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ABSTRACT This paper presented the optimal minimax and weighted least squares (WLS) methods
for designing digital finite impulse response (FIR) filters to reduce the aliasing errors generated by the
non-ideality of analog filters and mixers in bandwidth interleaving digital-to-analog converter (BI-DAC).
To satisfy the given expected spurious free dynamic range (SFDR), we formulated these optimal designs of
digital FIR filters in BI-DAC as a convex optimization problem—second-order cone programming (SOCP)
that allowed the linear equality and convex quadratic inequality constraints including the magnitude flatness
and the peak aliasing errors constraints to be merged. Furthermore, we derived the computational complexity
of our presented optimal design. Several design examples were given to evaluate the performance of our pre-
sented unconstrained and constrained minimax and WLS designs using SOCP including their effectiveness
and computational complexity. The simulation results showed that, in our presented unconstrained minimax
and WLS designs using SOCP, the maximum distortion errors were all around 0.02 dB. The maximum
aliasing errors were−73.9 and −80.5 dB, which satisfied the expected SFDR of a 12-bit BI-DAC system.
In addition, we analyzed the influence of different values of the nonnegative weighting function on our
presented unconstrained minimax and WLS designs using SOCP, and we found that there was a tradeoff
among the nonnegative weighting function’s value, and the distortion and aliasing errors. Moreover, when
the constraints were imposed in our presented constrained minimax and WLS designs using SOCP in the
selected frequency bands, the distortion errors were equal to zero and the aliasing errors were reduced
below −110 dB, but the expense was that the larger distortion and aliasing errors achieved out of these
selected frequency bands. Finally, we gave the computational complexity comparisons among our presented
unconstrained and constrained minimax and WLS design using SOCP, we also compared the influence of
the digital FIR filters’ length on our presented designs’ worst-case passband ripple and stopband roll-off, and
we found that there was a tradeoff among the digital FIR filters’ length, the passband ripple, the stopband
roll-off, the computational complexity, and the actual hardware cost.

INDEX TERMS Minimax and weighted least squares (WLS) designs, digital FIR filter, second-order cone
programming (SOCP), aliasing errors reduction, linear equality and convex quadratic inequality constraints.

I. INTRODUCTION
Digital-to-analog converter (DAC) [1] is the key component
of software defined radio (SDR) such as communication and
radar systems [2]. As one of important specifications of DAC,
the output bandwidth of DAC limits that of the SDR system.
To achieve high bandwidth output in the SDR system, Time
interleaving (TI) method [3], [4], with paralleling multiple
sub-DACs, was proposed to increase the sampling rate for
achieve high output bandwidth in TI-DAC, but the output

bandwidth of TI-DAC was still limited by the zero-hold
(ZOH) characteristic of each sub-DAC.

Bandwidth interleaving (BI) DAC [5]–[11], not affected
by the ZOH characteristic of each sub-DAC, could be also
used as the other method to break through the DAC output
bandwidth limitation such that the available signal bandwidth
can be increased. Fig.1 shows an architecture of BI-DACwith
M sub-DACs, the bandwidth of the BI-DAC analog wide-
band output y (t) is increased M times each sub-DAC output
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bandwidth. Nevertheless, various different errors existed in
BI-DAC including time delay error because of the length dif-
ference between different sub-channels, phase offset caused
by the local oscillator signal nonzero initial phase, and all
aliasing errors generated from the non-ideality of analog
filters and mixers. The BI-DAC analog output y (t) can be
deteriorated because of these errors. Therefore, it is very
important for BI-DAC to reduce these errors. In [5], time
delay error and phase offset were simultaneously estimated
based on the auto-power spectrum of the wideband out-
put of BI-DAC, and then these two errors were simultane-
ously reduced using digital predistortion (DPD) technique.
In [6], the aliasing errors generated from the non-ideality
of analog mixers in BI-DAC, were reduced by DPD tech-
nique.However, how to reduce the aliasing errors generated
from the non-ideality of analog filters in BI-DAC did not be
described in [6]. The calibration matrix [7] and the additional
digital filters [8] were, respectively, used to reduce the alias-
ing errors generated from the non-ideality of analog filters in
BI-DAC, but the computational demands and the realization
complexity were all increased.

We can know from [11], in a BI-DAC with M sub-DACs
shown in Fig.1, digital finite impulse response (FIR) filters
Fm (z) ,m = 1, . . . ,M can be designed using different opti-
mal methods for reducing the aliasing errors generated from
the non-ideality of analog mixers and filters. In [11], all alias-
ing errors reduction were achieved by the optimal design of
digital FIR filters in minimax sense utilizing linear program-
ming (LP) in BI-DAC. As the contrary structure of BI-DAC,
in BI analog-to-digital converter (ADC), biconjugate gradient
stabilized algorithm was used to design digital FIR filters to
reduce the aliasing errors generated from the non-ideality of
analog mixers and filters [12]. It is common knowledge that,
whether in BI-DAC or BI-ADC, if we fix and design one of
the digital and analog filters bank at first, the other filters
bank can be designed using different optimization methods.
Consequently, the optimal design in BI-ADC, which was
proposed in [12], is suitable for BI-DAC as well. Whereas
we can know from [11] that, comparing with the optimal
minimax design proposed in [11], the optimal design in [12]
achieved worse aliasing errors reduction and larger computa-
tional complexity.

Except in BI-DAC or BI-ADC, the optimal design of
digital infinite impulse response (IIR) and FIR filters had
been made active research in other research areas [13]–[20].
In [15], a complicated-guided weighted least squares (WLS)
method was presented to design the variable fractional-delay
(VFD) FIR filters. In [17], all pass digital VFD filters were
designed for minimizing the largest absolute phase error by
utilizing an iterative WLS method. In [20], a high-accuracy
low-complexity digital VFD filters were designed for mini-
mizing the largest absolute error of the digital VFD filter’s
variable frequency response (VFR) in minimax sense utiliz-
ing a simple LP technique. The former WLS design could
achieve a lower total error energy of VFR, while the latter
minimax design had lower computational complexity.

In comparison with LP which is a conventional optimiza-
tion problem [20], [21], second-order cone programming
(SOCP) [22]–[26], which is a convex optimization problem,
can allow some different constraints to be merged. Therefore,
SOCP has been widely used for the optimal designs of digital
IIR and FIR filters. In [25], an optimal minimax design of
digital IIR filters was proposed by utilizing an iterative SOCP.
Additionally, in [26], a minimax design of even-order digital
FIR VFD filters was presented for minimizing the VFR’s
peak error utilizing SOCP. In these different papers, all of
their authors did not be taken into count for the realization
of the optimal design of digital FIR filters in BI-DAC. While
these paper still had their own advantages so that they were of
reference significance for the research about different optimal
designs in BI-DAC.

The principle objective of this paper was to present effi-
cient minimax and WLS methods for designing the digital
FIR filters such that all aliasing errors could be reduced in
BI-DAC. We firstly opted Butterworth filters as the analog
low pass and bandpass filters that were utilized to eliminate
the images of each sub-DAC’s output and the unwanted
sidebands generated from an analog up-conversion, respec-
tively. And then we opted digital FIR filters to split the
digital broadband input signal of BI-DAC intomultiple digital
sub-band signals. The optimal design of digital FIR filters
in minimax sense and WLS error sense, were formulated
as an SOCP problem that could be effectively utilized to
calculate the optimum coefficients vector of these digital FIR
filters. Further, SOCP allows the linear equality and convex
quadratic inequality constraints to be incorporated in our pre-
sented minimax and WLS designs. Therefore, our presented
optimal design using SOCP can provide greater flexibility
in design goals including these design constraints such as
the magnitude flatness on the BI-DAC output and the peak
restrictions on the aliasing errors constraints. The minimax
and WLS designs using SOCP with or without constraints
are of much importance for the optimal design of digital FIR
filters since the aliasing errors can be reduced lower than a
given level such that the accuracy of BI-DAC in terms of
spurious free dynamic range (SFDR) can be easily controlled.
It can be known from [11] that, SFDR is defined as the ratio of
the root mean square (RMS) amplitude of the largest signal
component to the RMS value of the next-largest distortion
component, and it is an important measurement of the DAC
accuracy [27].

In summary, our main contributions are listed as
follows:
(1) In the particular context of BI-DAC, the optimal mini-

max andWLS designs of digital FIR filters using SOCP
were presented to reduce all aliasing errors generated
from the non-ideality of analog mixers and filters.

(2) The description of minimax and WLS designs using
SOCP with or without the linear equality and convex
quadratic inequality constraints was presented in detail.
Additionally, we deduced the computational complex-
ity of our presented minimax and WLS designs using
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FIGURE 1. Architecture of a BI-DAC with M sub-DACs.

SOCP with or without the linear equality and convex
quadratic inequality constraints.

(3) Multiple design examples were, respectively, used
to verify the performance of our presented opti-
mal design such as the effectiveness of the uncon-
strained and constrained minimax and WLS designs
using SOCP, and the influence of different values of
the nonnegative weighting function on our presented
unconstrained minimax and WLS design using SOCP.
Further, we compared the computational complexity
among our presented unconstrained and constrained
minimax and WLS design using SOCP, the optimal
designs in [11] and [12]. Finally, we verified the influ-
ence of the digital FIR length on the worst-case pass-
band ripple and stopband roll-off of our presented
unconstrained minimax and WLS design using SOCP,
the optimal designs in [11] and [12]. The simulation
results showed that, our presented optimal designs were
more effective for the aliasing errors reduction than the
optimal designs in [11] and [12], and there was a trade-
off among the nonnegative weighting function’s value,
the distortion and aliasing errors or among the digital
FIR filters’ length, the passband ripple, the stopband
roll-off, the computational complexity and the actual
hardware cost.

II. ACTUAL TRANSFER FUNCTION OF BANDWIDTH
INTERLEAVING DIGITAL-TO-ANALOG CONVERTER
The idea of BI-DAC is to digitally split a digital broad-
band input into several digital sub-band signals and com-
plete the digital down-conversion, and then perform the
digital-to-analog conversion in different lower-bandwidth
sub-DACs. These sub-DACs’ outputs are then up-converted
and yielded together to obtain an analog wideband output
signal. Fig.1 shows an architecture of a BI-DAC withM sub-
DACs, where the bandwidth and the sampling rate of the
BI-DAC system are, respectively, assumed to be π

T and 1
T .

The sampling rate of each sub-DAC is 1
MT .

From Fig.1 and the principle of a BI-DAC with M
sub-DACs illustrated in [11], we can get the frequency

response of the mth sub-DAC’s output xm (t) as

Xm (j�) =
1
MT

+∞∑
k=−∞

X̂m
(
ej(�MT−2πk)

)
H (j�)

=
1
MT

+∞∑
k=−∞

X̂
(
e
j
(
�T− 2πk

M

)
+
(m−1)
M π

)
H (j�)

× F̂m

(
e
j
(
�T−2πk
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)
+
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M π

)
Ĥdlm

(
e
j
(
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))
(1)

where � =
ω1
T =

ω2
MT . Further, X̂

(
ejω1

)
, X̂m

(
ejω2

)
,

H (j�), F̂m
(
ejω1

)
and Ĥdlm

(
ejω1

)
are, respectively, the fre-

quency responses of the digital wideband input signal x [n],
themth sub-DAC input xm [n], the mth sub-DAC preserv-
ing function, the mth digital FIR filter Fm (z) and the mth
digital low pass filter (LPF) Hdlm (z). Then, the images in
xm (t) and the unwanted sidebands introduced by the analog
up-conversion are, respectively, eliminated using themth ana-
log LPF Halm (s) and the mth analog bandpass filter (BPF)
Habm (s). So the frequency response of the mth sub-channel
analog output ym (t) can be written as

Ym (j�) =
1
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+∞∑
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(
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M

))
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π
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j
(
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MT

π

))
Habm (j�) , (2)

where Halm (j�) and Habm (j�) are the frequency response
of Halm (s) and Habm (s). As mentioned in [11], the analog
wideband signal y (t) can be yielded by summing all of the
sub-channel output ym (t) ,m = 1, . . . ,M , that is described
in the frequency domain as

Y (j�) =
M∑
m=1

Ym (j�)

=
1
MT

M∑
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+∞∑
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j
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j
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(
e
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))
Tk (j�) , (3)

where Y (j�) denotes the frequency response of y (t), and
� ∈

[
0, πT

]
. Tk (j�) is the actual transfer function of this
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BI-DAC withM sub-DACs, which can be written as follow

Tk (j�) =
1
MT

M∑
m=1

F̂m

(
e
j
(
�T− 2πk

M

))
× Ĥdlm

(
e
j
(
�T− 2πk

M

)
−
(m−1)
M π

)
×H

(
j
(
�−

(m− 1)
MT

π

))
×Halm

(
j
(
�−

(m− 1)
MT

π

))
Habm (j�) . (4)

III. MINIMAX AND WLS DESIGN OF DIGITAL FIR FILTER
USING SOCP
In this section, we firstly decompose the optimal design of
digital FIR filters into a pair of separate optimal designs (min-
imax andWLS designs) that can be easily solved using SOCP.
Then, the linear equality and convex quadratic inequality con-
straints are merged into the minimax and WLS designs using
SOCP to meet some requirements. Ultimately, we deduce
the computational complexity of our presented minimax and
WLS designs using SOCP.

A. MINIMAX AND WLS DESIGNS USING SOCP
Due to the advantages of Butterworth filters as described
in [11], we also opt second-order Butterworth filters as analog
LPFs and BPFs which are, respectively, utilized to eliminate
the images of each sub-DAC output and the unwanted side-
bands generated from an analog up-conversion.

For easy understanding of the optimal design formulation,
we begin from the ideal and actual transfer functions of this
BI-DAC with M sub-DACs with the terms k = 0, ..,M − 1.
Where, T0 (j�) represents the distortion function denoting
the magnitude gain and group delay of this BI-DAC with
M sub-DACs, Tk (j�) , k = 1, . . . ,M − 1 represents the
aliasing functions denoting the shifted and unwanted editions
of digital wideband input which must perfectly be eliminated,
and (3) can be rewritten as

Y (j�) =
M−1∑
k=0
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(
e
j
(
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))
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=
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Consequently, the analog wideband output signal Y (j�) is
a hybrid of the frequency-shifting editions of the digital
broadband input signal X̂

(
ejω1

)
. Additionally, we can know

from [11] that, when all of analog filters and mixers are ideal

in BI-DAC, the ideal transfer function of this M-channel
BI-DAC can be written as

Dk (j�) =

{
ce−j�Td , k = 0
0, k = 1, . . . ,M − 1,

� ∈
[
0,
π

T

]
(6)

where c and d are, respectively, a nonzero constant and the
delay parameter of this BI-DAC with M sub-DACs. As a
result, the approximation error can be obtained from the
difference between (4) and (6) as

ek (�) = Tk (j�)− Dk (j�) (7)

In this BI-DAC with M sub-DACs, if all of analog mix-
ers, analog LPFs and BPFs are ideal, an ideal analog wide-
band output signal Y (j�) without the aliasing errors will
be obtained, namely, ek (�) = 0 for k = 1, . . . ,M − 1.
Otherwise the aliasing errors will be generated from the
non-ideality of analog mixers, analog LPFs and BPFs.
To reduce these aliasing errors, we should minimize the
approximation error ek (�) by using the optimal design of
digital FIR filters.

The mth digital FIR filter Fm (z) is assumed to be an N -tap
FIR filter, its z− transform is shown as [11]

Fm (z) =
N−1∑
n=0

fm (n) z−n, (8)

such that we obtain

F̂m

(
e
j
(
�T− 2πk

M

))
=

N−1∑
n=0

fm (n)e
−j
(
�T− 2πk

M

)
n

= f Tm [ck (�)− jsk (�)] , (9)

where fm (n) , n = 0, . . . ,N −1 are the coefficients of themh
digital FIR filter which should be computed, and

fm = [fm (0) , fm (1) , . . . , fm (N − 1)]T (10a)

ck (�) =
[
1, cos

(
�T −

2πk
M

)
, . . . ,

cos (N − 1)
(
�T −

2πk
M

)]T
(10b)

sk (�) =
[
0, sin

(
�T −

2πk
M

)
, . . . ,

sin (N − 1)
(
�T −

2πk
M

)]T
(10c)

Using this digital FIR filter, the actual transfer function of this
BI-DAC withM sub-DACs can be rewritten as

Tk (j�) =
M∑
m=1

f Tm rk,m (�)− j
M∑
m=1

f Tm ik,m (�)

= rTk (�) f − ji
T
k (�) f

= Re {Tk (j�)} − jIm {Tk (j�)} , (11)

where

f =
[
f T1 , f

T
2 , . . . , f

T
M

]T
(12a)
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Re {Tk (j�)} = rTk (�) f (12b)

Im {Tk (j�)} = iTk (�) f (12c)

rk (�) =
[
rTk,1 (�) , r

T
k,2 (�) , . . . , r

T
k,M (�)

]T
(12d)

ik (�) =
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iTk,1 (�) , i

T
k,2 (�) , . . . , i

T
k,M (�)

]T
(12e)
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(12f)
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(
e
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(
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−
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M π
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. (12g)

Here, Re {•} and Im {•} can be, respectively, used to return
the real and imaginary components of a complex number or
a vector.

According to the aforementioned derivations, the approxi-
mation error can be rewritten as

ek (�) =
[
rTk (�) f − R

D
k (�)

]
− j

[
iTk (�) f − I

D
k (�)

]
= Re {ek (�)} − jIm {ek (�)} (13)

where

RDk (�) = Re {Dk (�)} (14a)

IDk (�) = Im {Dk (�)} (14b)

1) MINIMAX DESIGN USING SOCP
To reduce all aliasing errors generated from the non-ideality
of analog mixers and filters, we should make the approxima-
tion error ek (�) , k = 0, . . . ,M − 1 approximate zero in
minimax sense, and the minimax problem is solved as follow

argmin {max (Wk (�) |ek (�)|)} , � ∈ �I ,

k=0, . . . ,M−1f (15)

whereWk (�) is a nonnegativeweighting function that is used
to specify the relative significance between the distortion
error and the aliasing errors, �I is the largest output band-
width of this BI-DAC with M sub-DACs and �I =

[
0, πT

]
.

The objective in (15) can be written as follows

Wk (�) |ek (�)|

= Wk (�) |Tk (j�)− Dk (j�)|

= Wk (�)

∥∥∥∥[ rTk (�) f − RDk (�)iTk (�) f − I
D
k (�)

]∥∥∥∥
2

= Wk (�)

√(
rTk (�) f − R

D
k (�)

)2
+
(
iTk (�) f − I

D
k (�)

)2
=

√(
RWk (�)

)2
+
(
IWk (�)

)2
, (16)

where ‖•‖2 denotes the two-or Euclidean norm of a vector,
and

RWk (�) = Wk (�)
(
rTk (�) f − R

D
k (�)

)
(17a)

IWk (�) = Wk (�)
(
iTk (�) f − I

D
k (�)

)
(17b)

Consequently, the minimax problem in (15) can be reformu-
lated as

min
δ

f

subject to δ ≥
√(

RWk (�)
)2
+
(
IWk (�)

)2
(18)

Here, δ is used to calculate the optimum coefficients in
f according to the constraint condition. In �I =

[
0, πT

]
,

we discretize the continuous frequency variable � into a
serried cluster of frequency points {�i, 1 ≤ i ≤ PL}. PL is the
number of the discretized frequency point�i.�i is uniformly
distributes in the frequency band �I . Therefore, the con-

straints in (18) become δ ≥
[(
RWk (�i)

)2
+
(
IWk (�i)

)2] 1
2

Assuming that c = [1,ONM ]T ,ONM represents a 1-by-NM

matrix of zeros. x =
[
δ, f T

]T , Fk,i = Wk (�i)

[
0, rTk (�i)

0, iTk (�i)

]
,

gk,i = Wk (�i)

[
RDk (�i)

IDk (�i)

]
. Then, (18) is recast as a SOCP

problem, which can be solved using a standard SOCP solver
as follows

min
x

cT x

subject to cT x ≥
∥∥Fk,ix − gk,i∥∥2 (19)

2) WLS DESIGN USING SOCP
In addition to the minimax design, the optimum coefficients
vector f can be found by minimizing the sum of all weighted
squared approximation errors’ integrals

J (f ) =
M−1∑
k=0

∫
�I

Wk (�) |ek (�)|2d� (20)

Expanding (20), we obtain

J (f ) =
M−1∑
k=0

∫
�I

Wk (�) ek (�) e∗k (�) d�

=

M−1∑
k=0

∫
�I

Wk (�) (Re {ek (�)} − jIm {ek (�)})

× (Re {ek (�)} + jIm {ek (�)}) d�

=

M−1∑
k=0

∫
�I

Wk (�)
[(
rTk (�) f − R

D
k (�)

) 2

+

(
iTk (�) f − I

D
k (�)

)2]
d�

=

M−1∑
k=0

∫
�I

Wk (�)
{
f T
[
rk(�) r

T
k (�)+ik (�) i

T
k (�)

]
f
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− 2f T
[
rk (�)R

D
k (�)+ ik (�) I

D
k (�)

]
+

[(
RDk (�)

)2
+

(
IDk (�)

)2]}
d�, (21)

and then (21) can also be rewritten as

J (f ) = f T Sf − 2f T v+ p

=

∥∥∥S 1
2 f − S−

1
2 v
∥∥∥2
2
−

(
vT S−1v− p

)
, (22)

where

S =
M−1∑
k=0

∫
�I

Wk (�)
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rk (�) r

T
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T
k (�)

]
d�

(23a)

v =
M−1∑
k=0

∫
�I

Wk (�)
[
rk (�)R

D
k (�)+ ik (�) I

D
k (�)

]
d�

(23b)

p =
M−1∑
k=0

∫
�I

Wk (�)

[(
RDk (�)

)2
+

(
IDk (�)

)2]
d� (23c)

The WLS design (22) becomes the SOCP problem as
follows

min
x

cT x

subject to cT x ≥
∥∥∥S̃x − ṽ∥∥∥

2
(24)

where S̃ =
[
OTNM , S

1
2

]
and ṽ = S−

1
2 v.

It well known that, the effective software SeDuMi [28] can
be used to solve (19) and (24), which utilizes a primal-dual
interior-point algorithm called centering-predictor-corrector
method.

As mentioned in Section I, SFDR is used to evaluate the
performance of each sub-DAC in BI-DAC, and the expected
SFDR can be computed as [11]

SFDR (dB) = 6.02× SFDRbits (25)

where SFDRbits is the resolution of BI-DAC. For a given
SFDRbits in BI-DAC, our presentedminimax andWLS design
using SOCP is used to reduce the distortion error to 0 dB and
the aliasing errors lower than the expected SFDR.

B. PRESENTED OPTIMAL DESIGN WITH CONSTRAINTS
1) LINEAR EQUALITY CONSTRAINTS
At certain frequency points of a low-frequency band, themag-
nitude flatness of the distortion function is sometimes desir-
able, which can be formulated as a linear equality constraint
in our presented minimax and WLS designs using SOCP.
The relationship between the derivatives of the frequency
response of our presented minimax and WLS design using
SOCP and its ideal counterparts is considered as follows

d iTo (j�)
dzi

∣∣∣∣
�=
∩

�

=
d iDo (j�)

dzi

∣∣∣∣
�=
∩

�

, i = 0, . . . ,PL − 1

(26)

It can be known from (18) that the digital FIR filters in
BI-DAC must be designed for approximating the expected

frequency response at � =
∩

� up to the (PL − 1)th order.
To merge the magnitude flatness with the (P∩

�d
− 1)th order

into T0 (j�) at frequency
∩

� d , we obtain the equation as

1
MT

M∑
m=1

N−1∑
n=0

Ĥdlm

ej
(
∩

�dT− 2πk
M

)
−
(m−1)
M π


×H

(
j
(
∩

�d −
(m− 1)
MT

π

))
Halm

×

(
j
(
∩

�d −
(m− 1)
MT

π

))
×Habm

(
j
∩

�d

)
(n− d)qfm (n) e

−j
(
∩

�dT− 2πk
M

)
(n−d)

=

{
c, q = 0
0, q = 1, . . . ,P∩

�d
− 1. (27)

which can be also rewritten as

L∩
�d
f = d∩

�d
(28)

where

lm
∩

�d ,q
=

 1
MT

Ĥdlm
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(
∩

�dT− 2πk
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(
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(
∩
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π
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(
j
(
∩
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π

))
×Habm

(
j
∩

�d

)
(0− d)qe

−j
(
∩

�dT− 2πk
M

)
(0−d)

, . . . . . . ,
1
MT

Ĥdlm

ej
(
∩

�dT− 2πk
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)
−
(m−1)
M π


×H

(
j
(
∩

�d −
(m− 1)
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π
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(
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(
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(
∩

�dT− 2πk
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)
(N−1−d)


(29a)

L∩
�d
=

lT
∩

�d ,0
, . . . , lT

∩

�d ,P∩
�d
−1

T (29b)

l
∩

�d ,q
=

[
l0
∩

�d ,q
, . . . , lM−1

∩

�d ,q

]
(29c)

d∩
�d
=

[
1,OP∩

�d
−1

]
(29d)
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It can be known that, the linear equality constraints described
in (28), can be easily merged in our presented minimax and
WLS design using SOCP such that the desirable magnitude
flatness is achieved in the low-frequency band. However,
comparing with the minimax and WLS design without these
constraints, a larger distortion error may be obtained out of
this low-frequency band.

2) CONVEX QUADRATIC INEQUALITY CONSTRAINTS
Except for the constraints described in Section III-B-1),
the convex quadratic inequality constraints can also be readily
incorporated in our presented minimax and WLS designs
using SOCP.

To illustrate the convex quadratic inequality constraints,
a specified aliasing error constraint is imposed for satisfying
a expected SFDR which ca be obtained from (25). Assuming
that the expected peaking aliasing error Apeak is imposing in
the frequency band � ∈ [�s1, �s2], the peak aliasing error
constraint is written as

|Tk (j�)| ≤ Apeak , k = 1, . . . ,M − 1, � ∈ [�s1, �s2] (30)

Similar to the minimax design using SOCP, this constraint
can be rewritten as

Apeak ≥ ‖Rkx‖2 (31)

whereRk =
[
0, rTk (�)
0, iTk (�)

]
. The constraints on the peak ripples

which is obtained from discretizing (30), are extended to the
actual constraints in (19) and (24) for our presented minimax
and WLS designs using SOCP as a cluster of SOCP con-
straints, respectively. Imposing the convex quadratic inequal-
ity constraints in the frequency band [�s1, �s2], the aliasing
errors can be lower than a expected SFDR. However, a larger
aliasing errors may be obtained out of the frequency band
[�s1, �s2].

C. COMPUTATIONAL COMPLEXITY
It is well known that, the computational complexity
of the addition and subtraction between two N × N
matrices can be regarded as a linear parallel opera-
tion with O (N ), the multiplication of the L × M and
M × N matrices is O (LMN ), the inverse of a M ×
M matrix is O

(
M3
)
. According these above knowl-

edge, the computational complexity of the optimal designs
in [11] and [12], respectively, O (4PL ×ND1 (NM + 1)) and
O
(
ND2

(
NM(MPL)3 + (1+MPL) (NM)2

))
, where ND1

and ND2 are, respectively, the iterations times of the optimal
designs in [11] and [12].

In contrast to the optimal designs in [11] and [12], the com-
putational complexity of our presented minimax and WLS
designs using SOCP with or without the linear equality and
convex quadratic inequality constraints, are deduced as list
below
(1) The minimax and WLS designs using SOCP without

the linear equality and convex quadratic inequality con-
straints equal, respectively, O (MPLND3 (2NM + 3))
and O

(
ND4

(
3M(NM)3+2(NM)2

))
, where ND3 and

ND4 denote, respectively, the number of iterations of the
minimax and WLS design using SOCP without these
constraints.

(2) The minimax and WLS designs using SOCP with the
linear equality and convex quadratic inequality con-
straints are, respectively, O (ND5 (MPL (2NM +3) +
MP∩

� d
N∩
� d
+ N� (2NM + 1)

))
and O (ND6 (3M ×

(NM)3 + 2(NM)2 +MP∩
� d
+ (2NM + 1)

))
, wh- ere

ND5 and ND6 denote the iterations times of the min-
imax and WLS design using SOCP with these con-
straints,respectively. N∩

� d
and N� denote, respectively,

the number of all discretized frequency points in the
selected frequency band used by theminimax andWLS
designs using SOCPwith the linear equality and convex
quadratic inequality constraints.

According to the aforementioned computational complex-
ity, we think that the computational complexity of our pre-
sented minimax and WLS designs using SOCP are lower
than that of the optimal design in [12], but larger than that
of the optimal design in [11], and whether with or without
constraints, our presented minimax design using SOCP has
lower computational complexity than our presented WLS
design using SOCP. Further, the computational complexity of
our presented unconstrained minimax design using SOCP are
lower than this design with constraints, as same as the com-
parison between our presented unconstrained and constrained
WLS designs using SOCP.
N - the length of digital FIR filters in BI-DAC, is an impor-

tant parameter which is used to determine the performance of
BI-DAC. It is common knowledge that, with N increasing,
a lower distortion error deviation and a larger aliasing
errors attenuation can be achieved, but at an expense of larger
computational complexity and higher actual hardware cost.

IV. DESIGN PERFORMANCE VERIFICATION
AND ANALYSIS
In this section, several design examples of BI-DAC are given
for verifying the performance of our presented unconstrained
and constrained minimax andWLS designs using SOCP. The
minimax and WLS designs using SOCP without constraints,
the unconstrained minimax and WLS designs using SOCP
with different values of the nonnegative weighting function,
the minimax and WLS design using SOCP with the linear
equality and convex quadratic inequality constraints, are both
considered. Except as otherwise noted, in all of our presented
BI-DAC design examples, the number of the discretized fre-
quency points PL , the length of digital FIR filter N , the delay
parameter d ,and the scale factor c, are set to 100, 60, 25 and 1,
respectively.

A. EFFECTIVENESS ANALYSIS
1) EXAMPLE 1: MINIMAX AND WLS DESIGNS USING SOCP
WITHOUT CONSTRAINTS
In this design example of BI-DAC, the sub-channel num-
ber M , the resolution SFDRbits and the sampling rate fs are,
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respectively, set to 4, 12-bit and 1
T . SFDRbits is only used

for calculating the expected SFDR of BI-DAC such that it
can be set to any value and do not have any influence on the
simulation results.

According to (25), the expected SFDR of BI-DAC in this
design example, is 12 × 6.02 = 72.24dB. As a result,
the aliasing errors must be reduced lower than −72.24 dB.
Then, the minimax and WLS designs using SOCP without
constraints were all considered, and we opted second-order
Butterworth filters as analog LPFs and BPFs in this design
example. Further, the nonnegative weighting functionWk (�)

were set as follows

Wk (�) = 1, k = 0, 1, 2, 3, � ∈ [0,
π

T
] (32)

To evaluate the effectiveness of our presented minimax and
WLS designs using SOCP without constraints, the optimal
designs in [11] and [12] were carried for comparison.

Fig.2 shows the frequency responses of these four different
optimal design in this design example of BI-DAC. As shown
in Fig.2(a), in � ∈ [0, πT ], the maximum distortion error
of our presented minimax and WLS designs using SOCP
without constraints, and the optimal design in [11] were
all approximately 0.02 dB, but the optimal design in [12]
achieved a larger distortion error that was approximately
0.05 dB. As shown in Fig.2(b), the aliasing errors of our
presented minimax and WLS designs using SOCP without
constraints ranged, respectively, from −73.9 dB to-108.8 dB
and from−80.5 dB to−120.1 dB. These aliasing errors were
suppressed lower than −72.24 dB in � ∈ [0, πT ] such that
they all satisfied the expected SFDR. In contrast, in � ∈
[0, πT ], the maximum aliasing errors of the optimal designs
in [11] and [12] were −62.9 dB and −50.6 dB, respectively.
They all could not satisfy the expected SFDR. Therefore,
the relationship among the effectiveness of these four optimal
designs for the aliasing errors reduction, could be sorted from
the best to the worst as

Unconstrained WLS > Unconstrained minimax

> [11]

> [12] (33)

Namely, our presented minimax and WLS designs using
SOCP without constraints can achieve better aliasing errors
reduction than the optimal designs in [11] and [12]. Addition-
ally, the WLS design using SOCP without constraints has a
better aliasing errors reduction than theminimax design using
SOCP without constraints.

2) EXAMPLE 2: UNCONSTRAINED MINIMAX AND WLS
DESIGNS USING SOCP WITH DIFFERENT VALUES OF
NONNEGATIVE WEIGHTING FUNCTIONS
To evaluate the influence of the nonnegative weighting func-
tions Wk (�) , k = 0, 1, 2, 3 on our presented optimal
designs, the unconstrained minimax and WLS designs using
SOCP with different values of Wk (�) , k = 0, 1, 2, 3 are all

FIGURE 2. Frequency responses of minimax and WLS designs using SOCP
without constraints, optimal designs in [11] and [12]: (a) Distortion
function. (b) Aliasing functions.

considered in a four-channel 12-bit BI-DAC system, where

Wk (�) =


1
102

104,

k = 0, 1, 2, 3 (34)
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TABLE 1. Summary of maximum distortion and aliasing errors.

Further, the other configurations in Example 2 are identical
with these in Example 1.

The frequency responses of the unconstrained minimax
and WLS designs using SOCP with different values of the
nonnegative weighting functions are, respectively, shown
in Fig.3 and Fig.4. It could be seen from Fig.3(a) and Fig.4(a),
except in the unconstrained minimax design using SOCP
with Wk (�) = 104, k = 0, 1, 2, 3, the maximum distortion
errors were almost unchangedwhen the value ofWk (�) , k =
0, 1, 2, 3 increased in the unconstrained minimax and WLS
designs using SOCP and theywere all approximately 0.02 dB.
Further, when Wk (�) , k = 0, 1, 2, 3 increased to 104 in the
unconstrained minimax design using SOCP, the maximum
distortion error also increased to 0.04 dB. We could know
from Fig.3(b) and Fig.4(b) that, the aliasing errors could
be, respectively, reduced below −73 dB and −80 dB in the
unconstrained minimax andWLS designs using SOCP. Addi-
tionally, in these designs,the aliasing errors became lower and
lower when the value of Wk (�) , k = 0, 1, 2, 3 increased.
However, from Table 1 which shows the maximum distortion
and aliasing errors in the unconstrained minimax and WLS
designs using SOCP, we found that, the distortion errors
kept almost unchanged when Wk (�) , k = 0, 1, 2, 3 in
the unconstrained minimax and WLS designs using SOCP
increased from 1 to 103 and from 1 to 104, respectively.When
Wk (�) , k = 0, 1, 2, 3 were, respectively, larger than 103 and
104 in the unconstrained minimax and WLS designs using
SOCP, all of the maximum distortion errors became larger
and larger with the value of Wk (�) , k = 0, 1, 2, 3 increas-
ing, and the difference between two adjacent maximum dis-
tortion errors also became larger. Moreover, the aliasing
errors in these two designs still became lower and lower
with the value of Wk (�) , k = 0, 1, 2, 3 increasing, while
unlike the situation about the maximum distortion errors,
the difference between two adjacent maximum aliasing errors
was becoming smaller and smaller.

In conclusion, there is a tradeoff among the value of
Wk (�) , k = 0, 1, 2, 3, the distortion error and the aliasing
errors. Additionally, it can be known from Fig.3, Fig.4 and
Table 1 that, no matter what value Wk (�) , k = 0, 1, 2, 3
increased to, the unconstrained WLS design using SOCP

could still achieve better aliasing errors reduction than the
unconstrained minimax design using SOCP.

3) EXAMPLE 3: MINIMAX AND WLS DESIGNS USING SOCP
WITH LINEAR EQUALITY AND CONVEX QUADRATIC
INEQUALITY CONSTRAINTS
In this design example of BI-DAC, the configurations are
identical with these in Example 1. Further, the linear equality
and convex quadratic inequality constraints are incorporated
in our presented minimax and WLS designs using SOCP,
which can be described as follows
(1) To obtain a low distortion error in a low-frequency

band, a first-order (P∩
�d
= 1) magnitude flatness con-

straint is imposed at the frequency points in [0, 0.1T π ].
(2) To reduce the aliasing errors lower than −110 dB such

that satisfied the expected SFDR of a 16-bit BI-DAC
system, the convex quadratic inequality constraints
were, respectively, imposed in these two frequency
bands [0, 0.6T π ] and [0, 0.8T π ].

The simulation results were shown in Fig.5. It could be
seen from Fig.5(a) that the distortion errors of our presented
constrained minimax and WLS designs using SOCP with
the linear equality constraints were all equal to zero in the
selected frequency band [0, 0.1T π]. Nevertheless, comparing
with the unconstrained minimax and WLS designs using
SOCP in Example 1, the linear equality constraints in these
two designs was satisfied, while the expense was that larger
maximum distortion errors were achieved out of the selected
frequency band [0, 0.1T π ], which was the same as the descrip-
tion in Section III-B-1). From Fig.5(b), we could see that,
in the minimax and WLS designs using SOCP with the con-
vex quadratic inequality constraints, all of the aliasing errors
were reduced below−110 dB in the selected frequency bands
[0, 0.6T π ] and [0,

0.8
T π ], but the expense was that larger alias-

ing errors were achieved in these frequency bands [ 0.6T π,
π
T ]

and [ 0.8T π,
π
T ]. These simulation results were the same as the

description in Section III-B-2). Further, in the same selected
frequency band, the constrained minimax and WLS designs
using SOCP with the convex quadratic inequality constraints
almost obtained the identical aliasing errors. However, out of
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FIGURE 3. Frequency responses of unconstrained minimax designs using
SOCP with different values of nonnegative weighting functions:
(a) Distortion function. (b) Aliasing functions.

this selected frequency band, the constrained minimax design
using SOCP had larger aliasing errors than the constrained
WLS design using SOCP. Additionally, in the constrained
minimax andWLS designs using SOCP, lower aliasing errors
were achieved with the bandwidth of the selected frequency

FIGURE 4. Frequency responses of unconstrained WLS designs using
SOCP with different values of nonnegative weighting function:
(a) Distortion function. (b) Aliasing functions.

band decreasing, but larger aliasing errors were obtained out
of this selected frequency band.

From this design example, we know that, there is a trade-
off between the bandwidth of the selected frequency band,
the peak aliasing errors and the aliasing errors reduction.
In addition, it demonstrates that our presented minimax and
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FIGURE 5. Frequency responses of minimax and WLS designs using SOCP with linear equality and convex quadratic inequality constraints: (a)
Distortion function. (b) Aliasing functions.

WLS designs using SOCP offer more flexibility in aliasing
errors reduction than the optimal designs in [11] and [12].

B. COMPUTATIONAL COMPLEXITY ANALYSIS
Computational complexity, as one of the important specifi-
cations of the optimal design of digital FIR filters, is usu-
ally used to evaluate the performance of the optimal design.
In this section, we compared the computational complexity
among our presented unconstrained and constrainedminimax
and WLS designs using SOCP, the optimal designs in [11]
and [12] using the following parameters: ND1 = ND3 =
ND4 = 5, ND2 = 8, ND5 = ND6 = 6, PL = 100, P∩

�d
= 1,

the linear equality and convex quadratic inequality constraints
were, respectively, imposed in the selected frequency bands
[0, 0.1T π ] and [0, 0.8T π ] so that N∩

� d
= 10 and N� = 80.

Fig.6 shows the comparisons among the computational
complexity of these six optimal designswith different number
of sub-channels when N = 60 and with different length of
digital FIR filters when M = 4. It can be seen from Fig.6(a)
that, the relationship among the computational complexity of
these six optimal designs was sorted from the largest to the
lowest as

[12] > Constrained WLS

> Unconstrained WLS

> Constrained minimax

> Unconstrained minimax

> [11] (35)
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FIGURE 6. Computational complexity comparisons among different optimal designs: (a) Computational complexity with different number
of sub-channels when N = 60. (b) Computational complexity with different length of digital FIR filters when M = 4.

TABLE 2. Summary of worst-case passband ripple εd and stopband roll-off εa.

Additionally, the computational complexity of these six opti-
mal designs raised as number of sub-channels increased, and
the computational complexity of the optimal design in [12],
our presented unconstrained and constrained minimax and
WLS designs using SOCP, were rising faster than the optimal
design in [11].

From Fig.6(b), one could be seen that the relationship
among these six optimal designs could also be described as
same as that in (35). Further, the computational complexity of
these six optimal designs raised with the length of digital FIR
filters increasing. Specially, the computational complexity of
the unconstrained and constrainedWLS designs using SOCP,
were rising faster than that of another five optimal designs.

Above all, the computational complexity comparisons
among these six optimal designs, shown in Fig.6(a) and (b),
were the same as the description in Section III-C.

C. DIGITAL FIR FILTER LENGTH ANALYSIS
From Section III-C, we know that, N -the length of digital
FIR filters in BI-DAC, is an important parameter which
determines the performance of BI-DAC. In order to illustrate
the influence of the digital FIR length N on our presented
optimal designs, the constrained and unconstrained miniman
and WLS designs using SOCP are all considered, where the

digital FIR length N gradually increases from 10 to 110 at a
interval of 10. Further, the selected frequency bands used in
these constrained designs are [0, 0.1T π ] and [0,

0.8
T π ], respec-

tively.
Table 2 summarizes the worst-case passband ripple εd

and stopband roll-off εa of our presented constrained and
unconstrained minimax and WLS designs using SOCP and
the optimal designs in [11] and [12], respectively. It could
be seen from Table 2 that, with the digital FIR length N
increasing, εd and εa of these six optimal designs became
lower and lower. However, a longer digital FIR filter lengthN
required much higher actual hardware cost. Moreover, it can
be known from Section IV-C, the computational complexity
of these four optimal designs became larger and larger with
the digital FIR filter’s length N increasing. These simulation
results were identical with the description in Section III-C.
Therefore, there is a tradeoff among the digital FIR filters’
length N , the passband ripple, the stopband roll-off, the com-
putational complexity and the actual hardware cost.

V. CONCLUSION
In this paper, we presented the optimal minimax and WLS
designs of digital FIR filters using SOCP for the aliasing
errors reduction in BI-DAC. The SOCP formulation is a
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convex optimization problem, which allows the linear equal-
ity and convex quadratic inequality constraints such as the
magnitude flatness and the peaking aliasing error constraints
to be incorporated in the distortion function and the aliasing
functions, respectively. Several design examples had been
used to illustrate the performance of our presented uncon-
strained and constrained minimax and WLS designs of dig-
ital FIR filters using SOCP. The simulation results showed
that, our presented unconstrained minimax and WLS designs
using SOCP could achieve satisfactory results which satis-
fied the expected SFDR in a 12-bit BI-DAC,and there was
a tradeoff among the distortion error, the aliasing errors
and the value of the nonnegative weighting function. At an
expense of larger computational complexity, in the selected
frequency band, our presented constrained minimax design
using SOCP almost has the same distortion and aliasing errors
as the constrained WLS design using SOCP, but out of this
selected frequency band, this constrainedminimax design has
larger distortion and aliasing errors than the constrainedWLS
design using SOCP. Moreover, our presented constrained
and unconstrained minimax design using SOCP had lower
computational complexity than our presented constrained and
unconstrained WLS design using SOCP, and our presented
unconstrained optimal design also had lower computational
complexity than our presented constrained optimal design.
Ultimately, there was a tradeoff among the digital FIR length,
the distortion and aliasing errors, the computational complex-
ity and the actual hardware cost. In a word, our presented
unconstrained and constrained WLS designs using SOCP is
more suitable for the situation with lower aliasing errors at
an expense of larger computational complexity, while our
presented unconstrained and constrained minimax designs
using SOCP is more suitable for the situation with lower
computational complexity at an expense of larger aliasing
errors.

In our future research, the next important exploration will
be that how to control the finite word length such that a
expected SFDR will still be satisfied after determining the
optimum coefficients of digital FIR filters in BI-DAC. More-
over, we will explore the design of hardware circuit and the
accomplishment of the parameterized digital FIR filters based
on field programmable gate array(FPGA), and we will also
evaluate and consider the hardware circuit cost.
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