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ABSTRACT Video summarization (VS) is to identify important content from a given video, which can help
users quickly comprehend video content. Recently, sparse dictionary selection (SDS) has demonstrated to
be an effective solution for VS problems, which generally assumes a linear relationship between keyframes
and non-keyframes. However, this assumption is not always true for video frames which possess intrinsic
nonlinear structures and properties. In this paper, by exploiting the nonlinearity between video frames,
a nonlinear SDS model is formulated for VS, in which the nonlinearity is transformed to linearity by
projecting a video to a high-dimensional feature space induced by a kernel function. We also propose two
greedy optimization algorithms to solve the resulting model, namely the standard kernel SDS (KSDS) greedy
algorithm and the robust KSDS greedy algorithmwith a backtracking strategy. In order to achieve an intuitive
and flexible configuration of the VS process, an adaptive criterion, namely energy ratio, is devised to produce
video summaries with different lengths for different video contents. Experimental results on two different
benchmark video datasets demonstrate that the proposed algorithm outperforms several state-of-the-art
VS algorithms.

INDEX TERMS Nonlinear representation, dictionary selection, sparse representation, video summarization.

I. INTRODUCTION
Nowadays, a vast amount of video data is produced and
consumed every day with the rapid development of mul-
timedia technology, Internet and intelligent terminals. For
example, according to the survey of Smart insights – ‘‘What
Happens Online in 60 Seconds’’, about 500 hours of video
content is uploaded to YouTube every minute, which means
82.2 years’ worth of content is uploaded every day. Such a
huge amount of data results in lots of difficulties in video
data management and analysis, such as video browsing and
video retrieval. Meanwhile, video summarization (VS) aims
to generate a compact and informative version, which is of
great importance in the era of big video data [1].

VS has been extensively studied and there exist a large
number of methods. Existing VS approaches can be cate-
gorized into two categories in terms of the forms of video
summaries: keyframe extraction approaches and video skim
approaches [2]. Keyframe extraction approaches select indi-
vidual and salient frames as the summary of a given video,
while video skim approaches produce a video summary

by concatenating a number of important video segments.
Although keyframes and video skims are often generated in
different ways, these two types of video summarization can be
easily converted into each other. Generally, keyframe extrac-
tion approaches can produce a smaller number of individual
keyframes compared to video skim approaches, which will
help human beings and computers comprehend and analyze
video content more efficiently, particularly in the applications
with huge video capacities and quantities. On the other hand,
the keyframe set is not restricted by any timing or synchro-
nization issues, therefore, can provide much more flexibility
and adaptability [3]. In this paper, we focus on the keyframe
extraction approach.

In the past decades, many keyframe based VS methods
have been proposed, which can be classified into the follow-
ing five categories:
1) Shot Boundary Based Methods: Here, a shot is defined

as the longest sequence of frames between two cuts. This kind
of methods firstly detect shot boundaries and the first frame,
the last frame or the middle frame in a shot can be simply
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selected as a keyframe. The shot boundary can be detected
by identifying changes between of successive frames which
implies the boundary. Many methods have been proposed to
identify the changes, such as color histogram difference [4],
object tracking [5], event analysis [6], dynamic mode decom-
position [7] and multi-modal features-based detection [8].
Shot boundary based methods are suitable for the videos
whose shots are of little change in content, and their perfor-
mances heavily depend on the result of boundary detection.
2) Clustering BasedMethods: The basic idea for clustering

based methods is clustering similar frames/shots together and
then selecting a limited number of frames from each cluster
to generate the keyframes. For this kind of approaches, there
are two key factors that influence the result of clustering: the
selected feature upon which video frames are characterized
(e.g., color, texture, motion), and the criterion employed to
measure the similarity. Munder et al. [9] represented video
frames as multi-dimensional data points and then used Delau-
nay Triangulation to cluster them. The frame that was nearest
to its center was selected as the keyframe for each cluster.
Furini et al. [10] proposed the STIMO based on a fast clus-
tering algorithm that selected the most representative frames
using HSV frame color distribution. Avila et al. [3] proposed
VSUMM algorithm, where the color feature in HSV space
was firstly extracted to represent video frames, then k-means
clustering algorithm was adopted to group the frames, and
one frame per cluster was selected. However, it is usually
difficult to extract all clusters due to large intraclass and low
interclass visual variance [11].
3) Motion Based Methods:Motion feature is considered to

be a more prominent feature representing actions or events in
a video. Therefore, keyframes can be selected by analyzing
the motion information in a video. For example, Wolf [12]
first utilized the optical flow analysis to measure the motion
and selected keyframes at the local minimum of motion.
Mendi et al. [13] also used optical flow computations to
identify global extrema and local minimum which indicated
the keyframe between two maximums in the motion. How-
ever, using traditional optical flow analysis to identify the
change of motion state is extremely time consuming [14].
Recently, Zhang et al. [14] proposed to replace the optical
flow with spatiotemporal motion trajectories to detect the
change of motion, and the computational cost was reduced
efficiently.
4) Sparse Representation Based Methods: In recent years,

sparse representation [15], [16] has been widely used in
computer vision tasks [17]–[19], and has achieved excellent
performance. In sparse representation, a sub-dictionary is
selected from an overcomplete dictionary, and the observed
signal can be represented as a linear combination of the
sub-dictionary. This shares the similar objective of keyframe
extraction problems where a frame subset is selected as the
keyframes from the original video, and each frame can be rep-
resented as a linear combination of the keyframes. As a result,
the VS problem can be formulated as a sparse dictionary
selection problem such that keyframes are selected according

to the sparse representation coefficients. In recent years,
sparse representation has been widely used for keyframe
extraction based VS methods, and has demonstrated to be
an effective and efficient solution to VS [11], [20]–[26]
(see Section II for details).
5) Deep Learning Based Methods: Recently, some deep

learning based methods have been proposed [27], [28], which
aims at learning the summarizing capability using neural
networks. A supervised learning based methods was repre-
sented [27], in which VS was considered as a structured pre-
diction problem on sequential data, and a bidirectional LSTM
was used to model the variable-range dependency. In [28],
an unsupervised generative adversarial learning model called
SUM-GAN was presented, in which the generator and dis-
criminator were both LSTM networks. Its supervised version,
namely SUM-GANsup, was proposed by adding a sparse
regularization. In addition to summarizing a single video,
some works generated summaries from large collections of
videos. Gao et al. [29] proposed event video mashup to
generate a short video from some related videos to describe an
event, which could identify important frames/shots and tem-
porally align them by simultaneously considering multiple
videos.

In this paper, we focus on the sparse representation based
method, which is a popular and effective technique used in
unsupervised VS [30]. Although many sparse representa-
tion based VS methods have been proposed, existing works
mainly focus on linear sparse representation which assumes a
linear relation among video frames. However, many descrip-
tors used for characterizing video frames have intrinsic non-
linear properties, and the relationships between extracted
features are almost nonlinear. As a result, the summarization
performance/quality of linear sparse representation models
could be compromised. Recall that kernel trick [31] can
project nonlinearly separable features into a high dimensional
feature space where the projected features are linearly sep-
arable [32]. As a result, the higher order structure of the
original data can be implicitly exploited with kernel trick
under linear models. The linear sparse representation can also
be extended into nonlinear cases with such kernel trick to
handle signals with nonlinear structures. Therefore, in this
paper, the nonlinearity among video frames is taken into
account and a `2,0 norm based nonlinear sparse dictionary
selection (NSDS) model is formulated for VS. Specifically,
two greedy algorithms, namely standard KSDS algorithm and
robust KSDS algorithm, are proposed for model optimiza-
tion. Experiments on two benchmark video datasets are then
carried out to demonstrate the effectiveness of our proposed
nonlinearmodel andmethods for VS. Comparedwith our pre-
vious work [26], this work proposes a new robust algorithm
which greatly improves the performance. In addition, various
influencing factors are analyzed.

In summary, the key contributions of this paper are as
follows:
1) The nonlinearity among video frames is taken into

account and transformed into the linearity, and
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a `2,0 norm based nonlinear sparse dictionary selection
model (NSDS) is proposed to formulate the keyframe
extraction based VS problem.

2) Two efficient and effective nonlinear sparse representa-
tion based algorithms using kernel tricks and matching
pursuit are proposed for VS problems: a standard KSDS
algorithm and a robust KSDS algorithm with a back-
tracking strategy.

3) An energy ratio (ER) of residual to video in the kernel-
mapped high dimensional space is devised to achieve an
intuitive and flexible configuration for VS, which makes
the proposed algorithms adaptive to different kinds of
videos.

The rest of this paper is organized as follows: we review the
relatedwork of sparse representation based video summariza-
tion in Section II. In Section III, we present the formulation of
general sparse dictionary selection and its expansion for VS.
In Section IV, we present the formulation of our nonlinear
sparse dictionary selection model and optimize it using a
standard KSDS algorithm and a robust KSDS algorithm.
In Section V, we conduct experiments on two benchmark
video datasets and compare the proposed algorithms with
several state-of-the-art works. Finally, conclusions are drawn
in Section VI.

II. RELATED WORK
Sparse representation based video summarization methods
can be grouped into two categories: sparse representation
with `0 or `2,0 norm minimization and sparse representation
with `1 or `2,1 norm minimization.
1) Sparse Representation With `0 or `2,0 Norm Minimiza-

tion:The `0 norm calculates the number of non-zero elements
in a vector, and the `2,0 norm calculates the number of the
non-zero rows in a matrix, so the `2,0 norm can be viewed as
a special case with multi-vectors of `0 norm. Both of them
are used to ensure the sparsity of the sparse representation
coefficient, which is also the number of selected keyframes in
VS, and the representation with `0 or `2,0 norm minimization
is usually solved by a greedy pursuit algorithm. For example,
Mei et al. [24] formulated the VS as a sparse dictionary selec-
tion problem, and the `2,0 norm was adopted to guarantee
the simultaneous sparsity. The traditional SOMP greedy algo-
rithm was extended to solve the `2,0 norm sparse dictionary
selection problem. Afterwards, Mei et al. [11] reformulated
VS as a minimum sparse reconstruction (MSR) problem
with the true sparsity constraint `0 norm. The algorithm
used the selected keyframes to reconstruct unselected frame
each iteration and the frame with maximum reconstruction
error was selected as a keyframe. Recently, Cong et al. [25]
designed a `2,0 norm dictionary selection model with a
forward-backward greedy optimization procedure. For model
optimization, two methods in the forward step were also
proposed: the standard forward greedy algorithm and the
gradient cue based algorithm for speeding up. In addition,
the nonlinear case has been explored preliminarily in our
previous work [26].

2) Sparse Representation With `1 or `2,1 Norm Minimiza-
tion: The `1 norm calculates the sum of the absolute values of
the elements in a vector, and the `2,1 norm calculates the sum
of the `2 norm of all rows in amatrix, so the `2,1 norm can also
be viewed as a special case with multi-vectors of `1 norm.
The sparse representation with `0 or `2,0 norm minimization
is NP-hard, however, `1 or `2,1 norm minimization can be
solved by convex programming and ensure the sparsity of the
representation coefficient as `0 or `2,0 norm does. Therefore,
the sparse representation with `1 or `2,1 norm minimization
has also been widely studied for VS. For example, Kumar and
Loui [20] presented a `1 norm sparse representation based
method to extract keyframes from unstructured consumer
videos, and the sparse coefficient was solved by an interior-
point method [33]. For `2,1 norm constrained VS methods,
various convex optimization algorithms have been proposed
to solve this problem. Cong et al. [21] formulated VS as a dic-
tionary selection problem using sparsity consistencywith `2,1
imposed to ensure sparsity, and the convex but nonsmooth
optimization problem was solved by Nesterov’s optimiza-
tion method [34]. Liu et al. [22] proposed a `2,1 structured
optimization model for VS, and the nonconvex model was
transformed into a weighted optimization problem which
was solved by minimizing an equivalent objective function
iteratively. Etezadifar and Farsi [23] also formulated VS as a
optimization problem with a `2,1 norm to guarantee the spar-
sity, and the problem was solved by performing dictionary
learning and selection simultaneously in each iteration.

However, almost all the existing sparse representation
based methods are based on the linear sparse representation
without considering the nonlinearity between video frames,
which limits the performance of keyframe extraction. There-
fore, we proposed the nonlinear sparse dictionary selec-
tion (NSDS) model to formulate the VS problems to take
the nonlinearity into consideration, in which the `2,0 norm
directly guarantees the sparsity of keyframes, and keyframes
generating the minimum representation error are selected.

III. PRELIMINARY: SDS MODEL AND VS
A. SDS MODEL
SDS problem aims to extract a subset dictionary from an over-
complete dictionary B = [b1,b2, · · · ,bn1 ] ∈ Rd×n1 such
that the observed signal A = [a1, a2, · · · , an2 ] ∈ Rd×n2

can be well represented by the subset dictionary, where d is
the observed dimensionality, n1 and n2 are the numbers of
atoms in the over-complete dictionary and the observed sig-
nal, respectively. Generally, such SDS problem can be solved
by optimizing the following sparse representation model:

X̂ = argmin ‖A− BX‖2F s.t. C(X) ≤ K0, (1)

in which X ∈ Rn1×n2 represents the sparse representation
coefficient matrix, ‖ · ‖F is the Frobenius norm, C(·) is a con-
straint to induce sparsity, and K0 is a given upper boundary
on the sparsity level. As a result, the aiming subset dictionary,
denoted as Bsub = [bi1 ,bi2 , · · · ,bim ] ∈ Rd×m

⊆ B where
i1, i2, · · · , im ∈ {1, 2, · · · , n1}, can be selected by searching
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the nonzero rows of X̂. That is, if the i-th row of X̂ is a non-
zero vector, the corresponding i-th column ofB is selected for
representation, and vice versa.

B. SDS MODEL BASED VS
In the VS problem, keyframes should represent all the impor-
tant information in the video without significant information
loss. Let F = [f1, f2, · · · , fn] ∈ Rd×n represent candidate
video frames in a video, whose columns {fi}i=1,2,··· ,n are
d-dimensional feature vectors denoting n frames. The aim of
VS is to find a video frame subset FK = [fi1 , fi2 , · · · , fim ] ∈
Rd×m where i1, i2, · · · , im ∈ {1, 2, · · · , n}, m is the number
of the selected keyframes, and m � n, such that it can
represent all the information of interest among video frames.
SuchVS problem can be viewed as a special case of the sparse
representation model defined in (1) that the observed signal is
used as the over-complete dictionary, i.e. ,A = B. As a result,
the following SDS based model can be formulated for VS:

X̂ = argmin ‖F− FX‖2F s.t. ‖X‖row,0 < K0, (2)

where ‖ · ‖row,0 denotes the number of nonzero rows in
the input. Equivalently, the VS problem defined in (2) can
also be solved by by optimizing sparsity level within the
approximation error:

X̂ = argmin ‖X‖row,0 s.t. ‖F− FX‖2F < σ, (3)

where σ is the error tolerance.
The sparse recovery problems for VS defined in (2) and (3)

are NP-hard, which can be solved approximately by greedy
pursuit algorithms [35], [36], or relaxed to convex program-
ming in polynomial time [37], [38]. Correspondingly, many
dictionary representation algorithms have been proposed as
reviewed in Section II.

IV. PROPOSED NONLINEAR DICTIONARY
REPRESENTATION FOR VS
In this section, we first formulate our kernel based frame-
work for nonlinear dictionary dictionary selection (NSDS),
then introduce two optimization algorithms, standard KSDS
algorithm and a robust KSDS algorithm with a backtracking
strategy.

A. NONLINEAR DICTIONARY REPRESENTATION
MODEL FOR VS
Suppose there exists a nonlinear function 8(·) : Rd

→

F ⊂ Rd̃ representing nonlinear mapping from the original
video feature space Rd into a new high-dimensional feature
space F (d̃ � d , may be infinite dimensional), such that
the nonlinear relationship in Rd can be converted into linear
one in Rd̃ . Based on such mapping, new feature vectors
8(F) = [8(f1),8(f2), · · · ,8(fn)] ∈ Rd̃×n can be generated
to represent video frames, and thus, the nonlinearity among
video frames vectors in F can be transformed into linearity
among frame feature vectors in 8(F). As a consequence,
the keyframes 8(fi)K , i = 1, 2, , . . . ,m can be viewed as

a dictionary to linearly represent all the video frames
8(fi), i = 1, 2, , . . . , n, such that nonlinear sparse dictionary
selection (NSDS) models are proposed for VS according to
the SDS models defined in (2) and (3):

X̂φ = argmin ‖8(F)−8(F)Xφ‖2F , s.t. ‖Xφ‖row,0 < K0,

(4)

or,

X̂φ = argmin ‖Xφ‖row,0, s.t. ‖8(F)−8(F)Xφ‖2F < σ,

(5)

whereXφ represents the nonlinear sparse representation coef-
ficient matrix. Similarly, Xφ is a row-sparsematrix to ensure
8(FK ) , [8(fi)K ] is a subset of 8(F). Compared to the
SDS models in (2) and (3), the proposed NSDS models
in (4) and (5) linearly represent the corresponding high
dimensional features that are induced by a nonlinear map-
ping function, so that the nonlinearity among frames can
be considered. Besides, the model can not only guarantee
minimum approximation error within error tolerance in the
least-squares sense, but also satisfy the requirement of fewer
keyframes with the constraint of sparse level upper boundary.
The NSDS for VS seeks the sparse representation X̂φ of
mapped frames in the high dimensional space. Similar to
the linear SDS model, keyframes can be further extracted
by searching for rows of X̂φ with nonzero elements in the
NSDS model. Note that, in order to guarantee row-sparsity
of Xφ , ‖Xφ‖row,0 can be flexibly replaced by arbitrary `p,0
norm where (p ≥ 1), i.e., ‖Xφ‖p,0 = ‖{y|y = ‖Xφ i·‖p}‖0,
where Xφ i· is the i-th row of Xφ .
One of the key problems in the NSDS model defined in (4)

and (5) is to find the nonlinear mapping 8(·). However,
such mapping maybe exist by mapping the original feature
F to a extremely high-dimensional space Rd̃ , resulting in
the curse of dimensionality in solving the NSDS. Therefore,
in this paper, the mapping is restricted to the Hilbert spaces
so that the Mercer kernel based method can be used to
execute computations implicitly without venturing into the
high-dimensional feature space.

A Mercer kernel is a function K(x, y) that satisfies the
Mercer’s condition: for all data {yi}ni=1, the function gives
rise to a positive semi-definite matrix [Kij] = [K(yi, yj)].
If K satisfies the Mercer’s condition, it can be shown that
K corresponds to some mapping 8 in the Hilbert feature
space F . That is, a kernel function is defined as K(x, y) =
〈8(x),8(y)〉. Mercer kernels are often used to implicitly
impose the mapping 8. Although the kernel K(x, y) is in the
form of inner product, it usually does not explicitly calcu-
late the inner product of two mapped vectors in the high-
dimensional space. The kernel function cleverly solves the
above problem, and the inner product of two mapped vectors
in the high-dimensional space can be calculated by the kernel
function of a low-dimensional space, which helps to avoid
the expensive computation when mapping the data into the
high-dimensional feature space. This technique is also called
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‘‘kernel trick’’. The commonly-used kernels include the q-th
order polynomial kernel K(fi, fj) = (

〈
fi, fj

〉
+ c)q and radial

basis function (RBF) kernel K(fi, fj) = exp(− 1
2σ 2
‖fi − fj‖22)

with σ controlling the width of the RBF.

B. STANDARD KSDS ALGORITHM
Orthogonal matching pursuit (OMP) [39] is an iteratively
greedy algorithm for sparse reconstruction, where the atom
most correlated with the residuals is selected. Moreover,
the residuals and the chosen atoms are always orthogo-
nal, which means the atoms similar to previously selected
atoms will not be selected again. Tropp and Gilbert [40]
theoretically showed its remarkable efficiency, and extended
it to solve the simultaneous sparse approximation, namely
simultaneous OMP (SOMP) [35]. SOMP-based algorithms
are also very effective to solve the linear SDS problem for
VS [24], [25]. Therefore, based on SOMP and kernel trick,
a kernel SDS (KSDS) algorithm is proposed to solve the
NSDS problem for VS defined in (4) and (5).

Let 3 = [i1, i2, . . . , im] represents the index of selected
frames as keyframes. Therefore, FK = F:,3. Under the
nonlinear representation assumption, all the video keyframes
can be represented by the keyframes:

8(F) = 8(F)Xφ = 8(F):,3X
φ
3, :, (6)

whereXφ represents the nonlinear representation coefficients
of all the video frames by the keyframes that correspond
to the non-zero rows in Xφ . If all the frames can be well
reconstructed by the selected keyframes, the nonlinear repre-
sentation error R = 8(F)−8(F):,3X

φ
3, : will be negligible.

On the contrary, if R is not trivial, more keyframes should be
selected. In the SOMP algorithm, the frames simultaneously
yielding best approximation to the residuals of all frames
are selected as keyframes. Therefore, in the proposed KSDS
algorithm, the nonlinear case for such approximation is con-
sidered by using the correlation as a criterion to select new
keyframes:

λ = argmax
1≤i≤n

∥∥8(fi)TR∥∥2p, (7)

where λ indicates index for a new keyframe and ‖ · ‖p rep-
resents the `p norm of vectors. By introducing kernel trick,
such nonlinear-mapping-based optimization problem can be
solved using the following kernel-based optimization:

λ = argmax
1≤i≤n

∥∥K(F,R)i,:
∥∥2
p, (8)

where K(F,R) ∈ Rn×n is a kernel matrix whose (i, j)-th
element is K(fi, rj) and rj(j = 1, 2, . . . , n) denotes the j-th
column vector of R representing the nonlinear representation
error of j-th video frame. According to such kernel based
optimization, all the keyframes can be selected iteratively.

In order to select keyframes according to (8), the non-
linear representation coefficients Xφ3, : must be determined
to calculate the corresponding representation residuals R.

According to (6), the following optimization is formulated
to obtain Xφ3, ::

X̂φ3,: = argmin
∥∥8(F):,3Xφ −8(F)∥∥2F . (9)

We adopt the least square method to estimate the reconstruc-
tion coefficient:

X̂φ3,: =
(
8(F)T:,38(F):,3

)−1
8(F)T:,38(F)

= K−13,3K3,:, (10)

in which K ∈ Rn×n, whose (i, j)-th element is K(fi, fj).
Once the nonlinear reconstruction coefficient is obtained,

the residual of the video in the high-dimensional feature space
can be calculated as follows:

R = 8(F)−8(F):,3X̂
φ
3, :

= 8(F)−8(F):,3K−13,3K3,:. (11)

It is observed from (11) that the representation residu-
als R cannot be explicitly calculated, because the nonlinear
mapping is implemented implicitly without using an explicit
mapping. However, the inner product used for selecting
keyframes in (7) and (8) can be calculated as follows:

K(F,R)i,: = 8(fi)TR

= 8(fi)T
(
8(F)−8(F):,3K−13,3K3,:

)
= 8(fi)T8(F)−8(fi)T8(F):,3K−13,3K3,:

= Ki,: −Ki,3K−13,3K3, : (12)

Generally, it is difficult to determine the number of
keyframes exactly for VS problem [41]. In the sparse rep-
resentation based VS applications, in addition to the sparsity,
an effective criterion which can adaptively adjust the number
of selected keyframes for different kinds of videos should be
designed. Thus, the energy ratio (ER) of residual to the video
in the high dimensional feature space is devised as a stopping
criterion:

ER =
E(R)

E(8(F))
, (13)

where E(·) represents the energy in a matrix and the F-norm
is adopted. Thus, the energy in video frames matrix8(F) and
their corresponding residuals matrix in nonlinear representa-
tion R are as follows:

E(8(F)) = ‖8(F)‖2F = Tr
(
8(F)T8(F)

)
= Tr(K), (14)

E(R) = ‖R‖2F = Tr
(
RTR

)
= Tr

([
8(F)−8(F):,3X̂

φ
3,:

]T[
8(F)−8(F):,3X̂

φ
3,:

])
= Tr

(
K− 2K:,3X̂φ + (X̂φ)TK3,3X̂φ

)
, (15)

where Tr(·) represents the trace of a matrix, and especially
when RBF is used as the kernel function, Tr(K) = n. As a
result, the energy ratio (ER) is determined as follows:

ER =
Tr
(
K− 2K:,3X̂φ + (X̂φ)TK3,3X̂φ

)
Tr(K)

. (16)
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The proposed adaptive stopping criterion presents a decreas-
ing trend with the decreasing of the residual energy.
Therefore, when ER decreases below a predefined threshold
ERthr , the keyframe selection iteration will stop and all the
keyframes are identified.

C. ROBUST KSDS ALGORITHM
According to (7), the selection of keyframes in each iteration
is determined by the correlation between video frames and
representation residuals. However, several frames may pos-
sess very close correlations, such as temporal adjacent frames
which own very similar content. Under such circumstance,
the selection of the frame possessing maximum correlation
is not robust. As a result, in each iteration of the proposed
KSDS, the best keyframe is selected using a local back-
tracking mechanism, in which several candidate keyframes
are firstly selected according to (7) and the best one is then
refined. Therefore, nc most related frames to the current
residuals are selected first:

λj = argmax
1≤i≤n,i 6={λ1,λ2,...,λj−1}

∥∥8(fi)TR∥∥2p, j = 1, 2, · · · , nc.

(17)

Such greedy selection only focuses on selecting the appro-
priate frames that have high correlation with the current
residuals. However, the selected keyframes are expected to
well represent the original video frames, instead of the current
residuals. Therefore, all the candidate keyframes should be
used to reconstruct all the video frames and the significance
of each candidate keyframe is evaluated by the reconstruction
coefficients. The smaller the value of the significance, the less
important the corresponding keyframe. As a result, the candi-
date keyframe corresponding to the largest significance value
is selected as a keyframe:

λs = argmax
i=1,2,...,nc

‖(XL)i,:‖
2
p, (18)

whereXL represents the reconstruction coefficient using can-
didate keyframes to reconstruct all the video frames, which
can be obtained using least-square solution as follows:

XL =
(
8(F)T

:,L8(F):,L
)−1

8(F)T
:,L8(F)

= K−1L,LKL,:, (19)

where L = {λ1, λ2, . . . , λj} is the index set of selected
candidate keyframes, and each row in XL corresponds to one
candidate keyframe. According to the proposed refinement
strategy, the best keyframe is selected in each iteration and
the selection is robust to the frames which have similar corre-
lations, such as temporally adjacent frames. Note that KSDS
is a special case of R-KSDS when nc = 1. The proposed
standard KSDS and robust KSDS (R-KSDS) are summarized
in Algorithm 1.

The computational complexity analysis is shown in Table 1,
in which N3t is the number of the keyframes 3t in the t-th
iteration. Because N3t � n, the computational complexity

Algorithm 1 Proposed KSDS and R-KSDS for VS
Input: video frames F = [f1, f2, · · · , fn], ER threshold

ERthr , sparsity K0, the number of candidate frames nc
(only for R-KSDS).

Output: index set of keyframes 3
Initialization: the kernel matrix K, the representation
residual R0 = 8(F), the index set 30 = ∅, and the
iteration counter t = 1.

1: while t ≤ K0 and ERt ≥ ERthr do
2: //For Standard KSDS: using Step 3.
3: Find the index of the selected frame according to (7).
4: //For Robust KSDS: using Steps 5, 6, and 7.
5: Find the indices of nc candidate keyframes according

to (17).
6: Calculate the significance for the candidate keyframes

according to (19).
7: Extract the index of best candidate keyframes accord-

ing to (18).
8: Augment the index set: 3t ← 3t−1 ∪ {λt }.
9: Update the reconstruction coefficient by

solving (9) or using (10).
10: Calculate the energy ratio (ER) of residual to video

according to (16).
11: Increment iteration: t ← t + 1.
12: end while

TABLE 1. Computation complexity analysis of the t-th iteration in the
proposed KSDS algorithm.

of the whole iteration is n2K 2, which is determined by the
number of video frames n and the sparsity K . Before the
iteration, the kernel matrix K should be initialized, whose
computational complexity is n2d .

V. EXPERIMENTS AND DISCUSSION
In this section, we present various experiments and compar-
isons to validate the effectiveness of our proposed method.
Firstly, we describe the datasets utilized for the evaluations
and introduce the quantitative evaluation metrics. Secondly,
the influences of some settings are also investigated. Finally,
our proposed algorithms are compared quantitatively with
several state-of-the-art algorithms.

A. EXPERIMENTAL DATASETS
In order to evaluate the proposed method, two video datasets
have been used as follows:
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1) VSUMM
The VSUMM dataset [3] contains 50 videos from the Open
Video Project [42] across several genres (e.g., documentary,
educational, ephemeral, historical, and, lecture) with dura-
tions varying from 1 to 4 minutes (approximately 75 minutes
in total), and the frame rate is about 30 frames per second.
The ground truth summaries of each video clip in VSUMM
were obtained by 5 different users, so there are 5 summarized
sets for each video clip, which are available for all 50 video
clips in the dataset.

2) TVSum
The TVSum dataset [43] consists of 50 videos collected from
YouTube, the videos vary across 10 categories (5 videos per
category) from the TRECVid Multimedia Event Detection
task [44], such as news, how-toąŕs, documentaries, and user-
generated content. Their durations vary from 1.6 to 10.8 min,
and the average is 4.2 min. The ground truth summaries of
the dataset were obtained by 1000 responses collected from
AmazonMechanical Turk, so each video was summarized by
20 responses.

Like most video summarization works [3], [11], [25], each
video of both datasets is down-sampled at 5 frames per second
in our experiments. The frame size of the videos in VSUMM
is 352× 240, and the frame size of most videos in TVSum is
640×360 (2 videos with the size of 540×360, 7 videos with
the size of 480× 360).

B. EVALUATION METRICS
Since we adopt two datasets provided by different groups,
the forms of the ground truth summaries are different. More
specifically, the ground truth summaries of VSUMM are
keyframes, however the TVSum provides an importance
score from 1 (not important) to 5 (very important) to each shot
that has a uniform length of two seconds. Therefore, two kind
of evaluation metrics are adopted in responding to different
ground truth summaries.

1) VSUMM
In order to quantitatively evaluate the performance of VS,
automatic summaries (AS) generated by different algorithms
are comparedwith the user summaries (US). Three evaluation
metrics, including Precision, Recall, and F-score, are used to
measure summarization quality of each algorithm:

Precision =
nmatched
nAS

, (20)

Recall =
nmatched
nUS

, (21)

F-score =
(β2 + 1)Precision · Recall
β2Precision+ Recall

, (22)

where nmatched is the number of matched keyframes from an
automatic summary, nAS is the number of keyframes in the
automatic summary, nUS is the number of keyframes in a
user summary, and β controls the balance between precision

and recall. In our evaluation setup, we set β = 1 and F-score
is equivalent to the harmonic mean of precision and recall.

2) TVSum
The ground truth of the TVSum dataset is the importance
score of the uniform two seconds length shots. As the
provider has stated, a shot length of two seconds can capture
local context with good visual coherence, and after watch-
ing these videos, we also find that video content in the
uniform-length shot does not change much. In other words,
the video content of a shot can be represented by any of its
video frames. Though our summarization results are a set of
keyframes rather than video shots, a keyframe can obtain the
same importance score of the two-second shot which contains
the keyframe.

Through this way, we convert the score of a shot to that of a
keyframe. In addition, if more than one frames belong to the
same shot, the scores of these keyframes should be penalized
due to their redundancy. Specifically, the keyframes belong-
ing to the same shot will share the shot’s importance score
equally. Therefore, we propose the mean score of selected
keyframes as the metrics to evaluate the performance.

Score =

∑m
i=1 fi
m

=

∑m
i=1

Scorei
ri

m
, (23)

where m is the number of the selected keyframes, fi is the
score of the i-th keyframes, Scorei is the importance score of
the shot that the i-th keyframe belongs to, and ri is the number
of keyframes belonging to the same shot.

C. IMPACT OF SETTINGS
In this part, the influences of three settings are explored by
implementing the proposed KSDS algorithm over VSUMM,
including the type of kernels, different `p,0, and the number
of candidate keyframes nc in R-KSDS algorithm.

1) IMPACT OF KERNELS
The q-th order polynomial kernelK(fi, fj) = (

〈
fi, fj

〉
+1)q and

radial basis function kernel K(fi, fj) = exp(− 1
2σ 2
‖fi − fj‖22)

are adopted to explore the influence in the proposed KSDS
algorithm. The parameters in each kernel varywithin a certain
range respectively, and the values which achieve the best per-
formances are adopted to make a comparison. Specifically,
q = 13 is for the polynomial kernel, and σ = 0.22 is for the
RBF kernel. The experimental results of the proposed KSDS
algorithm with different kernels are shown in Fig. 1, in which
the ER threshold varies from 32% to 12%. It can be observed
that the RBF kernel generally has a better performance than
the polynomial kernel, except when the ER threshold is high,
i.e., the number of keyframes is very small. Thus, the RBF
kernel is adopted in our experiments.

2) IMPACT OF `p,0
Empirically, different `p,0 constraints on sparse represen-
tation coefficient will have an impact on the selection of
keyframes. Therefore, the influence of `p,0 is investigated
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FIGURE 1. Performance comparison of the polynomial kernel and RBF
kernel on VSUMM.

FIGURE 2. Performance comparison of different `p,0 on VSUMM.

in this part, and p is set to 1, 2 and ∞, respectively. The
performance comparison of different `p,0 is shown in Fig. 2.
It can be obviously observed that `2,0 and `∞,0 achieve the
best and worst performance separately, and the performance
of `1,0 is moderate. When `∞,0 is adopted, the frame which
is important for representing a few frames will be selected.
However, `2,0 and `1,0 select the frame which has a con-
tribution to the representation of all frames. In this sense,
`2,0 and `1,0 can achieve better summarization performance
than `∞,0. Therefore, we use `2,0 in this paper.

3) IMPACT OF nc

The performances of R-KSDS with different numbers of
candidate keyframes (nc) and KSDS are shown in Fig. 3,
in which nc varies from 2 to 30. It can be observed that
when nc is less than 20, the performance of R-KSDS is better
than that of KSDS, and vice verse. This demonstrates that
the backtracking strategy is effective and necessary. When nc
equals 4, R-KSDS achieves the best performance. In addi-
tion, there are local best performances when nc equals 8,

FIGURE 3. Performance comparison of different number of candidate
keyframes in R-KSDS on VSUMM.

14 and 24 respectively. Thus, four candidate keyframes are
adopted in our experiments.

D. EVALUATIONS ON BENCHMARK DATASETS
1) EVALUATIONS ON VSUMM
The human-selected ground-truth keyframes of VSUMM are
available on the VSUMM official website. When calculating
the quantitative metrics, the average of the results among
5 ground-truth sets of keyframes is adopted. Our proposed
KSDS algorithms including KSDS and R-KSDS are com-
pared with various kinds of methods.
(i) The Open Video Project storyboard (OVP) [42] from

service provider;
(ii) Clustering based : including Delaunay Triangulation

clustering (DT) [9], STIMO [10] and VSUMM [3];
(iii) Shot segmentation based : including Multidimensional

Time Series Analysis (MTSA) [45] and Fast Shot Seg-
mentation (FSS) [46];

(iv) Sparse representation based : including Sparse Model-
ing Representative Selection (SMRS) [47], SOMP [24],
Minimum Sparse Reconstruction (MSR) [11], Adaptive
Greedy Dictionary Selection (AGDS) [25], Structured
Sparse Dictionary Selection (SSDS) [48], and `2,1 norm
based Nonlinear Sparse Modeling (`2,1 NSM) [49].

In all the sparse representation basedmethods, the 360 dimen-
sional feature designed in [21] is adopted, which includes
both structure and color information. In our KSDS and
R-KSDS, the sparsity upper boundary K0 is set to 13, and
ERthr is set to 12%.

According to the definition of the three quantitative met-
rics, Precision reveals the ability to select matched keyframes
over all the selected keyframes, while Recall reflects the
ability to select matched keyframes over all ground truth
keyframes, and F-score balances these two metrics and eval-
uates overall performance of summarizing videos. The com-
parison on VSUMM is shown in Table 2. It is obviously
observed that our proposed KSDS based algorithms achieve
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FIGURE 4. The quantitative performance of proposed KSDS based algorithms with different ER thresholds on VSUMM
dataset, the left is KSDS and the right is R-KSDS.

TABLE 2. Performance comparison on VSUMM.

the two best performances among all the compared algo-
rithms. The performance of our R-KSDS is better than that
of standard version KSDS, so it is necessary and useful to
adopt the backtracking mechanism.

Generally, the more keyframes are selected, the more
ground truth summaries are matched, thus, Recall can be
higher. According to the average number of keyframes (nK )
shown in Table 2, shot segmentation and sparse represen-
tation based algorithms select more keyframes than others,
so they may have more matched keyframes and achieve a
higher Recall. Though VSUMM has the highest precision,
it could miss a certain number of keyframes due to the lim-
itation of the number of selected frames, which leads to its
lower Recall and F-score. Especially, our KSDS and R-KSDS
have achieved the two best performances on Recall, which
demonstrates that most of the keyframes in the ground truth
summaries have been selected by our algorithms.Meanwhile,
the Precisions of our algorithms are only lower than VSUMM
and OVP, so only a few keyframes are not matched with the
ground truthes.

The results of our proposed KSDS based VS algorithms
with different ER thresholds on VSUMM are shown in Fig. 4.
It can be observed that when the ER threshold decreases,
more keyframes are selected. Recall increases gradually,
reflecting more keyframes are matched with the ground truth
summaries, and Precision basically maintain a stable level,
both of them indicate the stable efficiency and capacity of
our proposed KSDS based algorithms. The stable Precision
and gradually increasing Recall result in F-score increasing
gradually. As demonstrated in Fig. 4, when ERthr = 32%,
the number of selected keyframes is smaller than most algo-
rithms and a little greater than OVP and STIMO, however our
proposed R-KSDS algorithm still outperforms all compared
algorithms, which indicates that our proposed KSDS based
VS algorithms can provide very robust and effective summa-
rization results.

2) EVALUATIONS ON TVSum
The human-selected ground-truth importance scores of
TVSum are available as part of Yahoo! WebScope pro-
gram [50], and the average importance score of 20 users
is adopted for evaluation. In the representative skim based
VS [43], [51], 15% of the video length is adopted to limit
the length of summarized skims, therefore, we also use 15%
of the average number of uniform shots (approx. 18) as the
limitation to the number of keyframes. Specifically, the limi-
tation varies from 5 to 25. In TVSum dataset, our algorithms
are only compared with sparse representation based methods.

The experimental results of our proposed KSDS based
algorithms, together with other sparse representation based
algorithms, are shown in Table 3. It can be observed that
our proposed KSDS and R-KSDS achieve the two best per-
formances. All the scores vary between 1.7 and 2.1, and
the reason is that the distribution of importance scores is
skewed toward low values. Specifically, target ranges were
defined before making ground truth for each score assign-
ment [43]: more than 65% of the shots got the low importance
scores of 1 or 2, and only a few shots got high scores.
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FIGURE 5. The quantitative performance of the proposed KSDS based algorithms with different ER thresholds on TVSum
dataset, the left is KSDS and the right is R-KSDS.

TABLE 3. Performance comparison on TVSum.

According to [43], the shots which are most representative
of video content were most likely to get high importance
scores. Our proposed algorithms perform best no matter how
many keyframes are selected, which indicates the keyframes
summarized by our algorithms are more representative of
video contents.

According to the definition of mean score in (23), if more
than one keyframes belong to the same shot, the scores of the
keyframes will be penalized. Coupled with the skewed low
scores of shots, so there could exist a threshold on the number
of selected keyframes. When the number of keyframes is
more than this threshold, the performance will drop due to
the redundancy in the same shot and the difficulty of achiev-
ing high scores. It can also be verified by the experimental
results in Table 3, when the number of key frames increases
excessively, the performances of almost all algorithms have
degraded.

The results of our proposed KSDS based VS algorithms
with different ER thresholds on TVSum are shown in Fig. 5.
In this experiment, K0 is set to 25 and ERthr varies from
13% to 1%. It can also be observed that when the ER thresh-
old decreases, the number of selected keyframes increases
monotonically. However, the change of the performance in
term of the mean score is irregular, because there is no clear
relationship between the importance score and the number of
selected keyframes, which means that the importance score

of the m-th keyframe may be higher or lower than the mean
score of the previous (m−1) keyframes. As explained earlier,
there exists a threshold on the number of keyframes. It can be
verified from Fig. 5 that when the number of keyframes is
greater than 17 (ER threshold equals 6%), the performance
of KSDS degrades gradually. For R-KSDS, the threshold is
about 22 (ER threshold equals 3%), and the performance
degrades more quickly than the standard KSDS.

VI. CONCLUSION
In this paper, we focus on the SDS based video summariza-
tion, and present a `2,0 norm based nonlinear SDS model
to take the nonlinearity among video frames into account.
Moreover, two optimization algorithms, i.e., a standard
KSDS algorithm and a robust KSDS algorithm are developed.
In addition, the energy ratio (ER) of residual to video in the
projected space is devised to adaptively produce summaries
with different lengths to achieve an intuitive and flexible
configuration of the VS process. Experimental results on the
VSUMM dataset and the TVSum dataset demonstrate quan-
titatively and qualitatively that our nonlinear KSDS based
VS approaches outperform the state-of-the-art VS algorithms
and are flexible to generate keyframe based summaries with
different lengths.
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