120 134	66 80 111	10 19 39	27.3715	54 86	24 37	1 32 58	20.551
	99 138 158	119 135	110 111		154 164	131 144	52 78 94		105 124	59 94	74 86	
	171 183	147 158	133 185		174 184	154 163	111 128		148 162	121 140	99 115	
	199 223	170 186	216 233		195 212	172 186	141 152	22.0207	173 184	154 167	130 146	22 0020
12	55 67 86	221	247	33.2135	232	209	4 20 21 20	33.0286	73.08	184 210	1/5	32.9939
12	99 128 147	107 128	114 142		112 137	128 140	64 81 94		109 131	97 114	55 72	
	161 171	143 156	167 177		153 165	149 157	107 120		146 157	129 140	85 98	
	182 194	168 182	183 184		174 184	165 173	133 144		166 175	150 160	113 127	
	211 231	197 231	229 250	36.5818	194 210	185 199	154	36.4021	184 195	170 183	138 148	35.2611
		242	254		233	221			212 233	202 236	156 256	
Test3			40 V T		D 0 al	an an 1			-14 433	204 2JU	100 200	
4	40 70 105	43 76 108	72 119		40 71 106	43 77 109	74 121		40 71	43 76	73 120	
0	151	147	155 187	27.3472	152	148	156 187	27.3268	106 152	108 147	155 187	26.8225
8	26 46 63	32 56 /5	46 / 3 103		27 42 55	23 42 61	46 /3 105		26 45	2/51	44 69	
	148 178	135 163	169 188		136.170	136 164	171 189		102 129	111 134	151 169	
	110 110	256	211	31.4121	100110	100 101	213	34.4113	167 256	162 256	188 212	30.4256
10	23 39 52	21 40 58	13 42 62		17 30 45	8 13 29 42	3 44 72 99		28 47	1 4 21	32 52	
	67 84 103	72 85 99	86 112		58 72 89	61 77 93	123 143		63 80	40 58	75 102	
	122 143	115 133	135 154		108 129	113 135	160 176		98 117	75 92	127 147	
	165 183	152 174	213	35 1473	155 187	164	193 215	35 1466	236 256	162	207 244	34 6877
12	16 31 44	17 33 49	19 37 51	55.1475	21 35 47	17 20 29	14 28 49	55.1400	3 14 29	16 29	1 16 27	54.0077
	56 69 84	62 76 90	66 86 107		58 70 82	45 59 73	70 97 120		44 56	43 63	42 56	
	99 118 136	106 123	127 145		95 109 124	85 98 115	139 154		70 85	90 115	69 81	
	159 180	140 160	160 176		142 163	132 151	167 180		102 120	134 150	95 112	
	197	177 199	193 216	38 6408	189	175	197 217	38 6486	138 166	164 179	132 153	37 6208
Test4				50.0470				50.0400	210	175 215	115	51.0250
4	103 136	93 126	86 120		103 136	93 126	74 105		111 150	92 125	74 105	
	167 195	157 185	151 231	26.4604	167 195	157 185	131 157	26.4573	185 221	155 184	131 157	26.3345
8	51 84 108	66 98 130	48 71 89		76 99 118	67 89 110	30 63 84		75 100	1185	1 46 74	
	129 149	244 253	136 152		176 192	126 147	102 121		120 140	167 191	132 148	
	208	253	171	30.5352	210	200	172	30.4207	192 209	248	167	30.1312
10	44 45 71	65 85 102	39 62 78		51 69 96	49 75 93	48 57 73		27 72	1 65 88	1 57 81	
	89 108 128	118 135	93 107		116 134	110 128	87 102		96 115	107 128	102 121	
	149 170	152 167	122 135		151 167	146 161	117 131		134 153	149 168	138 160	
	189 208	249	190	34 1714	213	204	176	34 4586	208 236	243	256	34 0771
12	33 42 57	1 6 33 59	26 47 64	0.11111	56 84 100	40 51 77	1 35 49 69	0 11 10 00	36 67	1 64 86	1 1 42	0.1107712
	80 99 117	81 100	79 93 105		115 130	94 109	84 99 112		92 111	104 122	63 80	
	134 151	119 136	117 128		143 156	125 140	124 136		129 147	139 155	95 109	
	16/182	153 168	158 149		169 181	154 167	14/161		164 179	1/0 184	121 134	
	195 211	185 200	102 170	37 8453	217	205	177	37 8041	248 255	255	176	37 5706
Test5												
4	51 91 147	50 82 135	51 81 132	A	50 90 147	51 83 136	51 81 132	26.770	51 91	51 83	51 81	24.2245
8	215	206 42 55 72	205 41 54 67	20.3968	213	206 42 56 72	205 42 54 67	26.579	148 214	135 205	152 205 38 50	20.330/
0	96 122 154	93 119	85 110		93 119 150	93 119	85 110		62 86	71 92	63 82	
	188 226	150 186	142 180		187 230	150 186	143 181		115 152	118 149	113 150	
		227	225	30.7281		229	226	30.7126	192 232	185 226	186 220	28.8702
10	32 42 55	39 49 61	9 40 52		31 45 59	39 51 62	12 41 52		32 43	40 52	40 52	
	12 95 118	144 166	65 82 107		80 108 131	142 171	63 // 96		56 /6	66 85 110 137	64 82 109 145	
	200 233	191 226	205 231		203 236	201 236	185 228		155 184	164 187	187 218	
				34.4467				34.2253	205 233	208 233	233 244	32.5953
12	30 39 48	38 47 56	36 44 53		30 39 49	38 48 58	37 46 55		26 32	36 45	36 46	
	61 77 94	67 83 102	62 73 89		62 78 97	70 83 99	64 76 91		40 49	54 65	56 66	
	111 126	125 151	110 137		117 137	117 138	107 127		62 81 102 124	81 103	80 99	
	191 228	214 233	223 237		208 237	209 239	206 236		152 124	196 212	161 178	
				37.9681			200 200	37.9035	211 239	232 243	201 230	36.4008
Test6	64.02.117	68 00 1	22.55		50 107 ····	40.101	60 HO -		e + 07		3	
4	54 82 119	5/83108	32 56 80 141	26 7701	59 106 133	48 101	52 104	26 7770	54 82	57 82	34 58 82 144	26 7450
8	39 61 81	40 58 76	24 42 60	20.7791	26 57 86	40 73 98	23 47 81	20.7779	1 9 38	45.65	19 34	20.7439
	106 137	91 108	78 104		106 122	128 148	108 126		59 76	83 99	49 65	
	180 201	138 176	134 167		136 149	164 178	141 153		95 126	117 158	84 126	
	225	218	191	30.7739	162	193	166	30.7653	188	197 229	181 256	29.9481
10	30 46 61 76 03 114	36 52 65 78 01 102	19 35 50		26 50 65	18 44 76	9 21 34 61		30 45 58 71	33 48 64 70	17 32	
	142 164	120 149	137 148		134 145	149 163	132 144		36 / 1 84 100	92 107	47 04 82 118	
	180 217	170 215	162 179		155 165	176 187	156 168		126 159	135 181	160 192	
				34.5693		198		34.5847	206 240	225 237	201 256	34.2141
12	25 39 53	39 56 74	13 25 36		1 10 28 47	37 43 71	7 23 39 64		19 31	37 52	5 17 29	
	66 78 91	89 106	47 59 70		67 91 109	102 126	82 100		43 55	66 79	40 53	
	109 132	1301/5	82 99 114 141 167		125 134	140 151 164 176	115 125		07/9 94.113	91 105	07 84	
	203 224	192 201	193		166	184 189	157 169		135 173	173 194	195 256	
		217		38 0844		198		38.3809	209 239	210 240	256	37.0039

TABLE 2. (Continued.) The optimal fitness value and threshold value of each algorithm under Tsallis.

Leaf1												
4	79 95 114	95 112	52 72 160		79 95 114	96 113	11 52 72		78 94	95 112	48 63	
	190	131 199	246	25.5968	192	132 199	168	24.1273	113 188	131 199	81 164	23.3367
8	68 78 87	91 105	42 53 63		67 78 87	84 96 106	39 48 57		67 78	85 96	42 53	
	95 104 117	118 135	76 95 228		96 107 121	116 127	65 75 89		87 96	105 114	64 77	
	140 221	181 184	229 240		151 199	146 172	126 192		106 118	124 137	97 171	
		227 229		30.1141		208		27.1507	144 191	161 202	179 230	24.8702
10	71 82 92	83 95 105	39 48 57		41 72 84	83 94 103	14 40 50		67 78	84 95	44 57	
	104 120	115 127	66 78 94		95 108 127	112 122	59 68 80		87 97	105 116	70 88	
	178 179	145 182	135 191		200 235	134 152	99 164		109 130	130 153	169 219	
	183 184	185 224	237 240		254 254	167 167	215 247		172 185	164 174	237 239	
	231	228		34.2417		220		31.2286	202 211	176 208	241 245	30.5213
12	64 71 78	5 13 24	39 49 57		41 65 73	80 89 97	22 37 45		69 81	77 86	11 41	
	85 92 99	27 29 84	66 76 93		81 87 93	105 114	52 59 66		91 102	94 101	52 63	
	107 118	103 124	130 135		101 111	122 133	73 82 94		118 158	108 115	76 95	
	130 149	149 159	135 151		121 135	145 154	121 195		180 208	123 134	139 154	
	191 220	180 199	164 240		164 218	171 219	249		210 212	149 171	176 222	
				37.1281		219		35.2141	220 221	217 223	235 240	34.4118
Leaf2												
4	108 120	131 143	74 86 97		108 120	132 145	74 86 98		107 120	132 144	74 86	
	132 146	154 168	112	26.0191	132 146	156 171	112	24.1245	132 146	156 170	98 112	25.7024
8	99 107 115	10 60 95	100 105		100 108	124 133	66 74 81		100 109	29 29	17 41	
	122 129	108 121	129 134		116 123	140 146	88 95 102		117 124	30 52	88 117	
	137 146	175 177	152 198		130 137	152 159	111 124		131 140	59 93	122 129	
	159	236	207 249	30.2439	146 159	168 180		27.2216	152 177	179 197	159 163	28.4571
10	25 26 35	15 30 38	39 86 88		61 77 79	110 124	65 72 78		25 68	9 62 71	33 39	
	43 92 119	65 88 89	105 132		86 93 98	132 139	84 90 96		82 82	115 123	44 56	
	151 177	95 139	134 154		108 113	146 152	102 109		88 131	128 157	72 124	
	218 252	204 222	192 202		117 152	158 165	118 132		158 177	161 164	161 172	
			246	34.3193		173 185		31.0243	193 201	178	219 255	32.2211
12	5 28 40 71	21 34 64	15 79 102		98 106 113	96 103	122 130		14 14	21 46	4 15 49	
	76 125 128	68 88 108	102 119		119 124	109 115	137 143		39 94	113 125	51 145	
	144 144	113 164	123 131		129 136	120 125	148 152		119 145	145 148	161 163	
	149 169	202 202	142 173		143 154	130 135	152 157		169 171	160 174	171 234	
	201	244 252	187 224		166 166	141 148	163 169		181 214	184 186	238 243	
			226	28 1144	166	157 171	170 100	35 4215	214 254	211 222	240	35.0030

FIGURE 4. Box-plot representing the PSNR and FSIM for all methods. (a) PSNR under Tsallis. (b) FSIM under Tsallis. (c) PSNR under Otsu. (d) FSIM under Otsu. (e) PSNR under Renyi. (f) FSIM under Renyi.

in navigation and hunting. Other group optimization algorithms are: Artificial Bee Colony Algorithm proposed by Karaboga in 2015 [35], [36], which could be optimized by imitating the behavior of bees to collect nectar; The Flower Pollination Algorithm (FPA) [37] is proposed by Xin-she Yang. This algorithm is inspired by the pollination process

TABLE 3. The optimal fitness value and threshold value of each algorithm under Tsallis.

K	PSO				BA				MGOA			
	R	G	В	F	R	G	В	F	R	G	В	F
Test1		aa (a			00.00.470	10.01.100			10.00.151.000	10.00 100	10.04.100	
4	32 62 105	32 62	57 101	24 8100	39 88 160	43 84 132	46 84 131 205	22 8157	40 80 161 227	46 89 137	48 86 132	26 8001
8	24 54 86	29 56	31 43 50	24.0177	17 38 60 84	28 51 73	3 10 61 193	25.8157	18 39 62 85	27 50 72	29 49 69 90	20.8991
	117 174	91 109	70 104		110 143 188	95 120	196 211 215		111 146 191	95 120	113 141 179	
	215 231	117 143	123 154	20.1546	232	147 182	232	26.2186	232	147 182	227	20.0117
10	22 52 71	25 41	28 45 60	29.1540	8 23 41 61	2 6 107	21 36 53 70	20.2180	14 32 51 72	23 42 60	22 39 55 72	50.9117
	89 99 138	46 66	62 63 74		84 110 143	122 131	88 107 130		94 119 151	79 98 118	90 111 133	
	175 208	76 116	104 121		182 216 239	160 166	157 192 233		188 219 242	139 164	162 196 233	
	240 240	183 226	137 222	32.3442		203 237		31.5851		190 233		34.4059
12	21 51 70	23 49	25 44 65		7 18 31 45	16 27 40	15 27 39 53		12 27 44 62	19 33 47	21 34 47 61	
	73 85 107	67 90	68 84		60 78 98 122	54 68 84	68 84 101 119		81 100 120	59 74 90	74 88 103	
	163 171	106 117	105 107		242	137 162	231		217 240	107 124	118 134 157	
	218 242	146 185	161 180		2.2	196 233	201		217 210	201 237	100 201	
T (2)		215 228	225	34.9119				32.9552				38.1014
1 est2	124.150	94 129	56.06		32 50 100	00.129	62 03 110 144		115 161 191	103 140	62 02 110	
4	179 211	164 184	122 143	23.0554	129	160 184	02 93 119 144	22.3771	210	161 185	144	25,5935
8	116 129	82 119	46 57 83		98 141 157	35 41 69	24 51 74 89		74 116 145	64 105	28 61 81 97	
	160 170	125 140	88 97		169 180 192	69 70 76	103 120 136		161 173 185	128 143	114 133 148	
	204 226	168 191	149	26.6115	209 230	179 234	149	25.3991	202 223	184 208	1//	29.6095
10	103 138	46 114	41 73 82		76 113 138	15 65 97	21 40 61 75		38 73 92 99	57 80 99	42 54 57	
	138 155	128 144	90 91		153 164 173	118 134	87 98 112 127		138 158 171	119 135	110 111 133	
	168 171	151 160	102 120		230	146 158	140 151		183 199 223	14/158	185 216 233	
	208 228	182 195	150	31.2325	250	213		30.1139		221	217	33.2294
12	95 98 106	77 97	33 64 84		16 76 86 88	53 64 85	2 35 51 66 77		55 62 86 99	26 45 75	60 62 111	
	134 151 168 174	108 131	101 115		122 123 125	107 125	87 96 110 126		128 147 161	107 128	114 142 167	
	183 191	158 168	139 146		223 230	159 169	140 152 250		211 231	168 182	229 250 254	
	211 219	185 193	146 149			184 206				197 231		
Test3	231	206 215	154	36.5818		232		32.2021		242		36.6335
4	38 75 104	44 64	83 134		40 71 106	42 74 106	73 120 156		40 70 105 151	43 76 108	72 119 155	
	144	100 142	172 193	24.3252	152	144	187	24.8115		147	187	27.3306
8	25 50 66	27 40	52 85		26 46 63 81	18 27 61	41 65 93 120		26 46 63 81	32 56 75	46 73 103	
	141 168	50 84 91 107	167 185		101 123 148	171 176	210		102 123 148	135 163	188 211	
		134 158	200 207	30.4331		207		27.4156		256		31.4123
10	30 37 44	26 46	42 60 81		10 14 112	1 12 26	37 56 77 101		23 39 52 67	21 40 58	13 42 62 86	
	55 /9 94 97 116	64 81 99 129	91 123		203 208 215	43 61 77	124 142 158		84 103 122	12 85 99	112 135 154	
	149 172	140 143	165 186		205 208 215	136 164	174171214		145 105 105	152 174	171 190 215	
		151 160	216	32.1253				31.6257				35.1477
12	29 46 51	19 38	48 85		1 15 29 44	18 32 47	21 39 58 80		16 31 44 56	17 33 49	19 37 51 66	
	97 97 121	78 94	148 152		123 145 173	98 114	154 167 181		136 159 180	106 123	145 160 176	
	134 134	104 109	166 172		202	132 152	196 216		197	140 160	193 216	
	172	133 141	178 200	25 (199		178 256		22 (011		177 199		28 (440
Test4		15/162	207 21	33.0188				32.0044				38.0449
4	108 142	75 113	78 109		13 21 41 53	89 121	71 101 129		103 136 167	93 126	86 120 151	
0	177 199	151 179	132 153	24.4314	61 82 102	153 183	156	22.3045	195	157 185	231	26.5114
8	119 136	80 87 92 95	112 127		121 141 164	397395 114135	40.62 /8.95		149 170 189	159 186	48 /1 89	
	165 178	129 156	139 144		185 205	154 174	168		208	244 253	152 171	
10	186 204	177 194	168	28.5112	60 7 0 06 110	193	20 (1 70 02	28.1244	44.45.51.00	253	20 (2 50 02	30.6814
10	/8 8/ 89	01 91	54 84 89		60 /8 96 113 130 148 165	44 66 85	38 61 /8 93		44 45 /1 89	65 85 102	39 62 78 93	
	143 153	131 151	132 146		180 194 210	128 144	145 159 175		170 189 208	152 167	149 166 190	
	168 186	170 173	147 156			159 176				182 199		
12	208 77 98 102	185 197	100 56 57 72	31.3547	20 38 167	196	39 54 68 81	31.12/4	33 42 57 80	249	26 47 64 79	34.6817
12	103 112	102 115	87 104		167 193 198	83 95 106	94 106 117		99 117 134	81 100	93 105 117	
	129 152	131 134	110 114		219 219 221	123 140	127 137 148		151 167 182	119 136	128 138 149	
	153 173	134 152	118 130		225 235 254	156 171	161 177		195 211	153 168	162 176	
	209	199 199	176	35.8573		100 202		35.1106		105 200		38.3745
Test5		40.404										
4	34 99 182 195	59 101 147 207	50 90 135 194	21.5258	212	50 82 135 206	31 81 132 205	21.3287	51 91 147 213	50 82 135 206	205	18.2217
8	36 49 56	47 74	45 66 70	21.0200	35 50 70 94	42 55 71	40 52 64 82	a	34 49 69 96	42 55 72	41 54 67 85	1.0.0001/
	88 135	99 106	88 112		119 152 189	92 118	108 142 182		122 154 188	93 119	110 142 180	
	225	140 152 219 228	150 214 224	26.7221	230	149 185 228	220	24.8202	226	227	225	30.7091
10	35 38 44	43 58	19 47 59		31 40 51 68	37 46 56	39 50 60 74		32 42 55 72	39 49 61	9 40 52 65	
	58 78 113	86 91	62 64 77		89 113 140	69 87 109	92 117 143		95 118 144	77 97 120	82 107 138	
	119 158	96 119	119 133		170 200 233	139 171	171 200 228		172 200 233	144 166	175 205 231	
		200 214		31.4014				30.5911				34.4815
12	35 51 74	41 45	39 53 68		13 30 39 50	35 41 49	36 44 52 60		30 39 48 61	38 47 56	36 44 53 62	
	9/12/	56 66 94 132	81 92		65 82 102	57 66 80	69 82 98 120		77 94 111 126	67 83 102	73 89 110	
	163 187	160 191	135 149		199 233	138 162	235		228	173 194	223 237	
	200 224	194 211	208 210			192 229				214 233		
Test6	229	214 226	228	33.9251				32.4124				37.8463
4	57 90 113	88 159	64 117		57 105 132	57 105	57 107 136		54 82 119 191	57 83 108	32 56 80	
	145	176 182	132 157	23.7211	152	132 152	156	21.7249	20.00	175	141	26.7357
8	37 43 50	50 82	27 57		70 88 168	32 50 66	3 53 82 107		39 61 81 106	40 58 76	24 42 60 78	
	136 145	136 154	135 140		221 227	95 127 151 171	256		225	138 176	104 134 107	
	160	172 194	153 168	26.7189		189		25.9111		218		30.7447
10	31 71 81	37 45	23 33 57		20 40 63 87	22 50 54	9 17 31 51 78		30 46 61 76	36 52 65	19 35 50 66	
	133 143	40 87 107 144	124 137		104 117 129	205 206	147 162		93 110 142 164 180 217	120 149	03 109 137 148 162 179	
	146 155	159 178	156 165			209 215				170 215		
10	171	188 193	22.21.52	31.5353	10 24 54 70	20.72.07	1 < 10 20 51	31.2254	25 20 52 55	20.51.71	12.06.27.17	34.5216
12	27 33 71 88 102	38 65 84 99	22 51 53 62 65 72		18 54 56 79 97 111 123	38 03 87 109 122	88 109 122		20 39 53 66 78 91 109 132	39 36 74 89 106	13 23 36 47 59 70 82 99	
	119 123	100 116	84 116		133 143 152	136 150	133 143 154		165 199 203	136 175	114 141 167	
	137 151	127 127	130 147		162 195	163 176	166		224	182 187	193	
	15/181 206	142 166 182 194	151 165	36.0584		191.217 226		32.0119		192 201 217		38,4324
Leafl		*/ *								'		
4	79 95 114	96 113	48 63 81	22.61.69	108 120 132	132 145	73 85 97 112	21.2647	79 94 113 189	95 112	48 63 81	10 2117
8	70 81 90	85 96	42 53 64	26.1284	41 44 78 96	123 131	32 44 80 142	21.3347 22.8202	69 81 91 102	84 95 104	40 50 60 73	31.7131

TABLE 3. (Continued.) The optimal fitness value and threshold value of each algorithm under Tsallis.

	100 112	106 115	76.95		121 152 180	138 145	157 172 177		117 152 198	113 123	91 113 157	
	120 172	126 141	187 194		100	152 159	206		222	136 162	160	
	209	165 208	248		170	167 180	200			226	100	
10	67 76 84	55 84	11 38 48		48 106 141	8 10 43	31 49 66 66		69 80 90 100	84 96 107	42 53 64 76	
10	01 00 108	97 105	55 64 74		177 178 204	43 97 103	97 123 171		114 140 174	118 132	94 165 170	
	120 141	114 128	88 112		207 221 224	112 122	175 211 246		216 224 225	157 100	184 238 240	
	214 254	120 141	140 182		207 221 224	107 225	175 211 240		210 224 223	102 102	104 200 249	
	214 234	162 220	140 182	21 5717	239	197 225		25 1912		205		25 4525
12	62 72 70	5 10 16	25 44 51	51.5717	12 22 25 40	20.25.42	20.24.20.45	25.1815	26 22 47 52	200	11 42 54 66	55.4555
12	86 02 00	52.60	50 66 74		40.09.111	49 54 74	20 34 39 43		20 32 47 33	52 72 72	92 112 144	
	106 115	78 102	20.05		40 96 111	40 34 74	226 242 244		161 176 177	22 02 12 13	186 211 211	
	100 115	78 102	80 93		164 217 241	// 80 105	250 245 244		101 1/0 1//	88 98 101	160 211 211	
	130 133	110 119	1/9/183		245 246	108 111	240		200	1/01//	220 240	
	204 227	120 157	180 240	26 1261		150		21.4000		200		20.0572
. m		218		35.1351				51.4008				38.85/5
Lea12	100 120	24.04	100.120		50.05.114	06.112	10 (2 01 201		107 100 100	100.145	54.04.05	
4	108 120	/4 80	108 120		/9 95 114	96 113	48 05 81 201		107 120 132	132 145	/4 80 9/	00.0107
	132 146	98 112	132 147	25.8591	185	132 199		21.1124	146	156 170	112	27.7456
8	67 78 87	44 68	101 109		69 79 87 95	55 87 99	39 49 59 69		22 33 68 83	31 71 86	54 65 108	
	96 106	77.85	116 124		104 116 135	110 122	84 120 192		130 174 176	112 116	109 192 199	
	118 144	92 100	131 137		205	139 178	209		251	167 177	208 221	
	191	109 122	147 157	27.2189		222		24.4221		181		31.7119
10	25 68 82	64 72	99 106		67 77 86 94	80 90 99	42 53 63 74		27 32 59 74	39 40 145	2 8 90 126	
	82 88 131	78 85	112 118		103 114 135	106 113	91 156 158		76 112 122	159 180	192 207 209	
	158 177	91 98	123 129		195 213 229	122 135	211 211 245		228 242 250	182 198	213 237 248	
	193 201	104 111	134 141			154 159				220 236		
		116 129	149 161	31.3223		217		30.2011		251		35.5154
12	21 46 113	22 33	53 60 76		62 71 78 85	33 34 51	39 49 58 67		9 25 84 86 91	13 43 47	6 45 45 87	
	125 145	62 146	157 168		92 99 107	59 85 93	78 96 136 148		101 101 104	74 119	87 108 138	
	148 160	150 177	187 201		116 131 158	113 119	161 239 241		135 190 191	120 133	188 217 221	
	174 184	180 205	214 227		186 193	134 217	247		253	138 149	242 255	
	186 211	213 225	234 239			228 251				162 192		
	223	244 246	251	35.1854				32.0149		222		39.2224

TABLE 4. The PSNR and FSIM of each algorithm under Tsallis.

K	GOA		WOA		FPA		PSO		BA		MGOA	
	PSNR	FSIM										
Test1												
4	17.9478	0.8658	17.9744	0.8654	17.5541	0.7738	16.9008	0.7734	17.8235	0.8679	17.9279	0.8656
8	22.8018	0.9469	23.2061	0.9463	21.3791	0.8774	21.3832	0.8814	20.9239	0.8788	25.8755	0.9474
10	24.4042	0.9615	25.1398	0.9606	22.5334	0.9073	22.6249	0.8982	22.0579	0.8811	26.9691	0.9623
12	25.4411	0.9693	27.1819	0.9611	24.2467	0.9162	23.2354	0.9090	25.4246	0.9721	27.8297	0.9782
Test2												
4	22.4952	0.8292	22.3392	0.8277	22.3470	0.8280	22.3044	0.8380	19.9078	0.7768	22.4671	0.8292
8	27.0545	0.8819	27.8419	0.9012	28.1530	0.8990	26.4004	0.9039	22.2960	0.8307	28.0998	0.8921
10	27.4640	0.8933	29.5160	0.9198	28.7455	0.9107	27.6596	0.9219	30.1602	0.9256	28.6312	0.9465
12	30.3517	0.9016	30.7578	0.9309	31.1217	0.9360	29.2649	0.9344	28.7392	0.9115	29.3186	0.9521
Test3												
4	20.9266	0.7750	20.9181	0.7749	20.9579	0.7750	20.5956	0.6997	20.9783	0.7750	20.9411	0.7752
8	25.5619	0.8472	26.1558	0.8548	25.3810	0.8438	24.8984	0.8015	22.7276	0.8337	25.5809	0.8468
10	27.4053	0.8734	27.2407	0.8703	26.5908	0.8643	26.0738	0.8212	22.9602	0.8186	27.7349	0.8791
12	28.7212	0.8921	29.1073	0.8982	28.5093	0.8935	26.5495	0.8351	28.9372	0.8945	29.0314	0.9013
Test4												
4	18.9626	0.7831	18.9191	0.7835	18.3870	0.7677	19.1694	0.7289	15.6841	0.6772	18.9221	0.8012
8	25.3749	0.8512	26.3351	0.9186	24.0158	0.8850	23.8865	0.8425	26.5919	0.9210	23.9925	0.8793
10	27.6053	0.9234	28.1813	0.9443	25.8145	0.9118	25.7121	0.8793	28.4094	0.9464	26.9317	0.9321
_12	29.4653	0.9442	29.5916	0.9573	27.9701	0.9419	25.6696	0.8875	23.8150	0.8296	29.2726	0.9621
Test5												
4	18.1592	0.7571	18.1830	0.7560	18.1572	0.7571	17.3974	0.3912	18.2168	0.7569	18.2209	0.7569
8	22.7119	0.8585	22.4799	0.8569	23.0034	0.8583	20.9141	0.5870	22.6567	0.8583	22.5721	0.8585
10	23.8266	0.8806	24.4292	0.8854	23.5906	0.8/48	22.6229	0.6898	24.1356	0.8840	24.1841	0.8836
12	24.9569	0.8975	24.9303	0.9005	25.5315	0.9002	22.9635	0.6862	25.9704	0.9065	24.7992	0.9119
Testo	21 1972	0.9155	22 4410	0.9542	21 1000	0.8160	21.0122	0.7716	22 5729	0.9543	21.2540	0.0103
4	21.1875	0.8155	22.4419	0.8342	21.1909	0.8160	21.0155	0.7710	22.5756	0.8542	21.2349	0.0162
8	20.4405	0.8941	28.0235	0.9405	25.7154	0.9060	20.3730	0.8745	22.5700	0.8094	25.7571	0.9045
10	28.0704	0.9242	29.3033	0.9557	27.9359	0.9342	27.0074	0.8803	23.4196	0.0262	27.0039	0.9421
12 Laafi	29.5102	0.9455	30.4666	0.9655	29.1162	0.9418	28.0076	0.8944	50.0112	0.9562	28.0085	0.9091
Lean	16.0471	0.7062	17 2417	0.7012	16 8803	0.8247	16.0702	0.7810	16 2002	0.7740	16 2002	0.7540
4	16.9471	0.7963	17.2417	0.7913	16.8802	0.8247	16.9702	0.7810	16.8995	0.7749	16.8993	0.7549
10	21.1124	0.8808	21.7189	0.8760	21.7330	0.8975	21.8629	0.8779	21.9801	0.8757	21.9801	0.8952
10	22.3191	0.6926	25.2049	0.8900	20.2070	0.9377	22.2724	0.0005	24.0400	0.9520	24.0400	0.9021
12 Leaf?	24.9018	0.9202	24.2764	0.9207	27.6314	0.9010	24.9449	0.9510	20.0905	0.9039	20.0905	0.9754
	16 6010	0.7505	16 6053	0.7488	16 5371	0 7478	16 6017	0 7306	16 6012	0.7208	17 2022	0.7758
8	10.0919	0.7505	17 1414	0.7466	16.3371	0.7478	17 8660	0.7590	17 2705	0.7398	23.7610	0.7738
10	22 3245	0.8212	21 5455	0.8017	21 7875	0.7801	22 1557	0.8767	10.4523	0.8805	23.7010	0.9330
10	24.5245	0.8732	21.5455	0.8017	21.7675	0.7691	22.1337	0.0707	22 0222	0.0095	25.6900	0.9130
14	24.0340	0.0752	25.3012	0.0491	22.0913	0.6012	25.0715	0.9349	22.9223	0.9309	23.0974	0.9373

of flowers; The Bat Algorithm (BA) [38]–[42] is an efficient global search method, which can search the optimal solution by iteration and near optimal solution in flight to produce local data processing, strengthen the local search ability; The Whale Optimization Algorithm (WOA) [43]–[45] proposed by Mirjalili in 2016 is to simulate the predation of humpback whales. The algorithm has strong capability in the global search and local optimization. Although there are differences between evolutionary optimization and swarm optimization, the common denominator is the ability to find the optimal value of a restricted domain [46]. Although each algorithm has its own advantages, No-Free-Lunch [47]

has proved that no algorithm can solve all optimization problems.

Therefore, there is no perfect optimization algorithm and the optimization algorithm should be improved to better solve engineering problems. Many scholars study Levy flight improve optimization algorithm. Levy flight is a random walk strategy whose step length obeys the Levy distribution and it can maximize the efficiency of resource searches in uncertain environments. Haklı and H. Uğuz [48] proposed the PSO algorithm which combined with Levy flight. The method can overcome the problems as being trapped in local minima due to premature convergence and weakness

TABLE 5. The optimal fitness value and threshold value of each algorithm under Otsu.

K	GOA				WOA				FPA			
	R	G	В	F	R	G	В	F	R	G	В	F
Test1												
4	39 89	46 89	46 84	9356 5371	39 89 161	46 89	47 85 131	9256 6110	39 88 159	45 88	47 85	9256 5411
8	100 226	26.49	26 46 66	8230.32/1	20 44 70	28 50 72	206	8230.0119	225	27 49	26 45 63	8230.3411
0	83 93	71 95	87 110		98 131	95 119	27 47 67		20 44 70 97	71 94	82 103	
	116 120	120 148	137 173		175 214	146 180	88 111 139		130 174	119 146	131 168	
	250	183 229	224	8359.0255	239	227	175 223	8363.8067	213 238	181 226	222	8363.4207
10	13 31 51 71 04	21 38	100 102		14 33 51	23 42 61	25 42 58		15 35 56 79	22 41	19 34 50 67 86	
	122.154	94 113	185 211		158 192	119 139	131 158		168 200	99 121	105 127	
	189 218	133 157	214 216	8372.2668	219 241	162 186	193 232	8378.2028	222 242	143 167	155 192	8377.6654
	241	186 227	252 255			226				197 232	228	
12	11 27 46	87 89	14 18 25							18 32		
	64 83	98 158	53 75		14 31 50	1 20 35	1 23 38 53		7 18 30 44	49 65	17 28 41	
	103 124	178 207	173 176		69 87 107	52 68 85	68 84 99		60 77 97	82 99	55 69 84	
	203 222	230 239	202 210		129 152	104 124	159 189		119 146	155 177	138 163	
	242	246 250	216	8376.2232	221 241	203 236	230	8384.2418	241	202 236	195 234	8385.4179
Test2												
4	32 68	106 141	53 87		113 161	106 141	64 94 120		113 160	16 51	63 94	
0	128 245	162 185	114 141	646.10259	181 210	162 185	144	655.78846	181 209	216 227	120 144	647.0593
8	69 113 144 160	20.38	1 14 42		4/64/89	18 69	44 /6 95		54 106 141	70 109	3/ 63 81	
	171 182	86 219	166 172		178 194	153 167	149 171		182 198	157 169	127 140	
	194 217	222 231	174	677.64718	219	184 208	178	686.20867	222	185 208	152	694.24362
10	35 69	44 74	44 74		45 52 68	35 48 83			72 110 135	57 60	2 26 59	
	106 138	108 127	108 127		103 144	110 130	4 37 66 84		151 163	65 75	78 93	
	150 109	161 170	140 151		184 200	145 157	99 117 155		1/3 183	85 99	109 125	
	208 230	180 198	180 198	694,30936	223	215	188	694,36193	232	234 237	256	694,19962
12	31 31 64	11 60	11 60 91		32 36 41	27 42 55			47 71 101	57 82		
	85 125	91 111	111 125		72 106	56 81	27 42 55		125 142	102 118	14 36 58	
	146 159	125 137	137 147		140 157	109 130	56 81 109		154 164	129 140	73 85 96	
	194 213	147 155	155 165		109 180	145 157	150 145		1/3 183	149 157	108 122	
	233	184 203	203	702.24755	231	206	183 206	698,53433	230	189 224	153 175	703.74901
Test3												
4	39 68	43 76	73 120		40 70 106	43 77	71 119 155		113 160	16 51	63 94	
	104 149	108 147	156 187	1901.6364	152	109 148	187	1901.8564	181 209	216 227	120 144	1942.8564
8	27 46 65	19 39	44 68 96		28 4 / 64	24 47 69	2 49 80		54 106 141	70 109	3/6381	
	121 145	92 112	163 183		122 146	141 170	160 183		182 198	157 169	127 140	
	176	134 163	209	1983.8059	175	186	209	1977.0473	222	185 208	152	1997.0473
10		19 36	33 51 71						72 110 135	57 60	2 26 59	
	21 37 50	53 67	96 121		19 34 49	21 40 58	35 51 71		151 163	65 75	78 93	
	62 /6 92	79 93	141 157		63 79 96	/1 84 98	95 121 143		1/3 183	83 99	109 125	
	154 182	141 165	214	1995 5656	165 195	151 175	208 251	1992 4759	232	234 237	256	2001 4759
12	101102	4 14 25	32 46 66	177010000	100 100	1011/0	200 201	155211105	47 71 101	57 82	200	200111100
	17 31 44	41 56	87 109		16 31 45	1 23 41	32 50 71		125 142	102 118	14 36 58	
	55 68 84	69 80	127 143		56 68 82	59 72 84	93 115 133		154 164	129 140	73 85 96	
	100 117	94 110	157 170		97 113	97 112	147 160		173 183	149 157	108 122	
	136 159	131 154	184 198	2001 2325	132 154	128 146	1/2 185	2001 6745	194 211 230	165 174	153 144	2015 6745
Test4	104 210	100	217	2001.2020	175 175	107 225	177 210	2001.0745	250	107 224	155 175	2015/0745
4	103 136	3 17 18	9 33 56		103 136	93 126	75 105 131		102 135	93 126	13 42	
_	167 195	45	57	1353.3071	167 195	157 185	157	1391.8873	166 195	157 185	172 191	1368.7432
8	12 76	59 79	2 22 133		48 73 100	66 88	1 52 78 00		58 76 97	58 84	43 65 83	
	102 122	96 114	211 214		122 145	142 161	1 32 78 99		114 132	105 125	134 150	
	186 206	175 195	217 214	1440.9301	207	179 198	150 169	1446.8713	200	178 196	170	1446.2636
10	52 73 92	47 56	32 54 69		11 11 69	68 90			51 65 90	6 57 79	39 54 68	
	109 127	78 96	84 100		96 120	109 128	1 48 72 90		110 128	96 113	84 98	
	145 162	115 132	116 131		144 165	146 163	106 121		146 163	132 150	113 126	
	210	180 197	181	1457 4504	227	245 249	171 236	1449 8233	209	199	172	1457 3396
12	59 76 89	30 57	101	1457.4504	45 66 86	1 1 58	111 250	1449.0255	60 83 101	31 33	172	1457.5550
	103 116	73 88	33 44 59		103 118	79 96	1 20 40 60		116 131	47 71	24 24 28	
	129 143	101 115	73 87 99		134 149	112 128	76 92 107		144 157	72 83	56 59 60	
	158 172	130 146	111 124		163 177	144 159	121 133		169 181	162 193	75 81	
	186 199 214	101 176	135 147	1464 6615	190 203	202	146 160	1462 501	192 203	203 223	220 220	1453 8639
Test5				110110010				1.10200.01				
4	32 68	106 141	53 87		51 91 148	51 83	51 81 132		51 91 147	51 83	51 81	
	128 245	162 185	114 141	3314.9128	214	135 206	205	3334.9128	213	135 205	132 205	13334.901
8	09 113 144 160	20.38	1 14 42		54 50 70 94 120	42 55 71	41 54 67		34 49 68 97	41 54 70 92	13 13 99	
	171 182	86 219	166 172		151 188	148 184	85 109 141		118 150	119 150	223 226	
	194 217	222 231	174	3406.4766	229	227	179 224	3411.4766	188 228	185 226	251	3397.3674
10	35 69	44 74	44 74		33 44 59	39 50 64				38 48	38 49 59	
	106 138	108 127	108 127		81 106	84 109	39 50 60		30 41 54 71	58 70	70 86	
	156 169	140 151	140 151		132 159	143 173	72 89 112		95 115 140	85 102	106 130	
	208 230	180 198	180 198	3411 1442	233	230	192 228	3419 1542	229	124 150	231	3420 772
12	31 31 64	11 60	11 60 91	5711.1776		38 46 55	1.7 10 10 10	5415.1546		35 44		5 1m0111m
	85 125	91 111	111 125		31 40 50	67 83	37 46 55		29 38 48 60	53 63	35 42 49	
	146 159	125 137	137 147		62 79 96	102 125	64 77 94		78 99 121	77 95	56 65 77	
	170 181	147 155	155 163		113 130	150 173	114 137		144 168	114 136	94 115	
	194 213 233	163 172	172 184 203	3416 5455	149 173	199 213 236	163 182 202 231	3476 5465	194.216 240	211 226	141 165	3426 687
Test6	16.147	10.7200	ED 100	5410.5455	50 107	01.127	50 100 107	5420.5403	240	40.100	50 100	5420.007
4	10 145	19 50	58 109 137 157	1647 2302	59 106 133 153	81 135 165 186	58 109 137 157	1660.0172	6 15 18 155	48 100 148 176	50 100 134 155	1652 2628
8	22 37 62	41 68	6 27 34	10+7.2302	27 55 83	39 66 95	24 53 87	1000.0172	0 10 10 100	23 46	18 35 65	1032.2020
	88 108	97 126	112 173		105 122	125 145	114 132		21 39 61 86	70 101	99 121	
	125 142	146 162	182 191		136 149	162 177	146 161		106 124	134 156	135 147	
10	158	176 191	201	1703.7498	161	191	197	1709.8929	139 156	174 190	161	1707.9906
10	25 46 65 84 105	21 39 64 93	21 39 64 93 120		1 27 52 77	42 /3 106 126	16 34 62		18 34 54 72	20 42 59 77	22 45 75 98 113	
	121 136	120 142	142 156		101 120	144 160	92 113 128		93 110 124	106 131	126 136	
	148 160	156 170	170 183		135 148	175 190	140 150		137 148	149 163	146 155	
	256	183 196	196	1711.0219	160 230	249 249	162 179	1713.2302	159	177 191	167	1717.6573
12	18 30 45 65 87	124/ 4851	12 47 48		1 24 44 66	15 25 20	19 38 63		15 30 51 74	0 30 65 94 110	15 27 41	
	104 118	61 161	161 162		89 106	34 45 61	87 105 117		94 109 122	137 149	102 116	
	130 140	162 165	165 201		121 133	86 118	126 135		134 145	160 170	128 138	
	150 161	201 229	229 241		144 154	143 161	144 152		155 165	179 188	148 158	
	230	241 247	247	1712.5531	164 199	176 191	160 170	1718.5778	228	198	169	1721.9268

TABLE 5. (Continued.) The optimal fitness value and threshold value of each algorithm under Otsu.

Leafl												
4	79 95	96 116	48 63 81		79 94 113	95 112	52 72 160		79 94 113	96 113	48 63 81	
	114 190	148 210	187	1825.2078	190	131 199	247	1821.4726	188	132 199	173	1827.1329
8	68 78 87	84 95			72 84 95	86 96				90 104	45 58 71	
	95 104	104 113	36 46 55		107 127	105 114	44 57 70		69 79 88 96	117 132	89 192	
	117 141	123 136	65 76 91		218 229	124 137	87 228 228		105 115	175 220	211 240	
	204	156 207	99 169	1850.2119	250	162 239	233 238	1844.4818	130 189	222 229	249	1843.3636
10	67 78 87	7 75 94				85 97				85 96		
	96 106	95 102	37 47 56		41 68 77	108 119	37 47 56		69 80 89 99	106 117	40 49 58	
	118 146	111 219	66 78 97		85 92 101	133 161	65 75 88		110 126	130 148	67 78 97	
	187 188	226 227	138 181		112 129	223 224	94 97 153		170 175	188 189	148 179	
	196	230	184 215	1850.4216	171 198	228 230	200	1849.6088	176 194	232 233	181 245	1849.1687
12	67 76 84	65 85	40 50 59			85 95				81 90		
	91 99	95 104	68 80		63 72 79	104 113	34 43 50		69 79 87 95	98 106	37 45 53	
	108 120	112 122	101 163		87 94 102	123 135	57 64 72		104 115	114 123	61 69 79	
	146 226	133 152	206 234		112 125	156 216	82 94 117		133 197	133 148	94 110	
	233 240	195 215	243 247		159 182	235 241	179 186		202 203	180 183	157 157	
	243	232 244	247	1851.2717	194 209	252 253	190	1852.7437	230 241	241 248	186 240	1852.7794
Leaf2												
4	21 112	132 144	38 140		107 120	131 143	98 150 153		85 152 170	132 144	74 86 97	
	179 196	155 169	171 178	201.7214	131 146	155 169	173	201.747	243	156 170	111	201.77025
8	45 75 84	21 61	3 50 93		98 106	3 27 84	23 56 72		54 100 138	19 54	24 87	
	101 127	90 101	102 111		113 120	91 116	112 119		153 165	66 69	139 160	
	156 204	128 169	126 182		127 135	135 182	125 165		219 231	105 132	187 207	
	206	238 245	234	202.1214	144 157	212	244	202.1214	232	193 222	210 219	202.12357
10	9 41 71	1 24 29			9 32 77	1 69 88	140 141			40 85	40 54 61	
	116 140	55 136	12 19 39		104 111	88 90	145 156		16 76 81 97	103 108	87 101	
	148 192	144 151	42 72 85		141 151	100 182	164 167		100 158	118 138	168 179	
	211 219	184 186	160 168		172 184	221 239	183 200		164 201	162 165	243 249	
	247	188	177 233	203.12456	234	250	207 240	203.12456	246 251	191 216	251	204.12475
12		30 53			32 56 71	20 34 77				21 41	9 14 58	
	19 27 36	78 83	1411		102 108	81 99	5 11 45 70		6 24 30 90	74 93	97 100	
	57 59 92	84 119	48 75 76		134 155	146 156	79 91 116		120 150	142 144	100 113	
	125 137	137 151	104 113		156 183	177 197	124 124		161 194	151 151	148 197	
	151 153	166 217	151 167		235 238	230 233	180 227		217 220	153 155	222 234	
	157 209	225 234	237 247	206.21544	243	253	238	207.21544	235 243	177 238	247	208.21476

FIGURE 5. The Tsallis results of image test1.

of global search capability. Amirsadri *et al.* [49] proposed a new algorithm benefits from simultaneously local and global search, eliminating the problem of getting stuck in local optima. The method using Levy flight improves the gray wolf optimizer (GWO). The modified algorithm balances the exploration and exploitation of the GWO.
 TABLE 6. The optimal fitness value and threshold value of each algorithm under Otsu.

K	PSO				BA				MGOA			
Tartl	R	G	В	F	R	G	В	F	R	G	В	F
4	39 89	46 89	48 86		39 89 159	45 88	47 85 131		40 90 161	44 91	43 91	8256 638
0	160 226	137 207	132 206	8256.6026	226	136 208	206	8256.5591	227	167 221	164 221	8250.058
•	92 123	72 95	29 49 69 90 114		97 130	90 115	29 49 69		14 40 67 99	73 97	83 108	8261-0012
	164 204	119 146	142 179	03/2 0070	176 216	143 179	90 113 140	03/3 5/05	134 175	121 149	135 178	8361.9012
10	13 31 52	180 226	226 21 36 50	8362.9878	240	226 21 39 57	176 226	8363.7497	217 240	24 43	226 6 29 47	
	73 96	130 135	65 84		12 28 48	75 94	15 27 42		15 31 50 71	61 79	65 84	0000 0000
	123 159 192 217	184 190 201 211	105 129		69 92 119 149 187	116 139	59 78 98 121 152		95 121 153 188 219	98 119 141 167	104 127	8377.2386
	240	242 249	234	8373.2545	218 241	234	191 234	8377.0568	242	198 235	234	
12	10.24.40	19 33	17 31 45		12 27 44	16 31 47	17 29 42		13 20 44 64	21 38	21.26.36	
	57 76 95	77 94	59 73 90		61 79 100	63 79 96	57 72 89		83 106 125	83 99	48 63 80	8285 0828
	114 137	112 131	108 129		124 152	115 135	107 127		156 185	116 134	97 117	0505.9020
	217 240	206 237	212 238	8385.9662	228 245	206 233	210 237	8386.3098	245	205 239	201 235	
Test2			50 OQ		AA AB 65						(2.04	
4	112 161 181 210	160 184	59 90 115 143	655.38229	33 37 95 120	11 49 50 244	16 18 24 184	604.86868	114 161 181 210	162 186	63 94 120 144	655.8005
8	41 43 85	13 77	32 56 71		73 109	68 101	42 72 89		81 106 146	50 95	26 42 70	
	85 125 146 233	82 89 193 216	86 102 120 137		143 158 171 183	121 137 149 160	105 123		161 173 185 203	122 138 151 162	86 100	692.73275
	246	236 236	150	673.60138	199 222	171 189	256	693.09591	225	172 191	151	
10	140 154	61 /4 100 104	18 30 48 72 88		35 72 97 136 154	48 87	33 61 77		36 70 109 146 161	62 72 77 114	19 53 69 82 98	
	165 174	113 181	104 122		167 178	143 153	89 102 116		172 182	134 147	113 128	698.46566
	211 231	229 248	256	693,45932	228	187 214	152 173	699,49055	233	186 209	158 149	
12	31.65	46 77			64 104	15 22 45			58 86 103	63 94		
	102 129	90 110 128 140	6 11 44 56 69 82		131 145 157 166	81 83	1 25 45 46 93 131 156		138 153	112 128	5 26 57 74 85 94	
	171 181	150 160	106 108		174 183	176 189	167 200		182 193	157 165	105 116	704.36212
	192 205 218 233	201 230	153 161 184 196	700 53076	193 206 221 235	204 209 218	217 245 255	705 49518	206 224 239	173 185 203 218	130 140	
Test3												
4	40 70	43 76	67 114 152 185	1901 4771	40 70 105	43 76 108 147	71 117 154	1901 75	40 71 106 152	43 77	71 119	1901.8557
8	28 47 64	22 41	35 56 79			23 42 60	42 66 95			24 42	45 70	
	82 102 124 150	60 76 93 113	105 134		23 39 54 72 95 119	76 93	121 141		28 48 65 83 103 124	61 77 94 114	100 131	1984.5747
	180	135 163	204	1981.8197	151 189	163	207	1982.1471	149 178	136 164	190 214	
10	23 39 53	1 22 40	39 61 84 109 130		22 38 52	19 35 51	35 39 50		22 41 55 70	21 28 44 61	9 45 69 95 121	
	67 82 98	85 101	148 163		66 82 99	64 77 91	73 79 83		85 101 118	76 91	142 159	1994.2647
	116 136	120 141	178 195	1005 2676	116 136	108 127	102 208	1099 4151	137 161	108 126	175 193	
12	160 187	15 27	215 24 54 55	1995.2070	100 180	148 175	242 250	1988.4151	188	20.36	13 36 59	
	16 29 44	41 55	60 61		17 31 45	13 24 39	26 39 55		20 35 46 57	48 61	79 100	
	110 129	6778 91105	101 102		56 69 85 102 119	54 66 78 91 108	138 153		111 126	73 85 98 112	123 142	2002.9132
	148 169	122 135	129 210		138 158	124 141	166 180		143 165	129 144	184 199	
Test4	185 256	151 175	211	1998.499	177 195	161 183	195 214	2002.2347	189	163 185	219	
4	205 208	54 223	73 104		40 46 91	6 17 47	77184		103 136	16 103	73 104	1377.1201
8	221 221 19 32 91	235 244 65 86	130 156 50 71 89	1337.4743	104 40 76 97	219 60 81 99	217	1328.3622	167 195 25 82 108	143 178 68 93	131 157 50 73 91	
	111 127	105 124	106 121		118 138	118 139	27 42 64		130 151	112 131	108 123	1449.3992
	208 226	142 160 176 196	136 152	1445 7059	160 182 204	159 178	83 102 122	1443 5726	171 189 208	149 166 182 199	137 153	
10	70 93	21 37	41 62 80	111011005	60 78 95	32 42 53	45 67 85	111010180	31 51 87	17 21	44 66 82	
	110 126	72 73	95 109 122 134		112 130	76 91	101 116		108 126	66 91 111 131	96 110 123 135	1455 7686
	172 185	209 212	146 159		179 193	240 241	155 173		180 194	148 165	146 159	1455.7660
12	198 213	222 224	175	1455.2236	210	251	256	1448.502	211	181 199	176	
12	93 110	74 93	90 103		103 116	82 93	1 38 57 73		15 35 53 83	83 100	74 87	
	126 141	109 123	115 126		129 143	106 121	86 99 111		104 121	117 133	101 114	1462.5587
	185 198	168 182	160 176		138 171	167 181	147 161		171 185	173 184	148 161	
	213	199	227	1462.4138	210	198	177	1463.4149	199 215	196 210	179	
1 est5 4	51 91	23 40	51 81		50 89 146	51 83	51 81 131		51 91 148	51 83	51 81	
	148 214	199 252	132 205	3329.6811	213	136 206	204	3334.8426	214	136 206	132 205	3334.9229
8	34 47 65 89 115	41 54 69 90	41 53 66 84 108		34 49 68 92 118	40 53 67 87 113	40 51 63		35 49 69 93	41 56 76 99	41 54 69 88 111	
	147 184	116 147	138 176		150 188	146 182	81 107 140		119 152	132 161	143 182	
10	228	183 226	222	3411.1733	229	226	179 226	3411.1353	190 230	192 231 39 50	228	3410.9039
10	141 142	61 77	140 180		31 41 53	75 95	39 50 60		32 43 55 72	61 76	15 41 52	
	144 181	96 119 146 174	190 211		70 91 113	118 146	72 88 109		93 116 141	95 118 144 174	62 75 94 117 149	
	239 244	201 233	255	3408.2907	201 235	229	195 231	3421.3767	236	203 235	186 229	3420.4357
12	30 39 48	37 47	36 45 55		25 32 41	36 45 53	0 38 48 50		30 30 40 61	38 47	37.46.56	
	59 75 95	85 106	101 125		53 69 89	63 77 95	71 90 112		80 97 118	82.98	65 79 96	
	115 136	128 150	149 172		112 134	115 140	134 152		138 162	115 136	117 140	
	207 235	209 235	236	3426.2966	211 236	210 235	228	3425.0311	240	209 239	205 238	3426.9311
Test6	50.107					80.100				80.101	10.100	
4	59 106 133 153	48 101 149 177	57 107 137 157	1660.3048	6 18 25 227	79 132 163 185	57 107 137 157	1647.4027	59 106 133 153	79 131 163 185	59 109 137 157	1659,9864
8	20 31 44	41 71	14 31 58		25 46 68	40 71			27 58 87	40 65	22 50 83	
	69 98 121 139	101 129 148 162	93 119 135 148		91 109 125 141	101 128	96 120 136		107 124 137 149	149 165	108 127	
	156	176 190	162	1707.9832	157	174 190	149 163	1710.0436	161	179 193	166	1712.033
10	4 20 30 52 81	29 39 40 54	11 24 46 77 101		10 23 38	40 67 95 119 135	10 21 40		21 34 61 89	58 64 93 120	22 42 69 90 116	
	101 118	67 71	118 132		59 86 105	148 159	51 74 100		108 122	138 152	130 143	
	131 144 158	72 74 140 253	144 155 167	1708 8455	120 135 147 160	170 181 193	119 133 146 160	1715 7845	134 145 155 165	164 175 186 199	155 167 229	1717.9712
12		32 54		1700.0455		8 42 46	110 100	1715.7045	100 100	38 68	11 26 45	
	14 20 22 63 77 79	79 103 119 127	1719 355474		11 23 38 57 81 98	52 120 127 193	7 20 40 62 81 99 112		16 24 36 57 71 92 109	94 116 133 146	67 84 104 120	
	103 106	138 149	98 114		112 124	200 216	125 136		122 134	157 166	131 140	
	196 197 202 236	161 172	128 140	1714.0084	134 144	220 223	146 156 167	1717.0601	145 155	176 185	149 159 170	1722 7707
Leafl	202 250	105 194	151 105	1714.0984	155 102	22)	107	1717.9091	105	195 202	170	1722.7707
4	79 94	95 112	52 72	1821 4726	79 95 114	96 116	48 63 81	1935 2079	79 95 114	95 112	48 63 80	1827 0865
8	72 84 95	86 96	44 57 70	1821.4720	68 78 87	84 95	107	1823.20/8	1.90	84 95	40 51 61	1027.0803
	107 127	105 114	87 228		95 104 117 14	104 113	36 46 55		67 77 86 95	104 113	73 93	
	218 229 250	124 157	228 233	1844.4818	204	123 136 156 207	99 169	1850.2119	166 213	123 136 155 205	120 130 157	1848.3456
10	41 68 77	85 97	27.47.67		67 78 87	7 75 94	37.47.57		(0.70.07.04	81 90	41 52 62	
	85 92 101 112	108 119	57 47 56 65 75 88		90 106 118 146	95 102 111 219	57 47 56 66 78 97		os /s 86 94 102 114	98 106 114 123	74 91 136 151	
	129 171	223 224	94 97	1040 0007	187 188	226 227	138 181	1000 401 -	129 155	133 148	197 197	1950 0072
12	198 63 72 79	228 230 85 95	153 200	1849.6088	190	230 65 85 95	184 215	1850.4216	104 192	169 215 77 87	212	1850.8873
	87 94	104 113	34 43 50		67 76 84	104 112	40 50 59		65 73 80 86	95 101	36 43 51	
	102 112 125 159	123 135 156 216	57 64 72 82 94		91 99 108 120 146	122 133	68 80 101 163 206		92 98 106 115 128	108 115	58 66 75 88 115	
	182 194	235 241	117 179		226 233	215 232	234 243		143 204	152 180	133 133	
Leaf?	209	252 253	186 190	1852.7437	240 243	244	247 247	1851.2717	251	246 247	184 186	1854.2527
4	107 120	131 143	98 150		21 112	132 144	38 140 171		108 120	34 94	73 85 97	
8	131 146 98 106	155 169	153 173	201.747	179 196	155 169	178	201.712	131 146	110 166	111	202.712
0	113 120	91 116	112 119		101 127	101 128	102 111		117 127	63 101	115 130	
	127 135	135 182 212	125 165 244	202 1451	156 204 206	169 238 245	126 182	202 2451	194 216 229	176 212	133 163	203 2451
10	9 32 77	1 69 88	140 141	202.1931	9 41 71	1 24 29	40.0 ⁻¹	202.2431	***/	20 39	7 21 35	200.2401
	104 111	88 90 100 182	145 156		116 140	55 136 144 151	12 19 39 42 72 85		8 54 56 95 99 114 137	67 80 110 134	37 103 134 136	
	172 184	221 239	183 200		211 219	184 186	160 168		168 185	140 206	169 174	
12	234	250	207 240	204.2147	247	188	177 233	204.4147	187	213 228	204	205.4147
14	102 108	77 81	5 11 45		19 27 36	83 84	1 4 11 48		6 79 83 104	55 98	24 50 54	
	134 155	99 146	70 79 91		57 59 92	119 137	75 76 104		136 149	103 135	57 71 76	
	235 238	197 230	124 180		151 153	217 225	167 237		199 206	189 206	206 223	a
	243	2.53 253	227 238	207.2146	157.209	2.54	247	207.5146	232 240	207 238	226	208.5146

TABLE 7. The PSNR and FSIM of each algorithm under Otsu.

K	GOA		WOA		FPA		PSO		BA		MGOA	
	PSNR	FSIM	PSNR	FSIM								
Test1												
4	17.8818	0.9261	17.9358	0.9260	17.9488	0.9277	17.9019	0.9261	17.9359	0.9276	17.9296	0.9263
8	19.4774	0.9365	22.8050	0.9425	22.6641	0.9528	22.8599	0.9429	22.9010	0.9628	22.9881	0.9726
10	21.5370	0.9785	24.3637	0.9506	24.5556	0.9606	22.4253	0.8511	25.0574	0.9717	25.1137	0.9801
12	21.0019	0.8953	25.6055	0.9646	25.8297	0.9755	26.5185	0.9659	26.2462	0.9759	26.57137	0.9848
Test2												
4	19.7421	0.8737	22.2953	0.8585	17.6204	0.8249	22.3854	0.8625	9.1549	0.6271	22.3358	0.8596
8	17.5580	0.8203	26.5263	0.9287	28.5775	0.9390	19.4203	0.7473	28.3855	0.9421	28.0452	0.9408
10	28.7655	0.9562	28.5416	0.9444	24.4487	0.8606	24.8518	0.8763	29.9425	0.9556	29.3361	0.9427
12	31.1774	0.9651	29.6880	0.9481	31.6853	0.9645	27.6906	0.9555	22.5105	0.8641	31.1546	0.9661
Test3												
4	20.9637	0.8423	20.9549	0.8435	17.6204	0.8249	21.0447	0.8459	20.9765	0.8440	20.9459	0.8442
8	26.0858	0.9190	25.3875	0.9073	28.5775	0.9390	26.0844	0.9204	26.0932	0.9191	26.0069	0.9183
10	27.9289	0.9395	27.4917	0.9391	24.4487	0.8606	27.5716	0.9330	23.3578	0.9304	27.5634	0.9326
12	28.9142	0.9433	28.8727	0.9456	31.6853	0.9345	25.2230	0.9430	29.2843	0.9464	29.3033	0.9498
Test4												
4	11.9645	0.7359	18.8626	0.8126	15.4385	0.8206	11.2251	0.6075	8.5443	0.5221	18.6919	0.8362
8	20.9723	0.9332	25.9357	0.9440	26.4476	0.9503	22.8623	0.9191	26.2486	0.9576	25.9002	0.9418
10	28.3387	0.9613	26.0914	0.9514	28.1569	0.9573	24.6689	0.8554	23.0649	0.8207	27.7368	0.9584
12	29.7657	0.9764	29.0859	0.9756	21.9930	0.8398	29.3807	0.9761	29.5098	0.9737	29.3753	0.9850
Test5												
4	19.7421	0.8737	18.1592	0.8341	18.1529	0.8345	17.4385	0.8014	18.1753	0.8329	18.1605	0.8338
8	17.5580	0.8203	22.5968	0.8999	20.3895	0.9010	22.6381	0.8985	22.8771	0.9025	22.6538	0.8976
10	28.7655	0.9362	23.6668	0.9129	24.1281	0.9168	19.2965	0.8981	24.0593	0.9170	24.6323	0.9153
12	31.1774	0.9451	24.6542	0.9252	25.6054	0.9368	25.0559	0.9287	26.0815	0.9376	24.9510	0.9567
Test6												
4	14.0959	0.6419	22.2759	0.8815	17.7829	0.8390	22.5257	0.9121	17.1314	0.8829	22.3189	0.8853
8	24.0664	0.9586	27.7305	0.9613	27.6045	0.9547	27.3939	0.9571	27.7441	0.9550	28.0956	0.9621
10	25.5099	0.9658	28.4438	0.9617	29.7000	0.9657	25.1605	0.8695	29.0798	0.9688	29.1909	0.9689
12	25.2030	0.8341	30.0056	0.9724	30.7274	0.9710	25.6596	0.9453	26.4581	0.8576	30.7110	0.9774
Leafl												
4	17.1566	0.7837	17.2368	0.7811	16.8861	0.7737	17.2368	0.7811	17.1566	0.7837	16.8218	0.7792
8	21.1842	0.8816	21.6482	0.8679	20.6220	0.8509	21.6482	0.8679	21.1842	0.8816	26.9839	0.8828
10	23.7327	0.8870	23.0215	0.9015	22.5213	0.8801	23.0215	0.9015	23.7327	0.8870	25.4394	0.9319
12	27.1349	0.9198	23.0393	0.8986	24.8734	0.9081	23.0393	0.8986	27.1349	0.9198	27.2374	0.9517
Leaf2												
4	14.6327	0.7257	14.2314	0.7594	16.7001	0.7914	14.2314	0.7594	14.6327	0.7257	17.5943	0.8626
8	22.3207	0.9315	22.5914	0.8779	19.6479	0.9246	22.5914	0.8779	22.3207	0.9315	16.8583	0.8827
10	20.9126	0.8007	16.0816	0.8170	23.9895	0.9503	16.0816	0.8170	20.9126	0.8007	21.7665	0.9127
12	25.3912	0.9135	24.3421	0.9232	21.9162	0.8693	24.3421	0.9232	25.3912	0.9435	26.2144	0.9601

FIGURE 6. The Tsallis results of image test2.

Mousavirad and Ebrahimpour-Komleh [50] proposed a simple but efficient population-based metaheuristic algorithm called Human Mental Search (HMS). The mental search of HMS that explores the region around each solution based on Levy flight. So, Levy flight can increase the global search ability of algorithm and avoid local optimization.
 TABLE 8. The optimal fitness value and threshold value of each algorithm under Renyi.

K	GOA				WOA				FPA			
Test1	R	G	В	F	R	G	В	F	R	G	В	F
4	40 90 161 227	46 89 137 208	48 86 132 206	1.6126 1.8397	39 89 161 227	46 89 136 208	47 85 130 204	1.4114	39 89 161 227 21 46 72	44 87 134 206 16 37 61	48 86 132 206 23 42 60	1.8794
	20 44 68 96 128 175 215 240	26 46 66 88 112 140 176 227	29 50 70 91 114 143 180 227		19 43 69 97 131 177 217 241	27 50 72 95 120 147 181 227	28 48 68 89 112 139 176 225	1 6558	100 133 179 218 242	85 110 138 173 221	79 103 130 168 223	1 0178
10	15 33 52 73	24 43 61 79 98 118 139	24 40 57 73 91 111 135	2.043	15 33 53 74 96 120 150	22 41 58 75	24 40 56 73 90 109 130	1.0558	12 30 49 69 90 113 141	24 42 60 78 97 117	23 40 56 73 90 109	1.9176
12	187 219 241	230 18 33 48 63	232 17 30 45 61	2.2248	242 13 30 47 65	155 183 226	231 21 35 47 60	2.1013	239 12 26 42 58	193 232 21 37 53	189 231 20 33 47	2.1683
	58 76 92 114 142 179 217	132 150 162 192	129 153 185 221		153 185 209 227	74 93 112 133 158 191	120 133 160 193	2 2110	139 171 200 222	115 133 150 174 204 227	111 130 153 182	2 2078
Test2 4	240 112 161 181	230 105 141	231 64 94 120	1.579	245 45 100 126	255	234 64 94 120	2.3118	243 115 161	26 102	212 240 62 93 119	2.3978
8	210 35 68 117	162 186 75 110 130 145 157	144 35 62 78 93	1.869	127 42 49 52 58	15 19 62 241 54 85 105	144 36 63 81 95	1.5311	181 210 34 65 90 96 132 134	214 247 57 89 111 134 150	144 29 43 45 54 55 166	1.6312
10	149 166 180 196 219	169 186 228 44 77 102	109 126 140 152	2.0846	83 146 170 249	121 139 154 167 188	111 127 141 152	1.8214	172 244 31 47 60 61	165 182 204 65 98 119	176 190 24 51 68	1.8845
	58 90 131 150 162 172 182 194 210	120 134 147 158 169 187	37 65 82 96 112 127 138 148		36 43 85 85 114 115 116 206	46 76 104 122 136 148 159 170 187	27 58 72 80 91 103 117 130 141		81 99 120 125 207 246	134 145 155 164 173 187	81 93 106 121 133 144 154	
12	229	210 13 18 43 72	156 171 10 34 55 70	2.2909	233 239 31 63 77 109 143	227	152 12 49 96 112 117	2.1055	39 41 44 45 68 115 135	212 34 54 86 103 120	1 33 63 67 82 95 109	2.1124
	58 73 74 110 141 156 165 174 183 193	72 108 132 145 157 169 186	81 93 106 119 132 144 153		156 165 174 183 193 210	18 52 73 83 109 128 141 152 162 172	187 203 204 204 223 233		155 169 181 196 219	134 144 153 162 171 186	124 137 150 187 190	
Test3 4	210 229 48 86 137	209 43 77 109	176 73 120 156	1.7055	231 40 70 105	186 210 6 141 169	237 44 55 220	2.3154	115 161	213 26 102	62 93 119	2.3296
8	256 1 30 49 67	148 23 42 61 77	187 40 61 87 117 141	1.8714	151 27 47 63 80	182 20 39 59 76	249 75 83 94 205 207 210 221	1.6501	181 210 34 65 90 96 132 134	214 247 57 89 111 134 150	144 29 43 45 54 55 166	1.716
10	166	95 115 155 163	206 42 63 84	2.1288	99 119 143 173	163	210 221 248	1.8214	31 47 60 61	105 182 204 65 98 119	24 51 68	1.9707
	19 35 50 64 81 100 118 140 167 192	22 41 38 71 83 97 111 127 145	107 129 147 162 177 194 216		23 40 33 07 83 99 116 135 159 187	6 20 39 56 68 79 93 112 134 163	116 133 150 166 185 200	2 1 2 2 1	125 207 246	155 164 173 187 212	121 133 144 154	2 2042
12	15 30 44 56	21 37 54 68 81 94 110	35 54 76 98 117 130	2.3831	19 33 46 57 69 84 99	21 38 55 66	33 47 58 72 86 100 121	ar . I ar ar I	39 41 44 45 68 115 135 155 169	34 54 86 103 120 134 144	1 33 63 67 82 95 109 124 137	da i da Oʻrt da
	70 85 102 118 136 155 175 194	126 144 168 218 218	144 158 171 185 200 217		115 133 150 172 195	78 91 106 121 134 153 178 228	138 156 171 189 212	2.2145	181 196 219	153 162 171 186 213	150 187 190	2.4244
Test4 4	103 136 167	92 125 155	75 105 131	1.6661	103 136	93 126 157	75 105 131		101 133	2 32 39	4 38 57	
8	195 37 82 104 124 145 166	184 47 77 99 119 140 160 179	157 53 75 92 109 124 137 152	1.9035	167 195 66 92 110 128 147 167 187	185 70 92 111 130 148 165	157 52 75 93 112 129 145 166	1.5775	165 194 55 82 105 126 146 167 187	203 59 81 98 119 139 159 177	210 47 71 90 106 121 135 149	1.6743
10	186 206	197 39 57 81 101 118	170	2.0507	206 69 91 107 123 139	180 198	256	1.8521	206 60 81 100 118 135	197 29 57 76 92 107	168 9 16 29 31 159 165	1.9235
	29 69 93 109 127 145 160 177 192 209	138 157 174 194 235	93 109 124 138 153 171		155 170 183 196 211	60 81 98 113 129 144 158 171 183 199	92 108 122 136 151 170	2.0135	152 168 182 196 211	125 143 159 176 195	169 191 192 192	2.1835
12	50 74 90 105	3 58 76 92 106 121	1 42 56 70 83 98 111	2.2355	31 34 57 58 84 105 124	1 1 1 40 67	30 51 68 83 97 110 122		37 70 88 101 111 123 138	35 36 59 77 93 106 121 138	1 30 45 50 68 85 100 113 126	
	118 131 146 160 174 187 199 213	137 151 164 177 190 205	124 137 152 170 218		143 162 178 193 210	87 104 120 139 158 176 195	133 144 156 171 187	2.2307	154 169 182 196 212	152 167 181 197	139 154 172	2.4107
1est5 4	51 91 147 213	51 83 136 206	51 81 132 205	1.5512	50 89 145 211	50 81 132 204	51 81 132 205	1.5885	50 90 145 212 24 48 65 80	50 82 134 205	51 81 131 205	1.6775
o	35 50 70 94 120 153 190 230	41 55 71 92 118 150 187 229	41 53 66 84 108 141 177 223	1.8077	34 49 68 92 118 151 189 230	40 53 68 88 113 144 182 225	40 52 65 83 109 142 180 225	1.6779	116 149 187 229	42 33 71 92 118 149 185 226	41 55 66 84 110 143 181 225	1 0330
10	31 42 53 69 88 110 132	39 50 61 76 95 119 145 175 204	38 49 59 72 90 113 122 152 189	2.0112	32 42 56 77 101 125 149 172	31 34 80 85 91 94 101	36 46 56 66 82 104 130 156 185	1.0777	31 41 53 70 93 118 147 176 204	38 49 60 75 93 115 142 173	37 47 57 69 86 110 138 169	1.9559
12	163 199 233 31 41 53 70	235 38 48 59 74 94 115 139	227 36 45 54 63 76 93 115	2.2987	197 229 30 39 51 64 79 97 100	208 229 255 37 46 55 65	225 37 46 55 65 77 94 113	2.0214	233 30 38 49 61 76 95 117	203 233 37 46 55 66 79 96	202 229 35 44 52 60 68 80	2.1591
	91 110 126 149 181 196 221 235	147 167 184 206 235	139 164 186 209 238		119 141 167 199 235	79 96 114 137 162 186 211 239	134 148 174 202 233	2.2114	139 163 180 205 234	117 141 148 173 202 232	95 115 141 172 202 233	2.3896
Test6 4	59 106 133 153	80 133 164 186	58 109 137 157	1.6778	54 99 128 149	48 101 149 177	58 109 137 157	1.6124	58 104 131 151	48 100 149 176	57 108 137 157	1.6853
8	27 56 86 108 124 138 150	41 68 97 125 145 160 176	26 57 95 123 141 158 181	1.8645	13 26 49 73 97 119 138	39 65 97 130 152 170 188	19 41 71 102 123 138 151	1.0012	28 44 49 59 74 87 203 232	38 63 88 115 137 155 171	19 39 67 95 116 131 145	1.0255
10	162	191 27 47 70 99	182 18 37 61 86	2.1354	154 16 31 58 86	254	164 19 41 70 97	1.9012	16 31 55 76 95 109 122	188 29 48 72 98 126	161 12 26 49 78 103	1.9355
	18 31 53 75 96 113 127 139 151 162	125 142 156 169 181 194	107 122 133 143 154 167		106 122 136 148 160 206	38 62 91 119 138 151 162 174 185 196	114 125 135 145 155 166	2.1222	133 145	146 162 176 191 245	119 131 141 152 165	2.1851
12	22 44 71 93 108 122 133	30 44 53 64 86 108 126 143 157	20 39 62 85 102 116 127 136	2.3198	12 23 36 56 79 98 112 125 136	31 48 65 81 104 124 139	16 31 47 73 96 111 125 136 146		4 26 51 75 96 111 125 137 149	8 22 30 43 57 74 78 113	19 20 39 56 67 92 113 129	
	143 154 165 208 229	170-182 194	144 152 160 170		140 155 165	152 164 175 186 196	215	2.3457	215	139 157 174 190	141 152 165 222	2.4125

TABLE 8. (Continued.) The optimal fitness value and threshold value of each algorithm under Renyi.

4 77 93 112 95 111 130 47 62 80 1.4112 78 94 112 94 111 129 47 62 80 189 198 172 189 197 172	1.5278	78 94 113	95 111	47 62 80	
189 198 172 189 197 172	1 6645	188			
105 156 152 107 157 172	1 6645	100	130 198	172	1.4775
8 84 95 104 26 34 165 1.8077 49 66 67	1.0045	65 76 85 94	83 93 103	21 29 122	
67 77 86 95 113 124 168 183 196 203 81 92 102 37 47 57 67		103 117	112 122	161 183	
104 116 138 141 176 190 222 213 213 112 122 136 79 103 189		146 196	135 158	199 220	
240 216 242 215 164 216 245			233	247	1.6339
10 78 87 94 2.0512 26 122 131	2.1014	63 72 79 86	78 89 97	24 31 97	
101 109 39 48 57 66 65 74 82 90 155 166		94 102 112	106 115	100 131	
63 72 80 87 116 124 76 89 118 98 107 120 77 86 94 102 180 218		127 155	125 139	177 210	
94 102 112 135 156 167 195 141 197 109 118 128 225 251		210	171 237	233 241	
126 147 209 241 238 243 141 168 205 254			249	241	2.0191
12 78 86 94 2.1577	2.3111	61 70 78 86	61 84 84	34 43 51	
102 109 36 45 53 61 59 66 76 84 35 43 51 58		94 102 112	132 138	59 67 76	
57 68 77 84 117 126 70 82 100 91 99 109 78 87 94 100 65 74 85		129 161	148 187	88 107	
92 100 109 138 159 131 185 122 148 107 113 121 102 137		202 220	195 199	166 224	
124 148 173 204 233 211 235 225 247 130 143 164 200 209		237	221 230	240 247	
233 247 248 247 248 231 245 246			255		2.1596
Leaf2					
4 107 119 130 42 68 147 74 86 98 1.6118 108 120 74 86 97	1.3012	108 120	109 135	81 184	
145 169 112 131 146 59 68 78 223 111		131 146	149 165	209 209	1.5453
8 15 79 151 28 70 77 1.8135	1.5077	10 120 132	10 103	85 113	
42 46 49 80 155 176 112 153 512 48 57 2 37 49 65 2 10 41 138		133 137	161 163	131 133	
171 186 186 188 210 167 175 127 178 76 191 230 178 193		166 234	178 212	190 197	
250 253 231 189.206 248 219.237		241	228 244	204 245	1.6455
10 2.1474 36.130.132	1.8512	6 19 51 75	15 20 29	6 12 16 23	
1 1 34 43 15 26 31 51 166 185		85 131 160	45 66 83	28 30 51	
17 27 31 39 7 21 25 46 47 104 135 64 108 122 3 25 52 64 211 218		176.218	105 124	106 160	
43 65 109 52 62 76 99 161 190 127 133 75 77 142 223 229		230	189.216	173	
224 241 246 213 243 247 245 151 172 180 245					2.0251
12 8 19 39 88 4 24 53 94 2.3018 25 50 51 68 10 14 34 39	2.0177	39 61 68 73	22 45 62	9 47 50 71	BIOBO I
46 55 115 94 95 117 114 138 72 81 106 41 64 65 84 45 83 90		78 96 125	76 79 140	91.116	
140 145 189 199 201 187 194 110 129 95 125 149 157 165		128 143	167 173	137 152	
208 216 217 206 239 195 206 146 157 172 195 200 225 241		152 158	200 203	212 212	
219 241 248 246 242 243 202 242 255 248		163	210 212	223 229	2.2225

FIGURE 7. The Tsallis results of image test3.

In order to balance the exploration and exploitation of GOA, it's a better solution to use Levy flight to improve GOA algorithm. In this paper, a modified GOA (MGOA) is proposed. The main contribution of this study is that the Levy flight algorithm improves the original GOA for multilevel threading.

 TABLE 9. The optimal fitness value and threshold value of each algorithm under Renyi.

Κ	PSO	~		-	BA		_		MGOA	~	-	
Test1	R	G	В	F	R	G	В	1	F R	G	В	F
4	38 44 58	38 49	47 85	1.6768	59 105	80 133	59 109 137	1.6911	40 90 161	46 89	48 86	1.7911
8	98 17 37 58	57 89 28 51	27 47 67	1.9416	27 51 79	9 13 43	24 56 91	1.9175	227	27 50	132 206 27 46 65	2.0175
	80 107	73 96	88 111		103 122	90 130	115 131		20 45 71 98	71 93	86 109	
	231	183 227	226		161	190	167		217 241	179 227	222	
10	13 29 49 69 90	23 41 59 76	23 39 56 72 89	2.1672	25 34 56 84 103	22 34 47 80 114	18 38 66	2.1678	14 31 49 66	23 41 59 77	24 40 57 73 89	2.2678
	114 144	95 114	108 129		120 132	136 153	82 106 123		87 112 144	96 116	108 131	
	184 219 241	135 159 188 228	230		143 153 163	168 181 193	136 146 157 169		182 215 239	138 164 196 234	235	
12	15 33 53	21 38	21.25.40	2.3479	22 39 61	23 35 45	6 18 20 24	2.3964	12 21 49 77	17 30	21.25.40	2.4764
	113 140	55 69 84 100	63 76 90		113 124	101 128	39 64 94		85 105 125	42 37 71 84	63 77 93	
	176 204	116 135 154 177	107 125 146 171		134 143	146 160 173 184	116 131 144 155		151 184	100 119	110 129 152 181	
	246	206 237	201 237		170	196	168		245	193 232	214 239	
Test2 4	110 159	70.84	59.90	1 6334	112 161	92 137	56 90 116	1.6281	115 161	103 140	63.94	1 7681
	180 208	246 249	117 143	1 00 1 1	181 211	160 185	144	1.000.0	181 210	161 185	120 144	1.0105
8	62 100 142 159	62 105 126 141	19 52 73 88 103	1.8844	95 140 158 170	52 103 129 143	1 6 54 80	1.8836	74 116 145 160 172	40 46 90 123	1 40 69 85 100	1.9136
	171 183	154 167	121 137		182 194	157 169	98 117 136		184 199	141 156	119 136	
10	71 95	49 77	29 56 72	2.1125	34 37 90	71 108	150	2.109	222	43 48	36 62 79	2.219
	129 149 162 172	107 126 139 149	84 94 106 119		143 159 171 183	128 141 151 162	4 18 53 74 87 103 118		31 39 60 94 144 159	78 99 121 136	91 104 118 132	
	182 193	159 170	133 144		195 211	172 186	131 143		171 184	149 161	144 153	
12	208 228 88 111	184 204 22 50	153	2.3288	231 31 49 81	205 214 41 69	154	2.3268	201 224 31 42 78	172 191 12 12	9 45 68	2.4168
	133 145	89 112	1125		93 127	100 119	3 17 32 43		108 124	21 42	82 94	
	173 182	148 157	94 112		166 177	152 162	170 197		145 159	118 133	129 138	
	190 200 215 234	165 172 185 210	127 140		190 209 233	171 184 198 225	229 237 245		193 210	147 158 170 188	147 155 174	
Test3												
4	40 70 105 151	41 74 105 144	155 187	1.7148	40 71 106 152	43 77 109 148	63 110 151 186	1.7161	40 /1 106 152	43 76 108 147	72 119 155 187	1.6961
8	27 45 62	24 46	39 59 87	1.9707	1 20 40 66	21 38 61	49 68 101	1.9541	20 40 67 86	31 55	52 86	2.1541
	128 163	106 130	156 177		86 108	114 136	169 188		29 49 67 86	108 128	160 180	
10	235	160 217	203 35 55 76	2 2045	134 168	164	213	2 2048	168 256	148 173 21 40	203 237	2 3148
10	20 35 49	47 61	100 124	2.2010	24 39 53	1 23 42	5 37 64 94	2.2040	24 40 53 67	58 72	93 119	2.5140
	64 80 97 114 133	76 91 108 127	143 160 176 193		68 86 104 122 138	59 75 90 107 124	122 143 160 177		83 100 118 138 161	85 100 117 135	140 157 172 188	
10	157 184	146 170	215	2 1210	161 186	145 171	194 217	2 1251	186	155 177	211	2 5051
12	18 31 44	19 32 47 61	34 52 67 83 101	2.4249	18 31 44	1 23 40	4 21 39 59	2.4251	1 24 39 50	43 58	34 51 65 80 99	2.5051
	54 65 76 88 101	73 84	122 140		56 69 85 101 118	57 70 82 95 110	80 105 127		61 73 87	70 80	117 134	
	117 132	123 139	184 199		137 157	127 145	176 193		138 163	119 135	176 193	
Test4	153 181	155 177	216		179 201	169 213	214		188	153 175	216	
4	102 135	12 38	75 105	1.6743	103 136	94 127	76 106 131	1.6743	103 136	93 126	75 105	1.6943
8	166 195 53 80 97	239 252 57 77	51 71 88	1.9236	35 59 98	70 91	51 72 91	1.9341	16/195	53 82	1 57 80	1.9841
	114 136	94 114	107 125		122 145	111 130	108 123		120 142	101 121	99 117 133 150	
	202	174 195	236		206	181 199	172		206	178 198	170	
10	66 89 107 123	58 76 91 107	31 54 72 88 103	2.1516	67 88 106 123 139	35 64 88 107 126	24 43 68	2.1837	14 45 70 85	36 66 87 105	47 68 83 98 113	2.2237
	139 156	123 139	117 131		154 171	143 159	86 103 117		104 125	122 138	126 139	
	198 213	155 169	143 158 175		214	203	130 142 156 174		145 166 184 205	154 169 183 199	152 170 196	
12	33 37 57	18 23	28 46 63	2.3813	11 54 64	26.40.55	31 52 70	2.4079	11 57 72 01	30 56	11 53 75	2.4/79
	118 134	87 106	76 88 99		83 96 110	70 87 99	81 94 107		105 120	103 115	122 131	
	149 165 179 193	125 143 162 179	112 124 136 149		121 138 156 175	113 129 147 165	119 130 141 154		137 153 169 184	130 145 160 174	156 163 181 197	
Test	209	198 245	164 180		191 208	180 198	172 227		197 214	187 202	214	
4	50 90	50 82	51 80	1.6772	51 91 148	51 83	51 81 132	1.6775	51 91 148	51 83	51 81	1.6975
8	147 213 34 49 68	135 206 41 53	131 204 41 53 66	1 9339	214	136 206 41 55 71	205	1 9341	214	135 205 42 55	131 204 42 54 67	1 9841
.,	91 117	66 85	83 107		93 119	93 120	41 54 69		34 49 69 93	70 91	85 110	
	149 186 226	110 142 180 225	137 176 224		232	228	89 113 144 182 227		118 148 183 227	116 146 181 225	143 181 225	
10	32 42 54	39 49	39 50 61	2.1665	22.42.66	39 50 61	0 41 52 62	2.1603	22 42 54 72	39 49	40 51 62	2.2203
	114 136	95 118	117 142		72 93 115	116 141	78 99 122		95 119 148	97 120	113 139	
	165 198 232	143 172 202 235	168 193 223		140 171 204 236	170 200 234	151 186 228		182 202 233	143 172 199 231	167 192 227	
12	31 41 52	39 49	225	2.3898	201250	251	220	2.3932	200	37 46	227	2.4232
	68 85	59 74	36 44 52		30 39 49	36 45 53	35 43 53		31 41 53 71	55 65	36 45 54	
	107 125 148 157	91 113 138 163	60 69 81 97 116		62 /8 9/ 115 135	62 /6 94 115 140	108 133		89 112 136 163 189	81 99	64 /8 94 115 142	
	180 207	179 202	141 169		159 183	165 186	162 180		208 217	162 176	162 178	
Test6		210 200	202 207			170 250	212 220		2.50	177 431	207 230	
4	59 105 132 152	21 190 244 252	55 105 136 157	1.6853	59 106 133 153	81 134 164 186	54 103 137 157	1.6852	59 105 132 152	48 101 149 177	58 109 137 157	1.7052
8	27 55 83	25 48	16 37 65	1.9346	18 50 81	42 72	22 50 83	1.9351	28 69 108	30 52	18 33 59	1.9851
	104 122 136 149	80 114 140 158	95 115 130 143		105 123 137 149	109 135 153 166	110 127 141 153		134 153 219 219	8/126 152 171	91 117 134 148	
10	161	174 189	158	2 1600	161	180 193	165	2 1847	232	189 243	163	2 2247
10	3 6 26	72 93	75 96	2.1077	91 109	101 129	18 44 76	2.1047	20 39 63 90	38 56	92 109	2.2271
	44 64 91 111 126	115 133 149 162	112 125 138 150		123 135 145 155	148 161 173 184	99 116 128 139 149		110 125 139 152	80 109 135 155	123 135 145 156	
12	141 156	176 191	163	2 2040	166	196	158 169	2.4101	164 169	173 190	168	2.4501
12	16 28 31	o 7 32 34 35	16 32 49 71 89	2.3949	8 24 39 50	24 31 50 68 94	5 13 22 42	2.4191	20 26 45 67	25 43 59 81	1 16 28	2.4591
	41 44 45 70 96	55 84 118 142	105 120 131 140		68 88 105 120 132	125 143	66 93 107 122 134		87 105 119	99 125 142 155	46 73 98 116 130	
	115 130	158 174	149 158		143 154	182 194	144 155		152 162	166 176	140 149	
	144 158	190	108		104	228	10/		215	18/198	138 169	

TABLE 9. (Continued.) The optimal fitness value and threshold value of each algorithm under Renyi.

Leaf1												
4	78 94	95 111	47 62 80	1.5768	78 94 113	95 111	47 62 80	1.4775	78 94 112	206 222	47 62 80	1.6675
	113 188	130 198	172		188	130 198	172		189	226 237	165	
8	65 76 85	83 93	21 29	1.7416	65 76 85	83 93	21 29 122	1.6741		83 94		1.8941
	94 103	103 112	122 161		94 103	103 112	161 183		70 80 89 98	103 113	35 43 50	
	117 146	122 135	183 199		117 146	122 135	199 220		109 125	123 136	58 67 79	
	196	158 233	220 247		196	158 233	247		200 253	161 208	99 215	
10	63 72 79	78 89	24 31 97	2.1152		78 89 97	24 31 97	2.1003		12 21		2.2103
	86 94	97 106	100 131		63 72 79	106 115	100 131		42 42 46 55	51 89	33 40 49	
	102 112	115 125	177 210		86 94 102	125 139	177 210		152 168	97 167	58 67 78	
	127 155	139 171	233 241		112 127	171 237	233 241		206 223	174 207	96 158	
	210	237 249	241		155 210	249	241		237 253	211 224	211 248	
12	61 70 78	61 84		2.3029		61 84 84		2.3112		78 87		2.4212
	86 94	84 132	34 43 51		61 70 78	132 138	34 43 51		68 78 86 95	95 102	36 43 50	
	102 112	138 148	59 67 76		86 94 102	148 187	59 67 76		104 116	109 116	56 63 71	
	129 161	187 195	88 107		112 129	195 199	88 107 166		136 214	124 136	81 97	
	202 220	199 221	166 224		161 202	221 230	224 240		228 237	153 188	134 184	
	237	230 255	240 247		220 237	255	247		246 247	216 238	218 242	
Leaf2												
4	107 119	142 171	74 86 98	1.6184	108 120	132 145	74 86 97	1.6222	42 48 138	131 143	72 83 94	1.6822
	130 144	227 240	112		132 146	156 170	112		156	154 168	109	
8	71 78 83	46 47	36 37 39	1.8454		26 126	47 48 112	1.9151		120 133	16 30 32	1.9551
	89 149	80 84	97 154		54 85 88	148 195	118 153		6 22 29 54	146 155	34 70	
	178 201	126 162	177 216		91 93 96	204 205	156 159		57 70 92	180 229	151 225	
	254	186 206	222		153 190	230 248	244		190	249 249	239	
10	4 11 71	7852	42 48 65	2.1325			21 32 68	2.1197	14 15 146	62 66		2.2297
	73 103	93 123	81 134		25 44 62	17 27 34	136 155		190 194	86 95	25 27 48	
	153 174	186 207	214 230		70 83 89	36 59 88	184 185		196 221	172 186	56 67 90	
	179 196	211 212	231 235		134 140	177 180	227 232		229 234	225 230	121 182	
	245	217	243		146 157	198 227	245		241	246 252	189 196	
12	46 55	8 19 39	4 24 53	2.3188	17 33 48		19 27 66	2.4321		6 13 15		2.4621
	115 140	88 94	94 114		96 135	9 11 38	143 163			41 62	25 57 62	
	145 189	95 117	138 187		163 178	51 95 97	186 192		30 35 35 49	69 96	84 85 91	
	208 216	199 201	194 195		181 202	113 149	210 212		49 51 78 93	107 157	149 157	
	217 219	206 239	206 242		205 232	155 161	237 239		179 184	167 243	177 188	
			0.10									

TABLE 10. The PSNR and FSIM of each algorithm under Renyi.

K	GOA		WOA		FPA		PSO		BA		MGOA	
	PSNR	FSIM										
Test1												
4	17.9296	0.9263	17.8681	0.9258	17.8662	0.9285	12.4376	0.7830	21.3080	0.8824	22.3080	0.9263
8	23.0286	0.9724	22.8878	0.9731	22.4109	0.9745	22.5914	0.9717	23.4871	0.9545	27.4871	0.9728
10	24.6216	0.9802	24.2363	0.9805	24.6102	0.9803	24.2492	0.9806	25.4688	0.9690	29.4688	0.9803
12	24.8126	0.9837	25.8030	0.9825	26.8544	0.9851	26.5519	0.9848	29.1940	0.9767	30.1940	0.9856
Test2												
4	22.2771	0.8595	15.1277	0.7285	19.3802	0.8344	18.6569	0.8244	22.4169	0.8636	22.4557	0.8617
8	28.2307	0.9376	26.0257	0.9237	19.4067	0.9062	28.1927	0.9402	27.4345	0.9346	28.0106	0.9297
10	30.0147	0.9556	24.7957	0.9341	25.4089	0.9432	30.3121	0.9539	28.8139	0.9447	29.0423	0.9431
12	30.1630	0.9474	26.3972	0.9553	29.9220	0.9576	30.5325	0.9652	25.3948	0.9625	30.5465	0.9665
Test3												
4	20.2163	0.8364	13.5796	0.7831	19.3802	0.8344	20.9781	0.8478	21.0444	0.8466	20.9653	0.8453
8	25.8759	0.9163	21.8535	0.9117	19.4067	0.9062	25.4781	0.9100	25.6467	0.9130	25.2361	0.9120
10	27.7244	0.9383	27.5833	0.9339	25.4089	0.9432	27.8891	0.9385	27.3997	0.9322	27.5955	0.9362
12	28.7539	0.9429	28.7600	0.9449	29.9220	0.9576	29.2280	0.9472	28.6642	0.9452	29.9908	0.9572
Test4												
4	18.9210	0.8111	18.8626	0.8126	12.1706	0.7138	15.0806	0.7903	18.7588	0.8121	18.8626	0.8126
8	26.4275	0.9559	25.7093	0.9479	26.6283	0.9520	26.0831	0.9570	25.7815	0.9436	25.7962	0.9539
10	27.3394	0.9605	27.4965	0.9602	21.8566	0.9568	28.2332	0.9680	27.9805	0.9681	27.8507	0.9669
12	28.1417	0.9614	28.5762	0.9689	27.2987	0.9727	28.4225	0.9566	29.0029	0.9669	29.2621	0.9737
Test5												
4	18.1562	0.8340	18.2268	0.8323	17.1706	0.7799	18.2417	0.8317	18.1605	0.8338	18.1525	0.8343
8	22.6193	0.9012	22.8777	0.9032	20.8633	0.9021	22.6203	0.8992	22.6568	0.9010	22.4891	0.8980
10	24.0284	0.9150	23.0658	0.8816	23.0781	0.9417	23.8091	0.9133	24.2102	0.9144	23.7118	0.9129
12	24.8455	0.9242	24.8944	0.9283	24.3409	0.9196	24.7497	0.9222	25.2018	0.9316	25.8698	0.9573
Test6												
4	22.2933	0.8833	22.6628	0.9094	19.4267	0.8477	17.4384	0.6777	22.1734	0.8836	22.5840	0.9113
8	27.3076	0.9600	27.1678	0.9471	14.2931	0.8033	27.9686	0.9576	27.9945	0.9591	26.0982	0.9458
10	29.8048	0.9715	29.4423	0.9695	18.7549	0.8879	28.8938	0.9628	29.6450	0.9731	28.9801	0.9664
12	30.5785	0.9734	30.4966	0.9782	23.4181	0.8995	29.3505	0.9626	30.1749	0.9745	30.8499	0.9850
Leafl												
4	17.2976	0.7822	17.2975	0.7852	18.2401	0.8335	17.1706	0.7799	17.1706	0.7799	14.3835	0.8684
8	21.4036	0.8893	22.9775	0.9016	22.5990	0.8974	20.8633	0.9021	20.8633	0.9021	23.1511	0.8898
10	25.5831	0.9368	22.2286	0.9385	24.2598	0.9170	23.0781	0.9417	23.0781	0.9417	22.7380	0.8107
12	28.9057	0.9535	28.7008	0.9503	25.1718	0.9250	26.3409	0.9196	26.3409	0.9196	29.1205	0.9680
Leaf2												
4	16.7051	0.7750	15.3362	0.8313	22.5728	0.9101	15.2907	0.6658	16.7110	0.7375	22.5728	0.9101
8	17.5233	0.8336	13.3846	0.8293	22.9111	0.9208	18.5841	0.8819	20.0617	0.8415	22.9111	0.9208
10	17.0585	0.8123	18.3913	0.8392	26.3657	0.9432	21.2289	0.7774	14.5217	0.7963	29.3657	0.9632
12	25.3912	0.9635	24.8362	0.9585	28.0390	0.9596	19.0325	0.9241	22.1719	0.9039	29.0390	0.9696

Experiments were performed on natural images and plant stomata images. The proposed algorithm was compared with the original GOA and other five state-of-the-art metaheuristic methods. This paper used two indicators, namely the Peak signal to noise ratio (PSNR) and Feature similarity index for the image (FSIM), to evaluate the performance of the proposed method. The results showed the superiority of the proposed algorithm in terms of the objective function value, image quality measures on both normal and high-level thresholding.

This paper firstly introduces three image segmentation methods: Tsallis entropy, Otsu, and Renyi's entropy. At the same time, three kinds of single threshold segmentation methods are promoted to multi-threshold segmentation method. Then, the modified GOA algorithm is introduced. Finally, we compare with other optimization algorithms to optimize the multi-threshold image segmentation method. In this paper, the applicability of MGOA segmentation method is analyzed and compared, and it is concluded that MGOA is the best in image segmentation.

TABLE 11. P-value of Wilcoxon test comparative Tsallis based method.

Images	K	Wilcoxon test				
		MGOA VS GOA	MGOA VS WOA	MGOA VS FPA	MGOA VS PSO	MGOA VS BA
Test1	4	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	8	P>0.05	P<0.05	P<0.05	P<0.05	P<0.05
	10	P<0.05	P>0.05	P<0.05	P<0.05	P>0.05
	12	P<0.05	P<0.05	P>0.05	P<0.05	P<0.05
Test2	4	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	8	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Test3	4	P<0.05	P>0.05	P<0.05	P<0.05	P<0.05
	8	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Test4	4	P>0.05	P<0.05	P<0.05	P<0.05	P<0.05
	8	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Test5	4	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	8	P<0.05	P<0.05	P>0.05	P<0.05	P<0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Test6	4	P>0.05	P<0.05	P<0.05	P<0.05	P<0.05
	8	P<0.05	P>0.05	P<0.05	P<0.05	P<0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P>0.05
Leafl	4	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	8	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Leaf2	4	P>0.05	P<0.05	P<0.05	P<0.05	P<0.05
	8	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05

II. PROBLEM ASSESSMENT OF MULTILEVEL THRESHOLDING

The process of searching optimal thresholding values of a given image is considered as a constrained optimization problem [51]. For bi-level thresholding, the problem is to find an optimal value T^* . If the image intensity $I_{i,j}$ is less than the value T^* , the pixel in an image is replaced with a black pixel or a white pixel if the image intensity is greater than that constant T^* , the expression can be stated as follows:

$$g(x, y) = \begin{cases} 1 & if \ f(x, y) > T^* \\ 0 & if \ f(x, y) < T^* \end{cases}$$
(1)

The problem can be extended to multilevel thresholding that has more than one threshold value and divide the original image into multiple classes (2):

$$N_{0} = \{g(x, y) \in I \mid 0 \leq g(x, y) \leq t_{1} - 1 \mid \}$$

$$N_{1} = \{g(x, y) \in I \mid t_{1} \leq g(x, y) \leq t_{2} - 1 \mid \}$$

$$N_{i} = \{g(x, y) \in I \mid t_{i} \leq g(x, y) \leq t_{i} - 1 \mid \}$$

$$N_{n} = \{g(x, y) \in I \mid t_{n} \leq g(x, y) \leq L - 1 \mid \}$$
(2)

where N_i is the ith class, n is the number of threshold values, and $t_i(i = 1, \dots, n)$ is the ith threshold value.

A. TSALLIS ENTROPY METHOD

Assume that the size of image f is $M \times N$, its gray levels are $0, 1, \ldots L - 1$, their probability distributions are $p_0, p_1, \ldots, p_{L-1}$, and $\sum_{i=1}^{L-1} p_i = 1$. The gray level threshold t divide pixels of image f into object category $C_o = \{(m, n) | f(m, n) = 0, 1, \cdots, t\}$ and background category $C_B = \{(m, n) | f(m, n) = t + 1, t + 2, \cdots, L - 1\}$. The Tsallis prior entropy of object and background $S_q^O(t)$ and $S_q^B(t)$ are defined as below.

$$S_{q}^{O}(t) = \frac{1 - \sum_{i=0}^{t} \left(\frac{p_{i}}{p_{t}}\right)^{q}}{q - 1}, \quad S_{q}^{B}(t) = \frac{1 - \sum_{i=t+1}^{L-1} \left(\frac{p_{i}}{1 - p_{t}}\right)^{q}}{q - 1}$$
(3)

where a parameter q is used to describe nonextensitivity and its optimal value is 0.8 in the threshold section. The total Tsallis entropy of object and background $S_q(t)$ is:

$$S_{q}(t) = S_{q}^{O}(t) + S_{q}^{B}(t) + (1 - q)S_{q}^{O}(t)S_{q}^{B}(t)$$
(4)

When the Tsallis entropy $S_q(t)$ reaches the maximum, the corresponding gray level t^{*} is regarded as the optimal threshold.

$$t^* = \underset{0 \le t \le L-1}{\operatorname{Arg\,max}} \{S_q(t)\}$$
(5)

The above single threshold selection based on Tsallis entropy can be extended to the situation of multilevel

FIGURE 8. The Tsallis results of image test4.

thresholds selection. The n-1 gray level threshold t_1, t_2, \dots, t_{n-1} divide the pixels of image f into n classes C_k. Let $T = t_1, t_2, \dots, t_{n-1}$, then the total Tsallis entropy of n classed S_q(T) is:

$$S_{q}(T) = \sum_{k=1}^{n} S_{q}^{C_{k}}(T) + \sum_{l=1}^{n-1} (1-q)^{l} S_{q}^{C_{1}}(T) S_{q}^{C_{2}}(T) \cdots S_{q}^{C_{l+1}}(T)$$
(6)

where Tsallis entropy of class Ck is:

$$S_q^{C_k}(T) = \frac{1 - \sum_{i=t_{k-1}+1}^{t_k} (\frac{p_i}{\sum_{i=t_{k-1}+1}^{t_k} p_i})^q}{q-1}, \quad k = 1, 2, \cdots, n$$
(7)

Let $u(t_{k-1}, t_k) = \sum_{i=t_{k-1}+1}^{t_k} p_i, w(t_{k-1}+1, t_k) = \sum_{i=t_{k-1}+1}^{t_k} (p_i)^q$, then the sum term in (7) changes into:

$$\sum_{i=t_{k-1}+1}^{t_k} (p_i)^q = \frac{\sum_{i=t_{k-1}+1}^{t_k} (p_i)^q}{u^q(t_{k-1}+1, t_k)} = \frac{w(t_{k-1}+1, t_k)}{u^q(t_{k-1}+1, t_k)}$$
(8)

In order to reduce the repetitive computation for Tsallis entropy so as to enhance search domain to search for the optimal thresholds, the recursive equations for computing $u(t_{k-1} + 1, t_k)$ and $w(t_{k-1} + 1, t_k)$ are given as follows:

$$\begin{cases} w(0,0) = 0; u(0,0) = 0\\ u(0,t) = \sum_{i=0}^{t} p_i = u(0,t-1) + p_t\\ w(0,t) = \sum_{i=0}^{t} (p_i)^q = w(0,t-1) + p_t^q\\ u(t_{k-1}+1,t_k) = u(0,t_k) - u(0,t_{k-1})\\ w(t_{k-1}+1,t_k) = w(0,t_k) - w(0,t_{k-1})\\ k = 1, 2, \cdots, n \end{cases}$$
(9)

When $S_q(T)$ reaches the maximum, the n-1 optimal thresholds can be obtained:

$$(t_1^*, t_2^*, \cdots, t_{n-1}^*) = \underset{0 \le t_1 < t_2 < \cdots < t_{n-1} \le L-1}{Arg \max} \{S_q(T)\} \quad (10)$$

B. BETWEEN-CLASS VARIANCE METHOD

The Otsu based between-class variance method has been employed in determining the optimal thresholding values of an image. The Otsu's method can be described as follows: assume that an image can be represented in L gray

FIGURE 9. The Tsallis results of image test5.

FIGURE 10. The Tsallis results of image test6.

FIGURE 11. The Tsallis results of image Leaf1.

levels (1, 2, ..., L) and has N pixels. The number of pixels at level *i* is denoted by f_1 , then $N = f_1 + f_2 + \cdots + f_i$. Then, the occurrence probability of gray level *i* can be defined by the following equation:

$$p_i = \frac{f_i}{N}, p_i \ge 0, \quad \sum_{i=1}^{L} p_i = 1$$
 (11)

In bi-level thresholding, the optimum threshold t divides the image into two classes, and the cumulative probabilities of each class can be described as follows:

$$\varpi_0 = \sum_{i=1}^t p_i, \quad \varpi_1 = \sum_{i=t+1}^L p_i$$
(12)

The mean levels of two classes can be defined as follows:

$$\mu_0 = \sum_{i=1}^{t} i p_i / \varpi_0, \quad \mu_1 = \sum_{i=t+1}^{L} i p_i / \varpi_1$$
(13)

Let μ_T be the mean levels of the whole image and it can be defined by

$$\mu_T = \sum_{i=1}^{L} i p_i \tag{14}$$

The between-class variance of whole classes can be represented by

$$f(t) = \sigma_0 + \sigma_1 \tag{15}$$

where $\sigma_0 = \overline{\omega}_0(\mu_0 - \mu_T)^2$ and $\sigma_1 = \overline{\omega}_1(\mu_1 - \mu_T)^2$. For bi-level thresholding, the Otsu's method find an optimal threshold t^* by maximizing the between-class variance, that is:

$$t^* = \arg\max(f(t)) \tag{16}$$

The Otsu's method can be also extended to multi-level thresholding. Assuming that there are m thresholds, which divide the image into m + 1 classes. The extended between-class

FIGURE 12. The Tsallis results of image Leaf2.

variance is calculated by

$$f(t) = \sum_{i=0}^{m} \sigma_i \tag{17}$$

The sigma terms are determined by (18) and the mean levels are calculated by (19):

$$\sigma_{0} = \varpi_{0}(\mu_{0} - \mu_{T})^{2}, \quad \sigma_{1} = \varpi_{1}(\mu_{1} - \mu_{T})^{2}, \cdots,$$

$$\sigma_{M-1} = \varpi_{M-1}(\mu_{M-1} - \mu_{T})^{2}$$
(18)
$$\mu_{0} = \sum_{i=1}^{t} ip_{i}/\varpi_{0}, \quad \mu_{1} = \sum_{i=t_{1}+1}^{t_{2}} ip_{i}/\varpi_{1}, \cdots,$$

$$\mu_{M-1} = \sum_{i=t_{M-1}+1}^{L} ip_{i}/\varpi_{M-1}$$
(19)

The optimum thresholds are found by maximizing the between-class variance by (20):

$$t^* = \arg\max(\sum_{i=0}^{M-1} \sigma_i)$$
(20)

C. RENYI'S ENTROPY METHOD

Renyi's entropy calculates the absolute value of entropy and the entropy difference in the target region and the background region, then obtains the threshold value t^* in the largest place [52]. The Renyi's entropy of whole classes can be represented by

$$H = H_O + H_B \tag{21}$$

where

$$\begin{cases} H_O(t) = \left(\frac{1}{1-q}\right) \sum_{i=0}^{s-1} \sum_{j=0}^{t-1} \left(\frac{P_{ij}}{P_O}\right)^q \\ H_B(t) = \left(\frac{1}{1-q}\right) \sum_{i=s}^{L-1} \sum_{j=t}^{L-1} \left(\frac{P_{ij}}{P_B}\right)^q \end{cases}$$
(22)

where the parameter q is a real number not equal to one associated with the extensitivity of the system, and it is dependent. The threshold value t^* can be found by maximizing:

$$t^* = \arg\max(H_O + H_B) \tag{23}$$

FIGURE 13. The Otsu results of image test1.

Further, Renyi's entropy can be easily extended for the multilevel thresholding problem as given by:

$$H_{O}(t) = \left(\frac{1}{1-q}\right) \sum_{i=0}^{s-1} \sum_{j=0}^{t-1} \left(\frac{P_{ij}}{P_{O}}\right)^{q}$$

$$H_{1}(t) = \left(\frac{1}{1-q}\right) \sum_{i=s}^{s_{1}-1} \sum_{j=t}^{t_{1}-1} \left(\frac{P_{ij}}{P_{B}}\right)^{q}$$

$$H_{2}(t) = \left(\frac{1}{1-q}\right) \sum_{i=s_{1}}^{s_{2}-1} \sum_{j=t_{1}}^{t_{2}-1} \left(\frac{P_{ij}}{P_{B}}\right)^{q}, \cdots$$

$$H_{M}(t) = \left(\frac{1}{1-q}\right) \sum_{i=s_{m}}^{L-1} \sum_{j=t_{m}}^{L-1} \left(\frac{P_{ij}}{P_{B}}\right)^{q}$$
(24)

In order to search M optimal threshold values $[t_1, t_2, \dots, t_m]$ for a given image, we try to maximize the objective function:

$$t^* = \arg\max(\sum_{i=0}^m H_M)$$
(25)

III. GRASSHOPPER OPTIMIZATION ALGORITHM

In 2017, Mirjalili Seyedali proposed the grasshopper optimization algorithm. The grasshoppers are a genus of straight fins of insect, they are seen as pests, because they are in crops for food, to cause damage to agriculture. The growth cycle of grasshoppers are shown in Fig.1. The grasshoppers usually exist alone in nature, but they are one of the biggest swarm of all species. The grasshoppers are unique in that they crowd behavior in adults and larvae of between. Millions of larva foraging on the basis of jumping, they feed on almost all plants, and when they reach adulthood, they form a large group in the air, making long migrations, looking for the next food source.

A. MATHEMATICAL MODEL OF GOA

In larvae stage, the main characteristic of grasshopper is moving slowly, small scale food. When they become adult, collective action has became the main activity characteristics of grasshopper. The nature inspired algorithms logically divide the search process into two tendencies: exploration and exploitation [53]. So mathematical model of the gregarious grasshoppers are represented as follows:

$$X_i = S_i + G_i + A_i \tag{26}$$

where X_i defines the position of the *i*-th grasshopper, S_i is the social interaction, G_i is the gravity force on the

FIGURE 14. The Otsu results of image test2.

i-th grasshopper, and A_i shows the wind advection.

$$\begin{cases} S_i = \sum_{j=1}^{N} s(d_{ij}) \vec{d}_{ij} \\ s(r) = f e^{\frac{-r}{T}} - e^{-r} \end{cases}$$
(27)

where d_{ij} is the distance between the *i*-th and the *j*-th grasshopper, calculated as $d_{ij} = |x_j - x_i|$, s is a function to define the strength of social forces, \vec{d}_{ij} is an unit vector from the *i*-th grasshopper to the *j*-th grasshopper.

$$G_i = -g \overrightarrow{e}_g \tag{28}$$

where g is the gravitational constant and \overrightarrow{e}_g shows an unity vector towards the center of earth.

$$A_i = u \overrightarrow{e}_w \tag{29}$$

where u is a constant drift and \overrightarrow{e}_{w} is an unity vector in the direction of wind.

Substituting S, G, and A into (26), then this equation can be expanded as follows:

$$X_{i} = \sum_{j=1}^{N} s(|x_{j} - x_{i}|) \frac{x_{j} - x_{i}}{d_{ij}} - g \overrightarrow{e}_{g} + u \overrightarrow{e}_{w}$$
(30)

VOLUME 7, 2019

However, this mathematical model cannot be used directly to solve optimization problems, mainly because the grasshoppers quickly reach the comfort zone and the swarm does not converge to a specified point. A modified version of this equation is proposed as follows to solve optimization problems:

$$X_{i}^{d} = c_{1} \left(\sum_{j=1}^{N} c_{2} \frac{ub_{d} - lb_{d}}{2} s(|x_{j} - x_{i}|) \frac{x_{j} - x_{i}}{d_{ij}} \right) + \overrightarrow{T}_{d}$$
(31)

Among them, ub_d and lb_d are a type of upper and lower limitation, \vec{T}_d is the optimal value after each iteration, $c_1 = c_2 = c \max - l \frac{c \max - c \min}{L}$, c_1 balances the global search and local search for the target area, c_2 balances the relationship among the attraction between two grasshopper, *cmax* and *cmin* can set the maximum and minimum search ability, *l* represents the current iteration number, *L* is the largest number of iterations.

The general framework of GOA-based image thresholding as follows:

B. LEVY FLIGHT TRAJECTORY

Levy's flight was firstly proposed by Levy and then described in detail by Benoit Mandelbrot. In fact, Levy flight is a random step that describes the Levy distribution [54].

FIGURE 15. The Otsu results of image test3.

FIGURE 16. The Otsu results of image test4.

Numerous studies have shown that the behavior of many animals and insects are a classic feature of Levy's flight. Levy flight is a special random step method, as shown in Fig.2, which is a simulation of the flight path. Its step length is always small, but occasionally it will also appear large pulsation [55].

FIGURE 17. The Otsu results of image test5.

FIGURE 18. The Otsu results of image test6.

FIGURE 19. The Otsu results of image Leaf1.

The formula for Levy flight is as follows:

$$Levy \sim u = t^{-\lambda}, \quad 1 < \lambda \le 3 \tag{32}$$

The formula for generating Levy random step proposed by Mantegna is as follows:

$$s = \frac{\mu}{|\nu|^{1/\beta}} \tag{33}$$

where, parameter $\beta = 1.5$, $\mu = N(0, \sigma_{\mu}^2)$ and $v = N(0, \sigma_{\mu}^2)$ are gamma functions.

The variance of the parameters is as follows:

$$\sigma_{\mu} = \left[\frac{\Gamma\left(1+\beta\right) \times \sin(\pi \times \beta/2)}{\Gamma\left[(1+\beta)/2\right] \times \beta \times 2^{(\beta-1)/2}}\right]^{1/\beta}, \quad \sigma_{\nu} = 1 \quad (34)$$

C. MODIFIED GRASSHOPPER OPTIMIZATION ALGORITHM

The GOA algorithm can solve the problem of low dimensional mode optimization simply and efficiently. However, to solve the problem of high and complex image processing,

VOLUME 7, 2019

the resulting solution of the traditional GOA is unsatisfactory. In order to improve the global search ability and exploitation ability of GOA, this paper puts forward an improved Levy flight grasshopper optimization algorithm. Levy flight can maximize the implementation of the diversity of the search domain, it can guarantee the algorithm efficient search the location of the function source, realize the local optimum. The findings suggest that Levy flight help GOA get better optimization results. Therefore, the position updating formula of the grasshopper is optimized, and (31) and (32) are improved, which can be expressed by the following mathematical formula:

$$X_i^d = c \left(\sum_{j=1}^N c \frac{ub_d - lb_d}{2} s(|x_j - x_i|) \frac{x_j - x_i}{d_{ij}} \right) + Levy * \overrightarrow{T}_d$$
(35)

Levy flight can significantly improve the global search ability of GOA to avoid getting into local optimal value. This method not only improves the search of GOA strength,

FIGURE 20. The Otsu results of image Leaf2.

but also enhances search domain of the algorithm. Through the optimization algorithm to ensure the algorithm can find the optimal value and avoid falling into local optimum, by enhancing diversity makes the algorithm have better global searching ability. At the same time, the algorithm of single peak and standard functions of multimodal threshold image segmentation has better effect on application. The pseudo code of the MGOA-based image thresholding algorithm is given below.

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENT SETUP

In computer science, mathematics, and management science, optimization is the process of selecting a best solution from some set of available alternatives. In other words, optimization is the method of computing the value of the function and finding the optimal results by maximizing and minimizing an objective function within a given domain. So the objective functions play an important role in the optimization problem. In this paper, Tsallis entropy, between-class variance method and Renyi entropy are using as the objective function that is maximized based on the GOA, WOA, FPA, PSO, BA and MGOA algorithms for multilevel color image thresholding segmentation to find optimal threshold values. The RGB images have three basic color components of red, green and blue, so we need search the optimal threshold values of each component. Moreover, to assess the effectiveness and robustness of the proposed algorithm, recently presented energy curve-based on multilevel thresholding techniques are also investigated. All these compared algorithms are representative algorithms for multilevel thresholding which have been demonstrated in the corresponding references in TABLE 1.

Eight color test images, including natural images and plant stomata images shown in Fig.3 are considered to conduct the experiments. The proposed algorithm is tested over the publicly accessible standard color dataset. Natural color test images are accessed from the Berkeley segmentation data set (BSDS300). The plant stomata images collected by high-power microscopy in the laboratory of Northeast Forestry University. Color images require higher threshold

FIGURE 21. The Renyi results of image test1.

FIGURE 22. The Renyi results of image test2.

levels of segmentation, thus they are more complex to be solved by an optimization technique. Since, optimization algorithms are stochastic and have randomized characteristic. To prevent any discrepancies, all the test images are divided 30 times by the proposed multilevel segmentation algorithm. In TABLE 2-10, the optimal quantitative results

FIGURE 23. The Renyi results of image test3.

Algorithm 1 GOA-Based Image Thresholding

Begin

. 0	
	Initialize the swarm $x_i (i = 1, 2,, n)$;
	Initializecmax, cmin, and maximum number of
	iterations;
	Calculate the fitness of each search agent;
	T = the best search agent;
	While (1 < Max number of iterations)
	Update c
	for each search agent
	Update the position of the current search
	agent by the (31);
	Bring the current search agent back if it
	goes outside the boundaries;
	end for
	Update T if there is a better solution;
	1 = 1 + 1
	end while
	Return T as the optimal parameter for image
	thresholding;
End	-

Algorithm 2 MGOA-Based Image Thresholding Begin

are obtained by simulating the above 30 runs of all test images respectively.

As we know, the value of parameters are very important in determining the performance of swarm intelligence algorithms. So, an extensive set of experiments is conducted to find the right values of the parameters in this paper. Of all the algorithms, the population size is set to be 25 and the max iteration is 500. To demonstrate the superiority of the proposed algorithm, GOA based multilevel thresholding algorithm, including the original GOA and five other popular

(36)

FIGURE 24. The Renyi results of image test4.

multilevel thresholding metaheuristic algorithms including GOA, WOA, FPA, PSO and BA algorithm are chosen to compare with the proposed one. PSNR and FSIM values are selected as indicators to evaluate image segmentation results. The parameter of the peak signal to noise ratio (PSNR) is used to compute the peak signal to noise ratio between the original image and the segmented image. The PSNR index is calculated as:

 $PSNR = 20\log(\frac{255}{RMSE})(dB)$

where

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (I(i,j) - \hat{I}(i,j))^2}{M \times N}}$$
(37)

where, M, N is the size of the image, I is the original image, and \hat{I} is the segmented image.

The Feature Similarity (FSIM) is used to estimate the structural similarity of the original image and the segmented image. We define FSIM as:

$$FSIM = \frac{\sum_{x \in \Omega} S_L(x) \cdot PC_m(x)}{\sum_{x \in \Omega} PC_m(x)}$$
(38)

where Ω represents the entire image, and $S_L(x)$ indicates the similarity between the segmented image obtained through multilevel thresholding task and input image. The FSIM parameter of color RGB image is defined as:

$$FSIM = \frac{1}{O} \sum_{O} FSIM(x^{O}, y^{O})$$
(39)

where, x^{O} and y^{O} represent *oth* channel of the original image and segmented image respectively, *o* is the channel number.

In this experiment, the results obtained by proposing GOA, WOA, FPA, PSO, BA and MGOA algorithms are analyzed at different threshold levels (K = 4,8,10 and 12) for the test images. Table 2 and 3 indicates the threshold value obtained through different approaches using Tsallis entropy threshold for all the color test images. Whereas, PSNR and FSIM values are indicated in Table 4. From the results shown in Table 2 and 3, it can be observed that for all the test images, MGOA significantly produces more favorable and reliable results than GOA, WOA, FPA, PSO and BA especially at high thresholding levels (K) due to their precise search ability. It can be seen from the tabulated values that at T = 3, the algorithm has obtained smaller PSNR, FSIM, while, PSNR obtains higher values and lower RMSE on increasing the

FIGURE 25. The Renyi results of image test5.

FIGURE 26. The Renyi results of image test6.

FIGURE 27. The Renyi results of image Leaf1.

threshold levels. Higher PSNR and lower RMSE indicate towards good segmentation quality of the output image.

For a visual, qualitative analysis, the performance of proposed technique at different segmentation levels is represented in Fig.5-10 for colored plant stomata images and in Fig. 11-12 for colored natural images. It can be seen from Fig. 5-12, that the proposed method is able to obtain the satisfying segmentation with well-preserved edges in case of complex plant stomata images as well. To examine, the better quality of optimal threshold values using Tsallis based GOA, WOA, FPA, PSO and BA algorithms.

The objective function values obtained for GOA, WOA, FPA, PSO, BA and MGOA algorithm based on betweenclass variance are given in TABLE 5-7, respectively. It can be evidently seen from TABLE 5, 6 that the MGOA algorithm has higher objective function values than the GOA, WOA, FPA, PSO and BA algorithm. According to PSNR and FSIM values, MGOA algorithm is superior to other algorithms. The segmentation results for a between-class variance based multilevel segmentation are shown in Fig. 13-20. From a visualization perspective, it can be depicted that in some cases, several pixels are over segmented. Few pixels belonging to the object are divided into background and some of the pixels belonging to the background are divided into objects. It can be depicted that between-class variance based multilevel segmentation approach is not well-suited method for segmentation at lower thresholding levels, since it gives under-segmented and unsuitable outputs. At higher thresholding levels, only MGOA based segmentation has generated fair outcomes.

TABLE 8-10 show the number of thresholds, optimal threshold values, objective functions and their corresponding PSNR and FSIM values obtained by GOA, WOA, FPA, PSO, BA and MGOA algorithm. Segmented images obtained from the MGOA algorithm on the Renyi variance objective function are given in Fig.21-28 for the eight test images. Similarly, comparing PSNR and FSIM values in TABLE 8 and 9, MGOA based techniques have obtained better values than other algorithm based techniques.

FIGURE 28. The Renyi results of image Leaf2.

From TABLE 2, 3, 5, 6, 8 and 9, it can be found that fitness values of the segmented images by MGOA based Tsallis are more robust than other techniques. It can be clearly seen from TABLE 4, 7 and 10, MGOA has better values and gives higher quality segmentation than other comparable methods such as GOA, WOA, FPA, PSO and BA. It is also seen that the value of FSIM index increases as the amount of thresholds increase. This indicates that segmentation quality improves as the number of thresholds is increased.

B. RESULT

We also perform a statistical analysis of the results. When comparing two methods, we use Wilcoxon rank-sum test [60], a non-parametric statistical test that checks whether one of two independent samples tends to have larger values than the other. The objective function values of the proposed method are compared with GOA, WOA, FPA, PSO and BA based methods. All the algorithms run 30 times for the statistical analysis. Experimental statistical results based on the following TABLE 11-13.

VOLUME 7, 2019

The null hypothesis are constructed as: there is no significant difference between the three algorithms. The alternative hypothesis considers that there is a significant difference between the three algorithms. A value of p > 0.05 indicates that the null hypothesis cannot be rejected. On the other hand, a value of p < 0.05 means the null hypothesis can be rejected at the 5 % significance level [15]. In the experiment using Tsallis function, MGOA based method produces better result in 28 out of 32 cases when compared with GOA based method and produces better result in 29 out of 32 cases when compared with WOA based method and produces better result in 30 out of 32 cases when compared with FPA based method and produces better result in 32 out of 32 cases when compared with PSO based method and produces better result in 30 out of 32 cases when compared with the BA based method. Whereas, in the experiment using Otsu function, MGOA based method produces better result in 26 out of 32 cases when compared with GOA based method and produces better result in 27 out of 32 cases when compared with WOA based

TABLE 12. P-value of Wilcoxon test comparative Otsu based method.

Images	Κ	Wilcoxon test				
		MGOA VS GOA	MGOA VS WOA	MGOA VS FPA	MGOA VS PSO	MGOA VS BA
Test1	4	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	8	P>0.05	P>0.05	P<0.05	P<0.05	P<0.05
	10	P<0.05	P>0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Test2	4	P<0.05	P<0.05	P<0.05	P>0.05	P>0.05
	8	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	10	P<0.05	P<0.05	P>0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Test3	4	P<0.05	P<0.05	P<0.05	P>0.05	P<0.05
	8	P<0.05	P>0.05	P<0.05	P<0.05	P<0.05
	10	P>0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Test4	4	P<0.05	P>0.05	P<0.05	P<0.05	P<0.05
	8	P<0.05	P<0.05	P>0.05	P>0.05	P<0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Test5	4	P<0.05	P<0.05	P>0.05	P<0.05	P>0.05
	8	P>0.05	P<0.05	P<0.05	P>0.05	P<0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Test6	4	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	8	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P>0.05	P<0.05	P<0.05	P<0.05	P<0.05
Leaf1	4	P<0.05	P>0.05	P>0.05	P<0.05	P>0.05
	8	P<0.05	P<0.05	P>0.05	P<0.05	P<0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Leaf2	4	P>0.05	P<0.05	P<0.05	P<0.05	P<0.05
	8	P>0.05	P<0.05	P>0.05	P<0.05	P>0.05
	10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
	12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05

TABLE 13. P-value of Wilcoxon test comparative Renyi based method.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Images	Κ	Wilcoxon test				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			MGOA VS GOA	MGOA VS WOA	MGOA VS FPA	MGOA VS PSO	MGOA VS BA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Test1	4	P>0.05	P<0.05	P>0.05	P<0.05	P>0.05
10 P<0.05 P<0.05		8	P<0.05	P>0.05	P<0.05	P>0.05	P<0.05
12 P<0.05 P<0.05		10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Test2 4 P<0.05 P<0.05		12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
8 P<0.05 P<0.05	Test2	4	P<0.05	P>0.05	P<0.05	P<0.05	P>0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		8	P<0.05	P<0.05	P>0.05	P>0.05	P>0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Test3 4 P>0.05 P>0.05 P<0.05 P<0.05 P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 P<0.05 P<0.05		12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
8 P<0.05 P<0.05	Test3	4	P>0.05	P>0.05	P<0.05	P<0.05	P>0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		8	P<0.05	P<0.05	P>0.05	P>0.05	P<0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		10	P>0.05	P>0.05	P<0.05	P<0.05	P<0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	P>0.05	P<0.05	P<0.05	P<0.05	P<0.05
8 P<0.05 P>0.05 P<0.05 P<0.05	Test4	4	P<0.05	P<0.05	P<0.05	P<0.05	P>0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		8	P<0.05	P>0.05	P>0.05	P<0.05	P<0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Test5	4	P>0.05	P>0.05	P<0.05	P>0.05	P<0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	P>0.05	P<0.05	P<0.05	P<0.05	P<0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	P<0.05	P>0.05	P<0.05	P<0.05	P<0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Test6	4	P>0.05	P<0.05	P>0.05	P>0.05	P>0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	P>0.05	P<0.05	P>0.05	P<0.05	P>0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Leaf1	4	P<0.05	P>0.05	P<0.05	P<0.05	P>0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
Leaf2 4 P<0.05 P<0.05 P<0.05 P>0.05 P>0.05 8 P<0.05		12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
8 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 10 P<0.05	Leaf2	4	P<0.05	P<0.05	P>0.05	P<0.05	P>0.05
10 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 12 P<0.05		8	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
12 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05 P<0.05		10	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05
		12	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05

method and produces better result in 26 out of 32 cases when compared with FPA based method and produces better

result in 28 out of 32 cases when compared with PSO based method and produces better result in 28 out of 32 cases when

compared with BA based method. In addition, in the experiment using Renyi function, MGOA based method produces better result in 24 out of 32 cases when compared with GOA based method and produces better result in 24 out of 32 cases when compared with WOA based method and produces better result in 25 out of 32 cases when compared with FPA based method and produces better result in 27 out of 32 cases when compared with PSO based method and produces better result in 23 out of 32 cases when compared with BA based method. It can be seen from results that there is a significant difference between the six algorithms. In most cases MGOA based Tsallis multilevel thresholding algorithm performs better than the other algorithms.

Fig.4 presents the Box-plot representing the PSNR and FSIM for all methods, the MGOA-based multi thresholding image segmentation method can find better threshold values that generate output results with better features. This figure also indicates that many approaches can perform well with a small number of thresholds. This phenomenon suggests that as the number of thresholds increases the complexity of the search space is also significantly incremented.

According to segmentation results, performances of the optimization algorithm are different to use different objective functions. However, on the basis of stability, accuracy, convergence speed, and searching precision, MGOA shows superior performance on multilevel segmentation on energy based Tsallis entropy. WOA and BA have performed fairly, but PSO has an inferior performance on both the objective criteria. Based on the quantitative and qualitative comparison among the presented multilevel segmentation techniques, proposed MGOA technique has achieved good performance as it performs reliable and computationally efficient segmentation through accurate threshold value, selection, and thus has proved to be more suitable for threshold-based image segmentation problems using color images with multimodal distributions such as natural images and plant stomata images at almost all the segmentation levels.

V. CONCLUSIONS

In this paper, a new multilevel thresholding method for color image segmentation based on a modified grasshopper optimization algorithm (MGOA) is proposed. We compare three methods, Tsallis entropy, between-class variables, and Renyi's entropy. Six natural images and two plant stomata images are carried out by using various algorithms, selecting threshold K = 4,8,10,12. In order to verify the algorithm is of excellent performance in image segmentation, PSNR and FSIM methods are used. MGOA algorithm in PSNR and FSIM values are higher than other heuristic algorithms and the image segmentation effect is better than other algorithms. As a result, the experiment found the FSIM and PSNR values obtained by Tsallis entropy based segmentation algorithm are superior to other algorithms, which explains the strong ability of Tsallis entropy based algorithm for color image segmentation. As a scope of further research, the MGOA algorithm can be applied to complex applications. In addition,

other new objective functions can also be implemented for multilevel color image thresholding segmentation. For other researchers, further work is to be carried out to present an improved grasshopper optimization algorithm for the multilevel image segmentation problem and more complex practical engineering problems.

The result images are the threshold number from left to right, K = 4,8,10,12. From top to bottom is GOA, WOA, FPA, PSO, BA and MGOA.

REFERENCES

- N. Otsu, "A threshold selection method from gray-level histograms," *IEEE Trans. Syst., Man, Cybern.*, vol. SMC-9, no. 1, pp. 62–66, Jan. 1979.
- [2] T. Laux and F. Otto, "Convergence of the thresholding scheme for multiphase mean-curvature flow," *Calculus Variat. Partial Differ. Equ.*, vol. 55, no. 5, p. 129, 2016.
- [3] M. P. van den Heuvel, S. C. de Lange, A. Zalesky, C. Seguin, B. T. T. Yeo, and R. Schmidt, "Proportional thresholding in restingstate fMRI functional connectivity networks and consequences for patientcontrol connectome studies: Issues and recommendations," *NeuroImage*, vol. 152, pp. 437–449, May 2017.
- [4] Y. Li, X. Bai, L. Jiao, and Y. Xue, "Partitioned-cooperative quantumbehaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation," *Appl. Soft Comput.*, vol. 56, pp. 345–356, Jul. 2017.
- [5] A. Locatelli, M. Gutzeit, and A. Carpentier, "An optimal algorithm for the thresholding bandit problem," in *Proc. Int. Conf. Int. Conf. Mach. Learn. (JMLR)*, 2016, pp. 1690–1698.
- [6] I. Mandić et al., "Charge-collection properties of irradiated depleted CMOS pixel test structures," Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 903, pp. 126–133, Sep. 2018.
- [7] M. Hashimoto and T. Nakajima, "Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multiwavelength and multipixel information," *J. Geophys. Res., Atmos.*, vol. 122, no. 12, pp. 6347–6378, 2017.
- [8] P. Simon and P. Schneider, "Weak-lensing shear estimates with general adaptive moments, and studies of bias by pixellation, PSF distortions, and noise," Astron. Astrophys., vol. 604, p. A109, Aug. 2016.
- [9] B. Yi, A. D. Rapp, P. Yang, B. A. Baum, M. D. King, "A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Cloud radiative effects," *J. Geophys. Res., Atmos.*, vol. 122, no. 8, pp. 4550–4564, 2017.
- [10] J. Dai, Y. Li, K. He, J. Sun. (2016). "R-FCN: Object detection via region-based fully convolutional networks." [Online]. Available: https://arxiv.org/abs/1605.06409
- [11] O. Krikeb, V. Alchanatis, O. Crane, and A. Naor, "Evaluation of apple flowering intensity using color image processing for tree specific chemical thinning," *Adv. Animal Biosci.*, vol. 8, no. 2, pp. 466–470, 2017.
- [12] C. Zhu, Y. Zheng, M. Savvides, and K. Luu. (2017). "CMS-RCNN: Contextual multi-scale region-based CNN for unconstrained face detection." [Online]. Available: https://arxiv.org/abs/1606.05413
- [13] L. Shen, X. Huang, and C. Fan, "Double-group particle swarm optimization and its application in remote sensing image segmentation," *Sensors*, vol. 18, no. 5, pp. 1393–1394, 2018.
- [14] E. Tuba, A. Alihodzic, and M. Tuba, "Multilevel image thresholding using elephant herding optimization algorithm," in *Proc. IEEE Int. Conf. Eng. Mod. Electr. Syst.*, Jun. 2017, pp. 240–243.
- [15] A. K. M. Khairuzzaman and S. Chaudhury, "Multilevel thresholding using grey wolf optimizer for image segmentation," *Expert Syst. Appl.*, vol. 86, pp. 64–76, Nov. 2017.
- [16] S. Agrawal, R. Panda, and A. Abraham, "A novel diagonal class entropybased multilevel image thresholding using coral reef optimization," *IEEE Trans. Syst., Man, Cybern., Syst.*, vol. 1, pp. 1–9, 2018.
- [17] A. R. Plastino and A. Plastino, "Stellar polytropes and Tsallis' entropy," *Phys. Lett. A*, vol. 174, pp. 384–386, Mar. 1993.
- [18] S. Wang *et al.*, "Pathological brain detection via wavelet packet tsallis entropy and real-coded biogeography-based optimization," *Fundam. Inform.*, vol. 151, nos. 1–4, pp. 275–291, 2017.

- [19] S. J. Mousavirad and H. Ebrahimpour-Komleh, "Multilevel image thresholding using entropy of histogram and recently developed populationbased metaheuristic algorithms," *Evol. Intell.*, vol. 10, nos. 1–2, pp. 45–75, 2017.
- [20] N. S. M. Raja, P. R. V. Lakshmi, and K. P. Gunasekaran, "Firefly algorithmassisted segmentation of brain regions using Tsallis entropy and Markov random field," in *Innovations in Electronics and Communication Engineering*. Singapore: Springer, 2018.
- [21] A. Alva, R. S. Akash, and K. Manikantan, "Optimal multilevel thresholding based on Tsallis entropy and half-life constant PSO for improved image segmentation," in *Proc. IEEE Elect. Comput. Electron.*, Dec. 2016, pp. 1–6.
- [22] S. Sarkar, S. Das, and S. S. Chaudhuri, "Hyper-spectral image segmentation using Rényi entropy based multi-level thresholding aided with differential evolution," *Expert Syst. Appl.*, vol. 50, pp. 120–129, May 2015.
- [23] L. He and S. Huang, "Modified firefly algorithm based multilevel thresholding for color image segmentation," *Neurocomputing*, vol. 240, pp. 152–174, May 2017.
- [24] N. Muangkote, K. Sunat, and S. Chiewchanwattana, "Multilevel thresholding for satellite image segmentation with moth-flame based optimization," in Proc. IEEE Int. Joint Conf. Comput. Sci. Softw. Eng., Jul. 2016, pp. 1–6.
- [25] S. Pare, A. K. Bhandari, V. Bajaj, and A. Kumar, "Backtracking search algorithm for color image multilevel thresholding," *Signal Image Video Process.*, vol. 12, no. 2, pp. 385–392, 2018.
- [26] V. K. Bohat and K. V. Arya, "A new heuristic for multilevel thresholding of images," *Expert Syst. Appl.*, vol. 117, pp. 176–203, Mar. 2019.
- [27] M. Sezgin and B. Sankur, "Survey over image thresholding techniques and quantitative performance evaluation," *J. Electron. Imag.*, vol. 13, no. 1, pp. 146–166, 2004.
- [28] R. Gao et al., "Human infection with a novel avian-origin influenza a (H7N9) virus," New England J. Med., vol. 368, no. 20, pp. 1888–1897, 2013.
- [29] S. Pare, A. K. Bhandari, A. Kumar, and G. K. Singh, "An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix," *Expert Syst. Appl.*, vol. 87, pp. 335–362, Nov. 2017.
- [30] A. Colorni, M. Dorigo, and V. Maniezzo, "Distributed optimization by ant colonies," in *Proc. 1st Eur. Conf. Artif. Life*, vol. 142, 1991, pp. 134–142.
- [31] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in Proc. 6th Int. Symp. Micro Mach. Hum. Sci., 1995, pp. 39–43.
- [32] M. Maitra and A. Chatterjee, "Hybrid multiresolution Slantlet transform and fuzzy *c*-means clustering approach for normal-pathological brain MR image segregation," *Med. Eng. Phys.*, vol. 30, no. 5, pp. 615–623, 2008.
- [33] H. Gao, W. Xu, Y. Tang, and J. Sun, "Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm," *IEEE Trans. Instrum. Meas.*, vol. 59, no. 4, pp. 934–946, Apr. 2010.
- [34] P. Ghamisi, M. S. Couceiro, J. A. Benediktsson, and F. M. L. Martins, "Multilevel image segmentation based on fractional-order darwinian particle swarm optimization," *IEEE Trans. Geosci. Remote Sens.*, vol. 52, no. 5, pp. 2382–2394, May 2014.
- [35] D. Karaboga and B. Basturk, "Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems," in *Proc. 12th Int. Fuzzy Syst. Assoc. World Congr. Found. Fuzzy Logic Soft Comput.*, 2007, pp. 789–798.
- [36] J. Liu, J. Li, and Y. Zhao, "The occurrence of perfluorinated alkyl compounds in human milk from different regions of China," *Environment Int.*, vol. 36, no. 5, pp. 433–438, 2010.
- [37] X.-S. Yang, "Flower pollination algorithm for global optimization," in *Proc. Int. Conf. Unconventional Comput. Natural Comput.*, 2013, pp. 240–249.
- [38] X.-S. Yang, "A new metaheuristic bat-inspired algorithm," Nature Inspired Cooperat. Strategies Optim., vol. 284, pp. 65–74, 2010.
- [39] X. Cai, X.-Z. Gao, and Y. Xue, "Improved bat algorithm with optimal forage strategy and random disturbance strategy," *Int. J. Bio-Inspired Comput.*, vol. 8, no. 4, pp. 205–214, 2016.
- [40] C. Li, Z.-Y. Liu, X. Yang, H. Qiao, and J.-H. Su, "Stitching contaminated images," *Neuro Comput.*, vol. 214, pp. 829–836, Nov. 2016.
- [41] C. Karri and U. Jena, "Fast vector quantization using a Bat algorithm for image compression," *Eng. Sci. Technol., Int. J.*, vol. 19, pp. 769–781, Jun. 2016.
- [42] G.-G. Wang, H. E. Chu, and S. Mirjalili, "Three-dimensional path planning for UCAV using an improved bat algorithm," *Aerosp. Sci. Technol.*, vol. 49, pp. 231–238, Feb. 2016.
- [43] S. Mirjalili and A. Lewis, "The whale optimization algorithm," Adv. Eng. Softw., vol. 95, pp. 51–67, May 2016.

- [44] M. M. Mafarja and S. Mirjalili, "Hybrid whale optimization algorithm with simulated annealing for feature selection," *Neuro Comput.*, vol. 260, pp. 302–312, Oct. 2017.
- [45] I. Aljarah, H. Faris, and S. Mirjalili, "Optimizing connection weights in neural networks using the whale optimization algorithm," *Soft Comput.*, vol. 22, no. 1, pp. 1–15, 2016.
- [46] K. B. O. Medani, S. Sayah, and A. Bekrar, "Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system," *Electr. Power Syst. Res.*, vol. 163, pp. 696–705, Oct. 2017.
- [47] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," *IEEE Trans Evol. Comput.*, vol. 1, no. 1, pp. 67–82, Apr. 1997.
- [48] H. Haklı and H. Uğuz, "A novel particle swarm optimization algorithm with Levy flight," *Appl. Soft Comput.*, vol. 23, pp. 333–345, Oct. 2014.
- [49] S. Amirsadri, S. J. Mousavirad, and H. Ebrahimpour-Komleh, "A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training," *Neural Comput. Appl.*, vol. 30, no. 12, pp. 3707–3720, 2017.
- [50] S. J. Mousavirad and H. Ebrahimpour-Komleh, "Human mental search: A new population-based metaheuristic optimization algorithm," *Appl. Intell.*, vol. 47, no. 3, pp. 850–887, 2017.
- [51] K. Tang, X. Xiao, J. Yang, L. Luo, and J. Wu, "An improved multilevel thresholding approach based modified bacterial foraging optimization," *Appl. Intell.*, vol. 46, no. 1, pp. 214–226, 2017.
- [52] S. Sarkar, N. Sen, A. Kundu, S. Das, and S. S. Chaudhuri, "A differential evolutionary multilevel segmentation of near infra-red images using Renyi's entropy," in *Proc. Int. Conf. Frontiers Intell. Comput., Theory Appl. (FICTA).* Berlin, Germany: Springer, 2013.
- [53] S. Saremi, S. Mirjalili, and A. Lewis, "Grasshopper optimisation algorithm: Theory and application," *Adv. Eng. Softw.*, vol. 105, pp. 30–47, Mar. 2017.
- [54] J. H. Santillan, S. Tapucar, and C. Manliguez, "Cuckoo search via Lévy flights for the capacitated vehicle routing problem," *J. Ind. Eng. Int.*, vol. 14, pp. 293–304, Aug. 2017.
- [55] S. Gattenlöhner, I. V. Gornyi, B. Trauzettel, A. D. Mirlin, M. Titov, and P. M. Ostrovsky, "Lévy flights due to anisotropic disorder in graphene," *Phys. Rev. Lett.*, vol. 117, no. 4, p. 046603, 2016.
- [56] M. A. El Aziz, A. A. Ewees, and A. E. Hassanien, "Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation," *Expert Syst. Appl.*, vol. 83, pp. 242–256, Oct. 2017.
- [57] J. Xue, X. He, X. Hao, F. He, and X. Yang, "Multi-threshold image segmentation method based on flower pollination algorithm," in *Bio-inspired Computing: Theories and Applications*. Singapore: Springer, 2017.
- [58] T. X. Pham, P. Siarry, and H. Oulhadj, "Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation," *Appl. Soft Comput.*, vol. 65, pp. 230–242, Apr. 2018.
- [59] Z.-W. Ye, M.-W. Wang, S.-B. Chen, and W. Liu, "Fuzzy entropy based optimal thresholding using bat algorithm," *Appl. Soft Comput.*, vol. 31, pp. 381–395, Jun. 2015.
- [60] P. Mesejo, A. Valsecchi, L. Marrakchi-Kacem, S. Cagnoni, and S. Damas, "Biomedical image segmentation using geometric deformable models and metaheuristics," *Comput. Med. Imag. Graph.*, vol. 43, pp. 167–178, Jul. 2015.

HONGNAN LIANG was born in Daqing, China, in 1996. She is currently pursuing the B.S. degree in electrical engineering and automation with Northeast Forestry University, China. Her research interests include image segmentation and intelligent optimization algorithms.

HEMING JIA received the Ph.D. degree in system engineering from Harbin Engineering University, China, in 2012. He is currently an Associate Professor with Northeast Forestry University. His research interests include nonlinear control theory and application, image segmentation, and swarm optimization algorithms.

JUN MA was born in Yichang, China, in 1999. He is currently pursuing the B.S. degree in automation with Northeast Forestry University, China. His research interests include image segmentation and intelligent optimization algorithms.

ZHIKAI XING was born in Daqing, China, in 1993. He is currently pursuing the M.S. degree in control engineering with Northeast Forestry University, China. His research interests include image segmentation and intelligent optimization algorithms.

XIAOXU PENG was born in Harbin, China, in 1995. He is currently pursuing the M.S. degree in control theory and control engineering with Northeast Forestry University, China. His research interests include image segmentation and intelligent optimization algorithms.

...