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ABSTRACT Fine-grained image classification methods often suffer from the challenge that the subordinate
categories within an entry-level category can only be distinguished by subtle differences. Crop disease
classification is affected by various visual interferences, including uneven illumination, dew, and equipment
jitter. It demands an effective algorithm to accurately discriminate one category from the others. Thus,
the representational ability of algorithm needs to be strengthened to learn a robust domain-specific discrim-
ination through an effective way. To address this challenge, a unified convolutional neural network (CNN)
denoting the matrix-based convolutional neural network (M-bCNN) was proposed. Its hallmark is the
convolutional kernel matrix, whose convolutional layers are arranged parallelly in the form of a matrix,
and integrated with DropConnect, exponential linear unit, local response normalization, and so on to defeat
over-fitting and vanishing gradient. With a tolerable addition of parameters, it can effectively increase the
data streams, neurons, and link channels of the model compared with the commonly used plain networks.
Therefore, it will create more non-linear mappings and will enhance the representational ability with a
tolerable growth of parameters. The images of winter wheat leaf diseases were utilized as experimental
samples for their strong similarities among sub-categories. A total of 16 652 images containing eight
categories were collected from Shandong Province, China, and were augmented into 83 260 images. The
M-bCNN delivered significant improvements and achieved an average validation accuracy of 96.5% and a
testing accuracy of 90.1%; this outperformed AlexNet and VGG-16. The M-bCNN demonstrated accuracy
gains with a convolutional kernel matrix in fine-grained image classification.

INDEX TERMS Convolutional neural network, fine-grained image classification, deep learning,
convolutional kernel matrix, wheat leaf diseases.

I. INTRODUCTION
Early and accurate detection and diagnosis of plant diseases
are key factors in wheat production and for reduction of
both qualitative and quantitative losses in crop yield [1].
Therefore, developing technologies to accurately classify the
categories of wheat leaf diseases is crucial for disease pre-
vention. The state-of-the-art advancements in artificial intel-
ligence and computer vision domains have actually motivated

researchers to employ this effective technology in agriculture
for automatic categorization of crop diseases caused by biotic
and abiotic stresses [2]–[5]. Although remarkable perfor-
mances have been achieved in normal diseases classification,
it is still hard to distinguish several diseases with subtle
discrimination.

Fine-grained image classification aims at discriminating
the sub-categories sharing one common basic-level category
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through digital images [6], e.g., classifying different vehi-
cle makes and models [7]–[10], tree categories [11], bird
classes [12]–[14], dogs classes [15]–[17], flower species [18],
aircrafts [19], [20], body parts [21], [22], etc. Due to its
tremendous challenge and study merit both in theory and
practice, fine-grained image classification has been exten-
sively studied recently: Liang et al. [23] proposed a Gaussian
mixture model, which fused local features by Gaussian
mixture layer and achieved high classification accuracy;
Iscen et al. [24] adopted approaches based on superpixels,
edges, and a bank of Zernike filters used as detectors, and they
found that a better accuracy was achieved when the patches
were extracted along the edges and not around the detected
regions; Xuan et al. [25] proposed a novel evolving convolu-
tional neural network (ECNN), which could use the limited
clearly labeled images and weakly labeled images for better
fine-grained classification of CIFAR-10, Oxford pets, etc;
Seo and Shin [26] proposed to pre-train the GoogLeNet on
ImageNet dataset and fine-tune fine-grained fashion dataset
based on design attributes apparel classification, and their
strategy got promising performance; Zhang et al. [27] pro-
posed a fine-grained vehicle recognition framework based on
lightweight convolutional neural network (CNN) with com-
bined learning strategy, and competitive recognition perfor-
mances were achieved whilst decreasing the computational
complexity; Zhang et al. [28] developed a novel fine-grained
image categorization system based on an active learning algo-
rithm and support vector machine (SVM), which achieved
better spatial pyramid matching performance and categoriza-
tion accuracy.

Through the above investigation, we learned that most
previous works were aimed at boosting up the classification
rate from three main aspects:

1) more precise location of object and domain, which is
also known as the global/domain level attention.

2) more robust feature representations for subordinate
categories discrimination.

3) human in the loop [29] and reinforcement learning.
Since our goal is automatic fine-grained image classi-

fication and our design is based on a simple intuition,
i.e. directly boosting up the accuracy through more robust
discriminative features extracted by an effective algorithm,
we are more focused on the related research of the first
two, Due to small discrepancies, different sub-categories
are always distinguished by domain-specific areas, such
as the texture of a feather [30]–[34] and a petal [35], [36],
the color of a coat [37], [38] and a beak [39]–[43],
the shape of a trademark [35], [45] and a vehicle [46], [47],
etc. Consequently, detecting these subtle discriminative
domains from similar areas is crucial for fine-grained image
classification [48]–[52].

Another point is that the fine-grained classification tasks
are common and more challenging in uncontrolled realis-
tic crop disease classification. Different subordinate cate-
gories have almost similar appearance of diseases. Their
discriminations mainly exist in subtler areas. Perhaps counter
intuitively, intra-category discriminations can be very larger
than inter-category among different sub-categories in some
cases, as depicted in Fig. 1. More seriously, a number of
visual interferences, such as reflection, dispersion, and blur
caused by dew, equipment jitter, and extreme illuminations
can lead to large visual interferences in terms of leaf appear-
ance. This can severely degrade the accuracy and robust-
ness of the disease classification [53], [54]. Our previous
work [55] also suffered these interferences seriously.

Due to the adequate collected samples and research
value both in theory and practice, our work focuses on the
fine-grained image classification of winter wheat leaf dis-
eases. Traditionally, early classification of wheat leaf disease
is dominated by delicate hand-crafted features [56]–[61],

FIGURE 1. Illustration of the difficulty of fine-grained image classification of crop diseases: Large intra-category discriminations and
small inter-category discriminations. (a) The sub-categories and basic-level categories of wheat leaf diseases images. (b) The
sub-categories and basic-level categories of tea leaf diseases images.
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e.g., HOG, SIFT, SURF, and LBP. However, the design
of these descriptors is typically time-consuming and their
performances are unsatisfactory [23]. Thus, researchers have
attempted to tackle the problems by proposing artificial
intelligence methods. For instance, Zhao et al. [62] pro-
posed an optimized MSF-AdaBoost model to classify and
monitor powdery mildew on winter wheat on a regional
scale. A high classification accuracy and promising mon-
itoring performance was achieved; Tian et al. [63] pre-
sented an SVM-based Multiple Classifier System (MCS)
for pattern recognition of wheat leaf diseases. Compared
with the previous classifiers, their algorithm could achieve
better recognition rate; Niu et al. [64] proposed a modified
K-means clustering for efficient identification of wheat leaf
diseases, and better performance was achieved for three
common diseases (powderymildew, leaf rust, and stripe rust);
Yang et al. [65] presented a diagnosis model of stripe rust
in field scales based on Bayesian network, which provided
technical support for accurate identification and short-term
prediction of stripe rust on a small scale.

The above methods are concerning to surface learning.
Although some progress has been made, there is still some
room and potential for improvement. The extraction of hand-
crafted features, such as inertia moment, roundness, and
entropy largely relies on prior knowledge; thus, the extracted
features are often inadequate and lacking in detail [55].
Furthermore, while shallow-level features can be extracted
effortlessly, abstract representations hidden in the deeper
level are difficult to obtain without learning procedures [55].

Moreover, the main challenge for fine-grained image clas-
sification of wheat leaf disease is indubitably the very small
discrepancies among different categories. Specifically, the
difficulties mainly come from three aspects:

1) the strong similarity among different disease spots.
2) the large visual interferences of the cluttered environ-

ments.
3) the large search space of possible disease spot

positions.
Consequently, an effective classification model was

required to accurately extract subtle features from the
domain-regions. The model that would have a high objec-
tiveness, containing the vital discriminates of certain objects.
Driven by this requirement, an improved convolutional neural
network codenamed matrix-based convolutional neural net-
work (M-bCNN) has been proposed in this work.

CNN is a multilayer variant perceptron (MLP) [66]
inspired by Hubel-Wiesel biological vision system. It can
adaptively construct implicit feature description through
multi-layer non-linear mapping under training data driv-
ing [67]. During the last seven years, mainly due to the
state-of-the-art performance of CNN, the quality of image
classification and other related fields have progressed at a
dramatic pace. In 2012, Krizhevsky et al. [68] won two
first prizes (in two separate tasks) for developing AlexNet
model in ImageNet Large Scale Visual Recognition Com-
petition (ILSVRC) [69], where its accuracy rate exceeded

by 10% that of the second-placed competitor. In 2014,
two milestones in face classification were achieved, when
Taigman et al. [70] and Ouyang et al. [71] proposed CNN
based DeepFace and DeepID. These proved to be the most
perfect authentication models for face classification. Two
other brands of CNN frameworks with the design concept
of ‘‘go deeper’’ became the champion (GoogLeNet [72])
and runner-up (Visual Geometry Group (VGG) [73]) in
ILSVRC-2014. The following year, ResNet [74] designed by
Microsoft Research Asia (MSRA) won the championship in
ILSVRC-2015. Its Top-5 error rate (3.57%) was lower than
humans’ classification error rate (5.1%), which illustrated
that its object recognition ability surpassed that of human eye.
In 2016, DeepMind, a subsidiary of Google, applied CNN to
an intelligent robot AlphaGo [75] and defeated Go champion
Li Shishi. Sharing the congenital advantages of CNN (though
it is hard to see the study of CNN in the fine-grained image
classification of wheat leaf diseases), we proposed to utilize
it as the theoretical basis in this work.

However, we needed to enhance the representational abil-
ity of CNN to better tackle the fine-grained image classi-
fication tasks. It is obvious that most representative CNN
models gain improvement in accuracy through stacked lay-
ers [76], [77]. During 2012 to 2015, all the leading works
[68], [72], [74] in the challenging ILSVRC [69] exploited
‘‘extreme deep’’ models, with a depth of 8 [68] to 152 [74].
He et al. [74] even utilized ResNet with 1202 layers to
analyze CIFAR-10. Recent evidences reveal that increas-
ing hidden layers is essential for success in the current
state-of-the-art convolutional networks [73], [74], [78], [79].
Previous studies show that most deep neural networks typi-
cally follow a standard structure originating from LeNet-5 –
linearly stacked convolutional layers are optionally followed
by one or more subpooling layers and fully-connected layers.
These ‘‘plain’’ nets that simply stack layers [74] prevail in the
image classification literature and have produced impressive
results so far on CIFAR-10, MNIST and other classification
tasks. Nevertheless, the design is not efficient to improve the
representational ability of networks compared with parallel
structure, which is concretely embodied in the growth rate
of parallelism level, data streams, scheduling efficiency, neu-
rons, link channels, etc [72], [74]. Moreover, if several convo-
lutional layers are linearly chained together, this will result in
a quadratic increase of parameters and computational budget.
Then more terrible over-fitting and curse of dimensionality
will follow, which will result in serious issues with accuracy
[72], [74], [79].

The depth of model representations is also imparative
for distinguishing fine-grained visual categories. In order to
find an effective method to increase representational ability
without obvious side-effects, an improved hierarchical CNN
denoting theM-bCNNwas proposed and its gratifying perfor-
mances were evaluated in fine-grained image classification of
wheat leaf diseases.

In order to employ the discriminative feature representa-
tional ability of CNN, our model originates as a fundamental
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plain network (i.e. AlexNet [68]). First, we add two convo-
lutional neural layers to the first two low layers (i.e. conv_1
and conv_2) for extracting the global features of images. Then
the next three linearly stacked higher convolutional neural
layers (i.e. conv_3, conv_4, and conv_5) take place by three
3 × 3 convolutional kernel matrixes. These are responsi-
ble for enhancing representational ability and searching for
domain-specific representations in subtler areas. Meanwhile,
other tricks, such as exponential linear unit (ELU), local
response normalization (LRN), and DropConnect are also
integrated together to inhibit vanishing gradient and over-
fitting. The overall design conception obeys the following
principle: extracting the global features and then searching
for domain-specific discrimination.

Due to the large parameters of the model, direct train-
ing from scratch on the image set of wheat leaf diseases
will result in over-fitting. Therefore, M-bCNN is first pre-
trained on the ImageNet database [69]. Based on the training
weights, we fine-tuned the model to adapt to the fine-grained
images. M-bCNN has proven theoretically and practically
that the convolutional kernel matrix is effective to increase the
number of data streams, neurons, and link channels, while it
inhibits parameter growth. In addition, the tiny features can be
extracted by minitype convolution filters arranged in matrix.
Moreover, they can combine freely with each other, because
of fully-connected mode, generating different feature maps
thus improving the flexibility and characterization ability of
the model. Therefore, convolutional kernel matrix caters for
the strict requirements of enhancing representational ability
and suppressing time complexity. This is meaningful for
fine-grained image classification of crop diseases. Convolu-
tional kernel matrix allows M-bCNN to acquire the accuracy
gains from increased hidden layers without obvious accuracy
loss penalty, producing results which significantly compete
against AlexNet and VGG-16.

The main novelties and contributions of this research are
summarized in three points:

1) To the best of our knowledge, it is the first work that
used improved CNN for the fine-grained image clas-
sification of wheat leaf diseases. A novel hybrid CNN
structure codenamed M-bCNN is proposed, which sig-
nificantly increases the data streams, neurons, and link
channels. The effectiveness of its hallmark, the convo-
lutional kernel matrix, is proven both theoretically and
practically.

2) As there is no large-scale publicly available image
set of wheat leaf diseases at present, a total
of 16,652 high-fidelity winter wheat leaf images,
containing eight categories, were collected from loca-
tions of Shandong province, China. Moreover, a total
of 83,260 augmented images were produced by five
augmentation methods. Obviously, this is the first
large-scale high-resolution image set of winter wheat
leaf diseases. We intend to open source this set
when it gets richer both in terms of quantity and
species.

3) We have undertaken a significant amount of work on
the image set. Our proposed model achieves higher val-
idation accuracy, individual classification rate, preci-
sion, recall, and F1-score improvement with a tolerable
parameter addition.

The remainder of this paper is as follows. Section II
illustrates the methodology of the proposed M-bCNN and
the effectiveness of convolutional kernel matrix. Section III
presents the construction of the original and augmented
image sets of wheat leaf diseases. The details of experimental
process and results are being covered in Section IV. The
detailed discussion and analysis are elaborated in Section V.
Finally, in Section VI, the concluding remarks and sugges-
tions for future works are provided.

II. MATRIX-BASED CONVOLUTIONAL NEURAL NETWORK
A. OVERVIEW OF M-bCNN
In an attempt to leverage the success of CNN for object
classification, the M-bCNN for fine-grained image classifi-
cation of wheat leaf disease is proposed. This section details
the novelty of our method. It describes the new hierarchical
M-bCNN architecture that integrates the proposed convolu-
tional kernel matrix and other tricks, such as ELU, LRN, and
DropConnect. Convolutional kernel matrix aims at increasing
the model’s representational ability so as to learn a domain-
specific discrimination to deal with fine-grained classifica-
tion, whilst suppressing parameter growth rate. The model
depicted in Fig.2 is called as M-bCNN-CKM-3 for its 3 × 3
convolutional kernel matrix.

As obvious fromFig. 2,M-bCNN-CKM-3mainly contains
four convolutional layers (Conv1, Conv2, Conv3, Conv4),
three MaxPooling layers (S2, S4, S7), three 3 × 3 con-
volutional kernel matrixes (CKM-35, CKM-36, CKM-37),
and three fully-connected layers (F8, F9, F10). Specifically,
CKM-35, CKM-36, and CKM-37 are responsible for increas-
ing the model depth and representational ability. Each
one contains nine 3×3 convolutional layers (Conv(1,1),
Conv(2,1), Conv(3,1); Conv(1,2), Conv(2,2), Conv(3,2); Conv(1,3),
Conv(2,3), Conv(3,3)) and each layer contains 96 3× 3 convo-
lutional kernels. See Fig. 3 for detailed architecture and data
streams in convolutional kernel matrix.

1) DropConnect
Fig. 3 reveals that the input pixel vector x = [x1, x2, x3, . . . ,
xn] is first processed by DropConnect. Since the abundant
training parameters and complex structures in convolutional
kernel matrix easily cause over-fitting, DropConnect is uti-
lized not only in fully-connected layers, but also in CKM-35,
CKM-36, and CKM-37. It can randomly mask the weights of
convolution kernels through a binary matrix shown in Eq. (1).
The model tends to be less sensitive to the specific weights of
neurons, hence less likely to overfit the training samples and
capable of better generalization ability.{

xi ∗Mi
Mi ∼ Bernoulli distribution (p)

(1)
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FIGURE 2. The overview of the proposed M-bCNN-CKM-3. Layers of original CNN are shown in green and blue. Convolutional kernel matrixes that
we propose are in purple.

FIGURE 3. Data streams in convolutional kernel matrix.

where xi is the input signal, Mi represents a binary random
mask matrix, which obeys the Bernoulli distribution. The
DropConnect rate increases from 0.15 to 0.5.

2) EXPONENTIAL LINEAR UNIT (ELU)
Next, the processed feature maps are calculated by con-
volution filters. In order to inhibit vanishing gradient and
increase model convergence rate, ELU is utilized as the acti-
vation function in convolutional layers, convolutional kernel
matrixes and subsampling layers. Suppose the input signals
are denoted as x = [x1, x2, x3, . . . , xn, bi]T , the data streams

in convolution filter are depicted as below:


yi‘ = f (yi) = f (

n∑
i=1

xiwTi + b)

f = ELU (yi) =
{
yi if yi ≥ 0
α(eyi − 1) if yi<0

(2)

where xi and yi‘ represent the input signals and output
feature maps respectively; f represents the non-linear acti-
vation function whose role is played by ELU, α is ini-
tialized to 0.25 and then self-adjusted by optimization;
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w = [w1,w2,w3, . . . ,wn,+1]T denotes the weights of ith
convolution filter, b is the bias.

3) LOCAL RESPONSE NORMALIZATION (LRN)
After the non-linear mapping of ELU, we employ the channel
internal normalization contained in LRN for better general-
ization ability. Its local region is extended in the indepen-
dent channel. The received signal is normalized as shown in
Eq. (3).

y′′i = y′i/(k + (
α

n
)
min(N−1,i+n/2)∑
j=max(0,i−n/2)

(y′j)
2)β (3)

where y′i and y
′′
i represent the input and output feature maps

of LRN respectively; α and β denote the scaling factor and
exponential term respectively; N and n represent the number
of channels and local size of the normalized range respec-
tively. The variables α, β, and n are initialized to 0.0001, 0.75,
and 5 respectively, following Krizhevsky et al. [68].
Finally, M-bCNN ends with an eight-way fully-connected

layer with Softmax [81], [82] function:

Si =
eVi

K∑
j=1

eVj
(4)

where eVi and eVj represent the probability belonging to i and j
categories respectively; k denotes the number of categories
and it is initialized into eight in this paper. The prediction of
each category can be calculated by Softmax function.

B. CONVOLUTIONAL KERNEL MATRIX
In this section, we demonstrate the positive effect of convolu-
tional kernel matrix on representational ability enhancing and
parameter growth inhibition. The commonly-used plain nets
and proposed convolutional kernel matrix are compared in
terms of their structures, data streams, neurons, link channels
and training parameters. This is because they largely reflect
the performance of a neural network from a mathematical
point of view.

1) SCHEMA PlainNet-2 AND SCHEMA CKM-2
In Fig. 4, we hypothesize that the size of input image is L×L.
Convolutional layers Conv(1,1) and Conv(1,2) both consist of
b a×a convolution filters in Schema PlainNet-2. It represents
a standard and common CNN structure, called plain net,
starting from LeNet-5 - linearly stacked convolutional layers
are optionally followed by one or more normalization layers,
max-pooling and fully-connected layers. Based on the serial
structure of Schema PlainNet-2, we turn the network into
its matrix version. In Schema CKM-2, the 2 × 2 convolu-
tional kernel matrix is made up of four convolutional layers
(Conv(1,1), Conv(1,2), Conv(2,1), Conv(2,2)) and each one is
composed of b a×a convolution filters. Specifically, Conv(1,1)
and Conv(2,1) are fully connected to Conv(1,2), and Conv(2,2).
The data streams of Schema PlainNet-2 and Schema CKM-2
are shown in Table 1.

FIGURE 4. The structure of Schema PlainNet-2 and Schema CKM-2.
Left: a 2-layer plain network as a reference. Right: a 2 × 2 convolutional
kernel matrix.

TABLE 1. Data streams in Schema PlainNet-2 and Schema CKM-2.

The number of neurons, link channels, and training param-
eters of the two schemas are shown in Table 2.

Table 1 reveals that the number of data streams in Schema
CKM-2 is four times that of Schema PlainNet-2, which pro-
vides more pipelines for feature integration. Accordingly,
the number of link channels in Schema CKM-2 is four
times that of Schema PlainNet-2 in Table 2, which brings
more non-linear mappings for feature extraction. In addition,
the number of neurons in Schema CKM-2 is two times that
of Schema PlainNet-2. It means stronger feature extraction
ability. The increase of neurons and link channels are both
meaningful for boosting the model’s representational abil-
ity. Meanwhile, the number of training parameters is also
increased with the addition of layers, but not enough to cause
serious computational burden.

2) SCHEMA PlainNet-3 AND SCHEMA CKM-3
In Fig. 5, linearly stacked convolutional layers, Conv(1,1),
Conv(1,2) and Conv(1,3) consist of b a× a convolution filters
in Schema PlainNet-3. In Schema CKM-3, convolutional
kernel matrix (3 × 3) is made up of nine convolutional
layers (Conv(1,1), Conv(2,1), Conv(3,1); Conv(1,2), Conv(2,2),
Conv(3,2); Conv(1,3), Conv(2,3), Conv(3,3)) and each one is
also made up of b a×a convolution filters. Layers in adjacent
columns are fully connected with each other. Therefore, there
is nine data streams in Schema CKM-3. See Table 3 for
detailed data streams in Schema PlainNet-3 and Schema
CKM-3.
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TABLE 2. The number of neurons, link channels and training parameters in Schema PlainNet-2 and Schema CKM-2.

FIGURE 5. The structure of Schema PlainNet-3 and Schema CKM-3. Left: a 3-layer plain network as a
reference. Right: a 3 × 3 convolutional kernel matrix.

TABLE 3. Data streams in Schema PlainNet-3 and Schema CKM-3.

The number of neurons, link channels, and training param-
eters of two schemas are shown in Table 4.
In Table 3 and Table 4, the numbers of data streams

and link channels in Schema CKM-3 are both 27 times
those of Schema PlainNet-3, which is a distinct improvement
compared with Schema CKM-2. The number of neurons in

Schema CKM-3 is three times that of Schema PlainNet-3.
Moreover, the number of training parameters is also increased
by three times. It can be seen that the improvement of neurons
and link channels is more significant than Schema CKM-
2, while the number of training parameters is within the
acceptable range.
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TABLE 4. The number of neurons, link channels and training parameters in Schema PlainNet-3 and Schema CKM-3.

FIGURE 6. The structure of Schema PlainNet-n and Schema CKM-n. Left: an n-layer plain network as a
reference. Right: an n × n convolutional kernel matrix.

3) SCHEMA PlainNet-N AND SCHEMA CKM-N
With the improvement of hardware, the implementation
of convolutional kernel matrix with bigger size may be
allowed, whose structure is like Schema CKM-n in Fig. 6.
It is composed of n2 convolutional layers (Conv(1,1),
Conv(2,1), . . . ,Conv(n,1); Conv(1,2), Conv(2,2), . . . ,Conv(n,2);
. . . ;Conv(1,n), Conv(2,n),. . .Conv(n,n)) and each one owns b
a × a convolution filters. Layers in adjacent columns are
fully connected with each other, so there is nn data streams
in Schema CKM-n. As a reference, Schema PlainNet-n con-
sists of n linearly sequenced convolutional layers (Conv(1,1),
Conv(1,2), . . .Conv(1,n)) and each one also has b a × a con-
volution filters. The data streams of Schema PlainNet-n and
Schema CKM-n are shown in Table 5.

The number of neurons, link channels and training parame-
ters in Schema PlainNet-n and Schema CKM-n are calculated
by Eq. (1) to Eq. (6), where L, b, and a denote the input
image size, the number and the size of convolution filters
respectively, and they are initialized to 256, 10, and 3 respec-
tively. Num_PlainNet − nNeu, Num_PlainNet − nlc, and
Num_PlainNet − ntp represent the number of neurons, link
channels, and training parameters of Schema PlainNet-n
whileNum_CKM−nNeu,Num_CKM−nlc, andNum_CKM−
ntp represent those of Schema CKM-n, and n denotes the size
of convolutional kernel matrix. The corresponding functions
of each equation are illustrated in Fig. 7 and Fig. 8.

It can be seen in equations 5, 6, 8, and 9, that the num-
bers of neurons and link channels in Schema CKM-n are
n and nn times those of Schema PlainNet-n, respectively.
This means sufficient convolution filters and non-linear
mappings are available for better features extraction. From
Fig. 7 (a), Fig. 7 (b), Fig. 8 (a), and Fig. 8 (b), we can
also see that this improvement generated by convolutional
kernel matrix becomes more significant with the increase
in matrix size. Especially for link channels, the number of
them in Schema CKM-n is seven orders of magnitude larger
than that of Schema PlainNet-n, when the matrix size is
greater than or equal to six. In terms of training parameters,
from Eq. (7) and Eq. (10), we can see the number of it
in Schema CKM-n is n times that of Schema PlainNet-n,
but it is noteworthy that the link channels simultaneously
increased by nn times. Therefore, the matrix structure of
convolutional layers is an effective and economical way to
boost the representational ability of the model. Moreover,
from Fig. 7 (c) and Fig. 8 (c) we observe that the number of
training parameters in Schema CKM-n is within 7,000, when
the matrix size is equal or less than eight, which is just one
order of magnitude larger than that of Schema PlainNet-n.
It is not enough to lead in unacceptable computational budget
and the curse of dimensionality. Therefore, the obvious com-
putational burden and serious accuracy loss will not occur
at the experimental stage. Schema PlainNet-n and Schema
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TABLE 5. Data streams in Schema PlainNet-n and Schema CKM-n.

CKM-n are represented in (5)–(7) and (8)–(10), respectively,
as shown at the bottom of this page.

The time complexity of one convolutional kernel matrix
can be calculated by Eq. (11):

Time ∼ O(
N∑
i=1

NM2
i · NK

2
i · N

NCi−1 · NNCi)

M = (X − K + 2 ∗ Padding)/Stride+ 1
Ci = (K 2

+ 1)F(X − iK + 1)2

N ∈ {x|x ≥ 2, x ∈ Z }

(11)

where N denotes the matrix size, M and X denote the size
of output and input feature maps respectively, K and F
denote the size and number of convolution filters, Ci−1 and
Ci denote the channels of (i-1)th and ith layer respectively.
From the Eq. (11) we can perceive that the amount of neu-
rons and channels are related with time complexity, and so
is the amount of parameters. If the neurons, link channels,
and parameters all grow sharply, it will undoubtedly result
in intolerable time complexity (often occurs in deep plain
networks [72], [74], [79] with many linearly stacked layers).
So the convolutional kernel matrix was proposed to increase

the neurons and link channels whilst restraining parameters
growth, and the previous two are beneficial for represen-
tational ability enhancing. Although the neurons and link
channels grow rapidly, the total time complexity is not so
obvious for the suppression of parameter growth. Moreover,
thanks to the activation function ‘‘ELU’’ (see section II, A, 2)
and optimization strategy ‘‘SGD + momentum’’ (see
section IV, B, 4), the convergence rate has been accelerated
to some extent. From the training phase (see section IV, B, 5)
we can observe that only ten more epochs (about four
more hours) are required to achieve convergence. The time
complexity can also be diluted by integrated mature tricks.
It also demonstrates that the additional time complexity is not
obvious.

In conclusion, the above three comparisons (see section
1, 2, and 3) demonstrate that convolutional kernel matrix
provided significantly better performance than the plain net-
works. This proves that the matrix structure helps with
achieving a substantial increase of data streams, neurons, and
link channels at a tolerable increase of computational require-
ments for affordable parameters addition. This way, the curse
of dimensionality will not appear within a proper matrix size.

Schema PlainNet-n



Num_PlainNet − nNeu = b[(L − a+ 1)2 + (L − 2a+ 2)2 + . . .+ (L − na+ n)2]

= b
n∑
i=1

[
(L − ia+ i)2

]
, n ∈ {x|x ≥ 2, x ∈ Z } (5)

Num_PlainNet − nlc = (a2 + 1)b[(L − a+ 1)2 + (L − 2a+ 2)2 + . . .+ (L − na+ n)2]

= (a2 + 1)b
n∑
i=1

[(L − ia+ i)2], n ∈ {x|x ≥ 2, x ∈ Z } (6)

Num_PlainNet − ntp = n(a2 + 1)b, n ∈ {x|x ≥ 2, x ∈ Z } (7)

Schema CKM-n



Num_CKM − nNeu = nb[(L − a+ 1)2 + (L − 2a+ 2)2 + . . .+ (L − na+ n)2]

= nb
n∑
i=1

[
(L − ia+ i)2

]
, n ∈ {x|x ≥ 2, x ∈ Z } (8)

Num_CKM − nlc = nn(a2 + 1)b[(L − a+ 1)2 + (L − 2a+ 2)2 + . . .+ (L − na+ n)2]

= nn(a2 + 1)b
n∑
i=1

[(L − ia+ i)2], n ∈ {x|x ≥ 2, x ∈ Z } (9)

Num_CKM − ntp = n2(a2 + 1)b, n ∈ {x|x ≥ 2, x ∈ Z } (10)
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FIGURE 7. The number of neurons, link channels, and training parameters in Schema PlainNet-n. (a) The number of neurons in Schema PlainNet-n.
(b) The number of link channels in Schema PlainNet-n. (c) The number of training parameters in Schema PlainNet-n.

FIGURE 8. The number of neurons, link channels, and training parameters in Schema CKM-n. (a) The number of neurons in Schema CKM-n. (b) The
number of link channels in Schema CKM-n. (c) The number of training parameters in Schema CKM-n.

Sharing the above advantages, M-bCNN could easily relish
accuracy gains from considerably increased depth, producing
efforts substantially better than plain networks.

III. DATA DESCRIPTION
In this work, winter wheat leaf diseases images were utilized
as the experimental samples of fine-grained classification for
their strong similarity with subordinate categories in some
cases. At present, no large-scale image set of wheat leaf
diseases is publicly available. So 16,652 high-fidelity images
were collected from several wheat planting areas of Shan-
dong province and were assigned as the original image set.
Then an augmented database containing 83,260 images was
constructed by five augmentation methods. The original and
augmented image sets were utilized as the training and testing
samples, respectively. To the best of our knowledge, this is
the first available large-scale high-resolution images sets of
winter wheat leaf diseases.

A. IMAGE ACQUISITION
From the wheat planting bases of Shandong Province, China,
16,652 winter wheat leaf images containing eight categories
were collected from the field using Canon EOS 80D camera.
They were acquired between 8:00 a.m. and 5:00 p.m., and
the distance of the camera from the leaf was three to seven
cm. The image format was JPEG and each one was a 24-bit
color bitmap. Each image included only one disease and was
classified into one corresponding ground truth category by
plant protection experts. The original image set was utilized
as testing sample. SeeTable 6 for randomly selected samples.

From Table 6 we can observe that the images of some sub-
categories, within one common basic-level category, have
strong similarities. For example, the images of Powdery
Mildew and Cochliobolus Heterostrophus are similar to each
other, and they belong to the same basic category of Spore
Parasitism. Therefore, it is generally much harder to classify
each image with in its true category and this is a meaningful
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TABLE 6. Samples of winter wheat leaf disease images.

TABLE 7. Number and proportion of each category in original image set.

dataset for model evaluation of fine-grained classification.
The number and proportion of each category is shown in
Table 7.

B. IMAGE AUGMENTATION
Adequately labeled samples can reduce under-fitting in the
model training process [83]. In order to increase the number
and diversity of original images and enable extracted features
to own the robustness of rotation, translation, and scaling,
etc., an augmented image set was constructed through noise
addition [84], color jittering [68], PCA jittering [68], rotation
blur [55], and scaling blur [85] for their implementation
simplicity and satisfactory performances proved in previous
researches [23], [52], [72], [73]. These methods simulate the
interferences of noise, illumination fluctuation, and object
jitter which are frequently encountered during the acquisition
process and practical application scenarios. See Table 8 for
details and Table 9 for the processed images corresponding
to each method.

Finally, we augmented dataset of 83,260 images that were
enough for the model’s convergence. This image set was
utilized as the training sample and the number and proportion
of each category is shown in Table 10.

IV. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENTS
Training a deep CNN through a large number of itera-
tions largely relies on high-performance graphics processing
units (GPUs). We run the experiments using multiple GPUs
on NVIDIA (R) GeForce GTX 1080 graphics card. Its basic
configuration is shown in Table 11.

The computer was a HP EliteDesk 880 G2 TWR with an
Intel(R) Core i7 6700K (3.40 GHz) processor and 16 GB
memory. The operating system was Ubuntu 16.04.1 (64 bits).
Implementation of the M-bCNN used TensorFlow, an open-
source machine learning framework for numerical compu-
tation developed by Google Brain Team. The Python was
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TABLE 8. Methods of Image augmentation used in the study.

TABLE 9. Augmented images as a consequence of five individual augmentation methods.

TABLE 10. Number and proportion of each category in augmented image set.

utilized as the programming language to adapt to the core of
TensorFlow.

B. EVALUATION METRIC
The following metrics are considered to evaluate the model.
First and foremost, the accuracy is widely implemented for
the target classification and recognition. However, the per-
formance of the model cannot be illustrated sufficiently only
with accuracy. So, we use confusion matrix, also known as

error matrix in supervised learning, which clearly depicts
the actual and predicted categories in each column and row
respectively. Moreover, the precision, recall, and F1-scores
across individual categories are utilized to evaluate the per-
formances of the classifier model directly.

C. MODEL TRAINING
Before the training starts, 70% of the images in each cat-
egory are randomly selected as training samples and the
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TABLE 11. Basic Characteristics of GPUs.

remaining 30% are utilized as validation samples. Since the
augmented dataset is already balanced, this sampling method
can ensure the inter-class balance.

1) OPTIMIZATION OBJECTIVE
Suppose there areN training samples and the feature vector of
nth (1 ≤ n ≤ N ) sample is denoted as xn = (xn1 , x

n
2 , . . . , x

n
m),

where m represents the number of dimensions. The corre-
sponding actual output vector and the expected output vector
are yn = (yn1, y

n
2, . . . , y

n
m) and EO

n
= (EOn1,EO

n
2, . . . ,EO

n
c),

where c denotes the numbers of output vectors. Then the
optimization objective of M-bCNN is the mean squared error
of all samples, as shown below:

EN =
1
2

N∑
n=1

c∑
m=1

(ynm − EO
n
m)

2 (12)

2) LOSS FUNCTION
The standard cross-entropy [86] is utilized as the loss function
during themodel training stage and it is defined as in Eq. (13):

E = −
1
n

∑
x

[y ln y′ + (1− y) ln(1− y‘)] (13)

where y and y′ denote the expected and actual output,
respectively.

3) REGULARIZATION TERM
In order to better resist over-fitting and vanishing gradient,
L2 regularization is exploited and is shown in Eq. (14):

L2 =
1
2n
λ
∑
wi

w2
i (14)

where w and n denote model parameters and the number of
samples respectively, λ is the weight decay and is assigned
to 0.001.

4) OPTIMIZATION STRATEGY
In pursuit of faster training speed, the strategy of ‘‘SGD +
momentum’’ is utilized as the optimization algorithm. Its
optimization speed is 1/1 − α times faster than that of
SGD [87], where α denotes momentum and ranges 0 < α <

1. The optimization process of ‘‘SGD+momentum’’ is shown

in Eq. (15): 
J (θ ) =

1
N

N∑
i=1

1
2
(yi − hθ (x i))2

v = αv− εJ (θ )
θ = θ + v
N = 1, 2, 3, . . . , n

(15)

where x i and yi denote input and output signals, J (θ ) and h(θ )
is the gradient estimation and fitting function, θ is the param-
eter needed to be optimized and it decides h(θ ), ε is the
learning rate and is initialized into 0.01, its decay steps and
decay rate are assigned to 3,000 and 0.1 respectively, which
means that ε is divided by ten at every 3,000 iterations,
momentum α is assigned to 0.99 for 100 times improvement
of optimization speed, and v is the learning speed that is
refreshed after every iteration.

Finally, Batch normalization (BN) [88] is adopted right
after each convolution layer and all models are trained from
scratch.

5) TRAINING IMPLEMENTATION
The structures of Schemas CKM-2 and CKM-3 are realized
in models M-bCNN-CKM-2 and M-bCNN-CKM-3 respec-
tively, and contrasted with two representative plain networks,
AlexNet [68] and VGG-16 [73], for comparison studies.
In the same experimental environment, M-bCNN-CKM-2
and M-bCNN-CKM-3 are first pre-trained on the ImageNet
dataset [69] for their large parameters, and then four models
are fine-tuned for up to 100 epochs end-to-end by SGD +
momentum with back-propagation on the augmented image
set, where the mini-batch size is 50. Fig. 9 (a), (b), and (c)
depict the accuracy of training and validation image set
throughout the whole procedure.

Fig. 9 (a)-(c) compare the training and validation accuracy
of four models. Fig. 9 (a) shows that M-bCNN-CKM-2 and
M-bCNN-CKM-3 converged after about 50 training epochs.
The results indicate that the twomodels have equivalent accu-
racy for the training image set, whereas for validation image
set, the validation accuracy of M-bCNN-CKM-3 is better
than that of M-bCNN-CKM-2. Based on these result, the
M-bCNN-CKM-2 was then compared with AlexNet and
VGG-16 as shown in Fig. 9 (b) and (c). The results demon-
strate that the training and validation accuracy of M-bCNN-
CKM-2 are both higher than those of AlexNet and VGG-16,
and only ten more training epochs are required to achieve
convergence.

According to the results in Fig. 9 (a)-(c), the model
that maximized the accuracy for the validation image set
is considered to be the best. Table 12 shows the training
accuracy, validation accuracy, training epoch, and training
time for each model. M-bCNN-CKM-3, which achieved
the highest validation accuracy, is the best performing
model. When the models are convergent, the highest valida-
tion accuracies of M-bCNN-CKM-2 and M-bCNN-CKM-3
are about 91.32% and 96.5% respectively, which are
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FIGURE 9. Accuracy in the training image set and validation image set. (a) Iteration of training
accuracies changes and validation accuracies changes by M-bCNN-CKM-2 and M-bCNN-CKM-3.
(b) Iteration of training accuracies changes and validation accuracies changes by M-bCNN-CKM-2
and AlexNet. (c) Iteration of training accuracies changes and validation accuracies changes by
M-bCNN-CKM-2 and VGG-16.

obviously higher than those of AlexNet and VGG-16
(83.12% and 88.54% respectively). M-bCNN-CKM-2 and
M-bCNN-CKM-3 achieved higher validation accuracies of
fine-grained classification for wheat leaf diseases’ images,
but required just about four more hours to converge. It sug-
gests that the convolutional neural network is effective
both in boosting up the representational ability and sup-
pressing parameter growth, while the training and valida-
tion accuracies do not suffer the penalty of the curse of
dimensionality.

D. FEATURE VISUALIZATION
In order to get a clearer understanding of how and why
the models work, guided-backpropagation and deconvolu-
tion [89] are both utilized to visualize the constantly updating
filters of themodel throughout the whole training stage. In the
course of the experimental iterations, the visualization of
some randomly selected filters in M-bCNN-CKM-3 is shown
in Fig. 10.

We can view the above filters as the learned feature
descriptors encoding the distinctive fusion structures. It is
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TABLE 12. Accuracy and epoch of the best models, and training time (h).

FIGURE 10. The filters of some hidden layers in M-bCNN-CKM-3 visualized as small patches.

noticeable that despite each filter is independent in Conv1 and
S1, our filters in CKM-35 smoothly change during training
stage. In this manner, they provide much richer and more
meaningful domain-specific representations. In a scene, this
also further demonstrates that using convolutional kernel
matrix is a crucial requirement for a model to learn better
representations.

E. MODEL TESTING
This section illustrates the performance verification of mod-
els in fine-grained image classification experiments. We uti-
lized 16,652 original images as the testing samples. Then
compared trained M-bCNN-CKM-2, M-bCNN-CKM-3
against AlexNet and VGG-16 and evaluated them in terms of
individual accuracy, precision, recall, F1-socre, and overall
accuracy.

In Fig. 11, four confusion matrixes, which compared
the true category (Ordinate) against the predicted category
(Abscissa), were calculated to describe the individual clas-
sification rate of each model. Note the color distribution of
the confusion matrix and that the Normal Leaf and Bacterial
Leaf Blight have high average classification rates (91.0% and
92.3% respectively) for all models. The large green area of
healthy leaves and the golden appearance of leaves infected
with Bacterial Leaf Blight make them easier to be distin-
guishedwith other sub-categories sharing one common basic-
level category. Furthermore, M-bCNN-CKM-3 and AlexNet

achieved the highest (89.6%) and the lowest (80.5%) aver-
age classification rate of eight categories, as obvious from
Fig. 11 (b) and (c).

Fig. 12 and Table 13 depict the precision, recall,
F1-score and accuracy of eight categories by four models
for the testing image set. In Fig. 12, we observe that the
precision (93.32%) of Bacterial Leaf Blight is the highest,
while the recall (91.68%) of Leaf Rust is the highest. Other
sub-categories sharing one basic-category are harder to be
distinguished because of their strong similarity. The average
precision (90.15%) and recall (88.62%) of M-bCNN-CKM-3
are the highest among these models, and those of AlexNet are
the lowest (69.83% precision and 64.71% recall). InTable 13,
the average F1-score (85.5%) and accuracy (90.1%) of
M-bCNN-CKM-3 are also the highest for four models, and
those of AlexNet are the lowest (51.75% F1-score and 72%
accuracy). The F1-score and accuracy of these models indi-
cate that M-bCNN-CKM-2 and M-bCNN-CKM-3 provide
better performances than the other two plain networks in
fine-grained image classification, and M-bCNN-CKM-3 is
the top-performing approach compared toM-bCNN-CKM-2.
Based on testing assessment, the convolutional kernel matrix
is meaningful for boosting up representational ability com-
pared with the linearly stacked layers, and the accuracy
penalty caused by the curse of dimensionality has not
appeared. Additionally, from the comparison of M-bCNN-
CKM-2 and M-bCNN-CKM-3 (see also Fig. 9 (a) and
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FIGURE 11. Confusion matrix of the testing results. (a) Illustration of individual classification rate by M-bCNN-CKM-2. (b) Illustration of individual
classification rate by M-bCNN-CKM-3. (c) Illustration of individual classification rate by AlexNet. (d) Illustration of individual classification rate by
VGG-16.

Table 12), we observe that this advantage becomes more sig-
nificant as the matrix size increases. Sharing the advantages
of convolutional kernel matrix, M-bCNN can easily acquire
accuracy gains from the increased layers depth in the form of
a matrix.

V. DISCUSSION
Recently, a number of studies have been conducted on fine-
grained classification methods, and most of them provide
promising performance in certain fields. Inspired by the
design conceptions of parallel networks (e.g., Part-based

CNN [8], Two-level Attention CNN [16], MCNN [55],
GoogLeNet [72], ResNet [74], and Hypercolumn CNN [90]),
we proposed a novel hybrid CNN structure codenamed
M-bCNN, which leverages convolutional kernel matrixes
to effectively increase the data streams, neurons, and link
channels. The matrix-based architecture played an important
role and the expected accuracy gains from it were deliv-
ered in the fine-grained image classification of wheat leaf
diseases. The model’s satisfying performance surpassed the
two representative plain networks, i.e. AlexNet [68] and
VGG-16 [73]. The experimental results and conclusions are
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FIGURE 12. Precision and Recall.

TABLE 13. F1-score and accuracy.

basically consistent with other studies on hierarchical models
[8], [16], [55], [72], [74]. Parallelization and grading of neural
networks is one of the developmental trends for deep learning.
Our strategy might prove meaningful for other fine-grained
tasks such as action or attribute categorization.

There could be one potential issue with the proposed
model concerning the training phase: the convolutional ker-
nel matrix may introduce heavy computations, when the
iterations, training samples and matrix size are very large.
Computations burden penalty is a common phenomenon that
often occurs in the parallel networks (e.g., GoogLeNet [72],
Two-level AttentionCNN [16], andHypercolumnCNN [90]),
which cautiously sacrifice the proper algorithm efficiency for
accuracy benefits. Consequently, it is important to carry out
research on how to find an effective pruning mechanism for
model compression, so that limited computational resources
can be allocated scientifically and rationally. There is still
room and potential to improve the performance to be at par
with or even surpass the M-bCNN. One direction of future
work is to delve deeper into the architecture optimization
and integrate modified pruning mechanism into complex
representational framework.

VI. CONCLUSION
In this work, we have proposed a unified CNN model,
denoted M-bCNN, based on convolutional kernel matrix,

for fine-grained image classification. The main advantage
of convolutional kernel matrix is significant gains of data
streams, neurons, and link channels at a modest increase
of computational requirements compared to plain networks.
We described the methodology of our architecture and pos-
itive effort on both representational ability enhancing and
parameter growth inhibition.

The experiments demonstrated that the promising per-
formances of our model compete against AlexNet and
VGG-16 in the fine-grained image classification of wheat leaf
diseases. Our approach yields solid evidence that convolu-
tional kernel matrix is a feasible and useful idea in general,
which provides a new path for the identification of crop
diseases.

Future work directions are of two aspects: First, we will
focus on optimizing the architecture and hyper-parameters
of M-bCNN for other challenging fine-grained classification
tasks. Second, we will try other models such as generative
adversarial networks (GANs), regions with CNN (RCNN)
to deal with semantic segmentation, object detection, and
open-set recognition.
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