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ABSTRACT In this paper, a data-driven adaptive optimal control strategy is proposed for a class of linear
systems with structured time-varying uncertainty, minimizing the upper bound of a pre-defined cost function
while maintaining the closed-loop stability. An off-policy data-driven reinforcement learning algorithm is
presented, which uses repeatedly the online state signal on some fixed time intervals without knowing system
information, yielding a guaranteed cost control (GCC) law with quadratic stability for the system. This
law is further optimized through a particle swarm optimization (PSO) method, the parameters of which are
adaptively adjusted by a fuzzy logic mechanism, and an optimal GCC law with the minimum upper bound
of the cost function is finally obtained. The effectiveness of this strategy is verified on the dynamic model of
a two-degree-of-freedom helicopter, showing that both stability and convergence of the closed-loop system
are guaranteed and that the cost is minimized with much less iteration than the conventional PSO method
with constant parameters.

INDEX TERMS Adaptive optimal control, particle swarm optimization, fuzzy logic, structured uncertainty.

I. INTRODUCTION
The problem of maintaining the stability and performance
of linear systems subject to time-invariant or time-varying
parameter uncertainties, which is usually caused by inter-
nal or external perturbations, has been an active topic of
research for quite some time. Particularly, many researchers
have focused on the ‘‘structured’’ uncertainty, which allows
one to have access to the bounds on the individual ele-
ments of the uncertainty and has extensive applications in
many engineering disciplines [1]–[3]. Both the admissible
uncertainty bounds for stability and stabilization methods for
such systems have been studied by means of robust design
in various literature, see [4]–[8] for example. Furthermore,
many researchers have focused on their performance as well
as stability [9]–[12]. In the presence of time-varying parame-
ters, one usually aims at confining a predefined cost function
within a boundary by proper controllers, namely ‘‘guaranteed
cost control (GCC)’’ [1], [13], [14].

Nevertheless, in practice, it is often not easy to obtain
the real-time values of parameters of a dynamic uncertain
system. Even the constant nominal model might be unmea-
surable. In this case, it is full of challenge to guarantee

the performance and stability of the closed-loop system.
To this end, we borrow the idea of reinforcement learn-
ing, which is called approximate/adaptive dynamic program-
ming (ADP) in control literature [15]–[18], to adaptively
derive the optimal control in a data-driven scheme. In other
words, the a priori knowledge of the system model is no
more required, since we are able to iteratively reach the
optimal control law by measuring and collecting signals
such as state and control input. Plenty results have been
brought about on ADP methods for linear and nonlinear
systems in the last decade (see [19]–[25]). Most of those
work, however, is limited within time-invariant systems.
When applying ADP methods on systems with unknown
model and time-varying uncertainty, one will be confronted
with considerable difficulties, since the stability and perfor-
mance analysis is much more complicated than that under
time-invariant situations [2], [26]. In fact, to the best of the
authors’ knowledge, few work has been done on the optimal-
ity of time-varying systems with unknown parameters.

In this paper, we propose to integrate ADP and particle
swarm optimization (PSO) [27]–[30] methods to obtain the
optimal control law for a class of systems with structured
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time-varying uncertainty, which guarantees the quadratically
stability of the closed-loop system and minimizes a prede-
fined cost function. Still, the integration is not trivial. First,
most existing ADP results are on-policy methods, which
means it would take quite a while for each single particle
to reach the ‘‘fitness’’ during every iteration in the PSO
algorithm, leading to exponential increase of converging
time and deteriorated performance. Motivated by the work
in [20] and [23], we present an off-policy ADP algorithm,
using the state signal on some fixed time intervals repeat-
edly and implementing all the computation at one time.
Furthermore, the selection of parameters for a PSO algo-
rithm has considerable influence on the performance and
convergence [31], [32]. In this paper, an adaptive scheme is
designed to determine these parameters by means of fuzzy
logic [33], [34].

To summarize, this paper proposes an adaptive data-driven
strategy to minimize a pre-defined cost function and maintain
the stability for linear systems with structured time-varying
uncertainty. The main contributions are as follows. First,
the optimal control problem for a class of unmodeled systems
with time-varying parameters is solved. Second, this is an
important step for the extension of RL and ADP methods to
general time-varying systems. Third, the gap between ADP
and modern intelligent methods such as PSO and fuzzy con-
trol is bridged.

This paper is organized follows. The problem and some
preliminaries are stated in Section II. Then in Section III,
a data-driven algorithm based on off-policyADP is presented.
This law is further optimized by a PSO scheme, and a fuzzy
mechanism is developed to determine the PSO parameters.
Consequently, an adaptive optimal strategy which yields the
optimal GCC law is formulated. The effectiveness of this
strategy is verified on the dynamic model of a 2-degree-of-
freedom helicopter in Section IV. Finally, conclusion remarks
are contained in Section V.
Notation: Throughout this paper, we use R to denote the

set of real numbers. In represents the identity matrix of size n.
|·| stands for the absolute value of a number, and ‖·‖ stands
for the Euclidean norm of a vector or the induced norm of
a matrix. For a symmetric matrix P, we use P† to denote
its pseudoinverse, P > 0 to denote its positive definite-
ness, tr(P) to denote its trace, and P1/2 to denote the unique
symmetric positive definite matrix X satisfying X2

= P.
The operator E(·) indicates the expectation of a variable, and
min(·) returns the lowest value among a set. The expression
x ∼ U(a, b) is used to denote a variable x that is uniformly
distributed on the interval [a, b].

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the linear system with structured time-varying
uncertainty described by

ẋ(t) = (A0 + DF(t)E)x(t)+ Bu(t) (1)

where x(t) ∈ Rn is the state; u(t) ∈ Rm is the control input;
A0 ∈ Rn×n is the nominal system matrix which is unknown;

the input matrix B ∈ Rn×m is available and has full rank;
D ∈ Rn×p and E ∈ Rq×n are known constant matrices, and
F(t) ∈ Rp×q is a matrix of uncertain time-varying parameters
satisfying F(t)TF(t) ≤ Iq.
Associated with this system is the infinite horizon

quadratic cost function

J (x(t0), u(t)) =
∫
∞

t0
(xT (τ )Qx(τ )+ uT (τ )Ru(τ ))dτ (2)

subject to the optimal control problem

u∗ = argmin
u(t)

J (x(t0), u(t)) (3)

where Q ∈ Rn×n > 0 and R ∈ Rm×m > 0 are known
matrices. For simplicity, the time variable t in x(t), u(t), and
F(t) is omitted in the rest of this paper unless necessary.
Here we give the definitions of quadratic stability and

guaranteed cost control.
Definition 1 [1], [9], [11]: The closed-loop system (1) is

said to be quadratically stable with u = −Kx , where K ∈
Rm×n is a constant feedback gain, if there exists a matrix P >
0 and a positive scalar α, such that for every x ∈ Rn, the time
derivative for the Lyapunov function V (x, t) = xTPx satisfies

V̇ (x, t) = 2xT (P(A0 + DFE − BK ))x ≤ α‖x‖2. (4)

Remark 1: Note that if P(A0+DFE−BK )+(A0+DFE−
BK )TP < 0, we can always find a α > 0 such that (4) holds
for all x ∈ Rn. Furthermore, by (4) one has V̇ (x, t) < 0
for all nonzero x. In this sense, the quadratic stability of (1)
provides a sufficient condition for its asymptotic stability.
Definition 2 [1], [13], [35]: A control law u is said to

define a guaranteed cost control (GCC) for (1) with respect to
the cost function described by (2) if there exists a number J0
such thatJ (x(t0), u(t)) ≤ J0 for any finite x(t0). Specifically,
the linear control law u = −Kx is a quadratic GCC for (1)
with respect to (2) if there exists a matrix P > 0 such that

xT (Q+ KTRK )x + 2xTP(A0 + DFE − BK ) ≤ 0. (5)

for all x ∈ Rn and all matrices F : FTF ≤ Iq. In this case,
the value of the cost function is guaranteed to satisfy

J (x(t0), u(t)) ≤ x(t0)TPx(t0). (6)

It has been proved in [35] that if u = −Kx is a quadratic
GCC for (1), then the closed-loop system is quadratically
stable, and vice versa. If we further restrict x(t0) such that it
is zero mean random and satisfies E

(
x(t0)x(t0)T

)
= In, then

the cost function (2) becomes

J (u) = E
(∫
∞

t0

(
xT (τ )Qx(τ )+ uT (τ )Ru(τ )

)
dτ
)
. (7)

Then the following preliminaries are recalled.
Lemma 1 [1], [35]: Suppose there exists a constant ε > 0

such that the Riccati equation

AT0 P+ PA0 − PBR
−1BTP+ εPDDTP+

1
ε
ETE + Q = 0

(8)
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for (1) has a solution P > 0. Then the closed-loop sys-
tem is quadratically stable with the control law being u =
−R−1BTPx. Moreover, this solution P, which is associated
with ε, serves as an upper bound of the cost function (7),
i.e., J (u) ≤ tr(P).
Lemma 2 [14]: If the Riccati equation (8) has a solution

P(ε̃) > 0 associated with ε = ε̃, then it will have a positive
definite solution for all (0, ε̃), and tr(P(ε)) is a convex function
of ε on (0, ε̃).

According to Lemma 2, the optimal GCC with respect
to (7) which yields the minimum cost upper bound can be
obtained by choosing ε > 0 to minimize tr(P(ε)), where
P is the positive definite solution to (8) associated with ε.
This work aims at finding this minimum upper bound and the
corresponding optimal ε, i.e.,

ε∗ = argmin
ε

tr(P(ε)) (9)

in the presence of unknown system matrix A0 and
time-varying uncertainty 1A =: DF(t)E . To this end, some
assumptions are required, which are reasonable for many
practical systems.
Assumption 1: The system (1) is quadratically stabiliz-

able, i.e., there always exists ε > 0 such that (8) has a positive
definite solution P(ε).
Assumption 2: The nominal system matrix A0, although

unknown, can be separated from the uncertainty 1A. Since
the uncertainty is time varying, this assumption is essential
for a data-driven algorithm to converge.

III. MAIN RESULTS
In this section, an adaptive data-driven strategy is developed,
which integrates the ideas fromADP, PSO and fuzzy theory to
obtain the optimal ε∗ and the corresponding cost matrix P(ε).
We start from the case where ε is constant, and then extend
the results to that where it is variable.

A. AN OFF-POLICY DATA-DRIVEN ADP ALGORITHM
Suppose ε = ε0 > 0 is a constant. Then (8) can be rewritten
as

AT0 P+ PA0 − PBR̄
−1BTP+ Q̄ = 0 (10)

where R̄ =: (R−1− ε0(BTB)†BTDDTB(BTB)†)−1, Q̄ =: Q+
1
ε0
ETE .
It is not hard to see that Q̄ > 0, and with Assumption 1

satisfied, for some ε0 > 0, R̄ is well defined and positive
definite if R is properly chosen. In the following discussion,
we suppose the values of ε0 and R can guarantee R̄ > 0.
As long as (A0,B) is controllable, (10) has a unique solu-
tion P∗0 > 0 [36], and the control law u = −K∗0 x where
K∗0 = R̄−1BTP∗0 is the optimal control law with respect to
the following transformed cost function

J̄ (x(t0), u) =
∫
∞

t0

(
xT (τ )Q̄x(τ )+ uT (τ )R̄u(τ )

)
dτ (11)

for the nominal system of (1) described by

ẋ = A0x + Bu. (12)

Assumption 2 allows one to design a data-driven scheme on
the above system. To this end, we recall the following results.
Lemma 3 [20], [37]: Suppose K0 ∈ Rm×n is a stabilizing

feedback gain for the system (12), and Pk (k = 0, 1, ...) ∈
Rn×n is the symmetric positive definite solution of Lyapunov
equation

Pk (A0−BKk )+(A0 − BKk )TPk+KT
k R̄Kk + Q̄ = 0 (13)

where Kk (k = 1, ...) is defined recursively by

Kk = R̄−1BTPk−1, (14)

then A0 − BKk (k = 1, 2, ...) is Hurwitz, and Pk and Kk will
converge to P∗0 and K

∗

0 , respectively, i.e., limk→∞ Pk = P∗

and limk→∞ Kk = K∗.
Accordingly, given a stabilizing K0 ∈ Rm×n, along the

solutions of (12) by (13) and (14) we have

xTPkx|t+δtt = −

∫ t+δt

t
x(τ )T (Q̄+ KT

k R̄Kk )x(τ )dτ (15)

for k = 0, 1, 2, ....
Define

P̂ =:
[
p11, 2p12, ..., 2p1n, p22, 2p23..., 2pn−1,n, pnn

]
(16)

where pij is the (i, j)-th element of matrix P , and

x̂ =: [x21 , x1x2, ..., x1xn, x2x3, ..., xn−1xn, x
2
n ]
T (17)

where xi is the i-th element of vector x. Then (15) could be
transformed as

P̂Tk x̂|
t+δt
t = −Q̂Tk

∫ t+δt

t
x̂dτ (18)

for k = 0, 1, 2, ..., where Q̂k = vec(Q̄+ KT
k R̄Kk ).

Define

Dxx =:
[
x̂|t1t0 , x̂|

t2
t1 , ..., x̂|

tr
tr−1

]T
(19)

and

Ixx =:
[∫ t1

t0
x̂(τ )dτ,

∫ t2

t1
x̂(τ )dτ, ...,

∫ tr

tr−1
x̂(τ )dτ

]T
(20)

where t1, t2, ..., tr are predefined constants satisfying t0 <
t1 < t2 < ... < tr and r is an available positive integer.
Obviously, x̂, P̂k , Q̂k ∈ R

n(n+1)
2 ; Dxx , Ixx ∈ Rr× n(n+1)

2 . Then
one can solve P̂k (k = 0, 1, 2, ...) by

P̂k = −(DTxxDxx)
−1DTxxIxxQ̂k . (21)

Thus with the persistent excitation (PE) condition satisfied,
the values of Pk (k = 0, 1, 2, ...) and Kk (k = 1, 2, ...) can be
iteratively obtained via (21) and (14), respectively. To ensure
the PE condition, the initial stabilizing controller is chosen
to be u0 = −K0x + e, where e is an exploration noise.
Practically, the iteration would stop when the condition ‖Pk−
Pk−1‖ ≤ κ is satisfied, where κ > 0 is a predefined threshold
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that is sufficiently small. For the uniqueness of P̂k , r should

be carefully selected such that rank(Dxx) ≥
n(n+ 1)

2
. On the

basis of experience, it is a safe choice of fixing r ≥ n(n+ 1).
The above process is concluded as Algorithm 1, and we

draw Theorem 1.

Algorithm 1 Off-Policy Data-Driven ADP Algorithm
Input: Data of Dxx and Ixx collected from the nominal sys-
tem described by (12) on the time interval [t0, tr ]
repeat
Compute (Pk ,Kk+1) using Dxx and Ixx by (21) and (14)

until ‖Pk − Pk−1‖ ≤ κ
Output: The cost matrix P(ε0) = P∗0 = Pk

Theorem 1: Starting from a stabilizing K0, with rank

(Dxx) ≥
n(n+ 1)

2
satisfied, the sequences {Pk}∞k=0 and

{Kk}∞k=0 obtained by Algorithm 1 converge to P∗0 and K
∗

0 ,
respectively. Furthermore, u = −K∗0 x is a quadratically
stabilizing and quadratic GCC law for (1).

Proof: Since Pk is symmetric, it can be uniquely decided
by P̂k , and P̂k is uniquely decided by (21) if rank(Dxx) ≥
n(n+ 1)

2
. Thus solving Pk by (21) is equivalent to solving

it by (13). According to Lemma 3, with a stabilizing K0,
{Pk}∞k=0 and {Kk}∞k=0 obtained iteratively by (21) and (14)
converge to P∗0 and K

∗

0 , respectively. Further, since P
∗

0 is the
solution to (8), by Lemma 1 we know u = −R̄−1BTP∗0x =
−K∗0 x is a quadratically stabilizing and quadratic GCC law
for (1). The proof is completed. �
Remark 2: The main difference between the Algorithm 1

and the approach introduced by Vrabie et al. [19] is that
Algorithm 1 is an off-policy method, while the latter is an
on-policy algorithm. For a given ε0, we can use the informa-
tion of state x on a fixed time interval [t0, tr ] in every iteration
to approximate P∗0 and K

∗

0 .
If we replace Q̄ and R̄withQ and R, respectively, then (10)

is reduced to the nominal Riccati equation

AT0 P+ PA0 − PBR
−1BTP+ Q = 0. (22)

Given an initial stabilizing law, the unique solution P∗nom
to (22) and the corresponding feedback gain K∗nom =

−R−1BTP∗nom could be obtained iteratively in the same way
as Algorithm 1, and K∗nom is equal to the feedback gain
obtained by the on-policy ADP in [19]. Interestingly, we now
show that K∗nom is quadratically stabilizing for (1) if certain
condition is satisfied.
Corollary 1: The closed-loop system (1) is quadratically

stable with u = −K∗nomx where K
∗
nom = R−1BTP∗nom if there

exists a symmetric positive definite matrix Λ ∈ Rn×n such
that

−P∗nomBR
−1BTP∗nom + P

∗
nomDD

TP∗nom
+ETE +Λ− Q = 0 (23)

where P∗nom is the unique solution to (22).

Proof: By (23) it is obvious that

−P∗nomBR
−1BTP∗nom + P

∗
nomDD

TP∗nom + E
TE − Q < 0.

(24)

Since P∗nom satisfies (22), it follows that

AT0 P
∗
nom + P

∗
nomA0 − 2P∗nomBR

−1BTP∗nom
+P∗nomDD

TP∗nom + E
TE < 0. (25)

From [8] we know that for any matrices X and Y with appro-
priate dimensions, the following inequality

XTY + Y TX ≤ βXTX +
1
β
Y TY (26)

always holds for any β ∈ R > 0. Considering FTF < I ,
we have

P∗nomDD
TP∗nom + E

TE > P∗nomDD
TP∗nom

+ETFTFE ≥ P∗nomDFE + E
TFTDTP∗nom. (27)

Thus,

AT0 P
∗
nom + P

∗
nomA0 − 2P∗nomBR

−1BTP∗nom
+P∗nomDFE + E

TFTDTP∗nom < 0. (28)

Therefore,

2xT (P∗nom(A0 + DFE − BK
∗
nom))x < 0 (29)

holds for any x ∈ R, x 6= 0. Consequently, there exists a
α > 0 such that (4) is satisfied for P = P∗nom, and the
closed-loop system (1) is quadratically stable with u =
−K∗nomx. The proof is completed. �
Note that even though K∗0 or K∗nom provides GCC for (1),

the upper bound of the cost (2) or (7) cannot be guaranteed to
be minimum, since the bound is associated with ε, while the
derivation ofK∗0 orK∗nom is either with a constant ε0 orwithout
ε. Next, the data-driven algorithm proposed above will be
extended to the case where ε is variable.

B. COMPUTATION OF OPTIMAL GCC VIA PSO WITH
ADAPTIVE PARAMETERS
According to the above data-driven scheme, given ε > 0,
we could iteratively compute the corresponding solution P(ε)
to (8), if it exists. From Lemma 2 it is clear that a local
minimum point of tr(P(ε)) with respect to ε is also the global
minimum point. This enables us to design a PSO algorithm
to converge to ε∗ which yields the minimum tr(P). In this
algorithm, the variable ε serves as the candidate solution, and
the fitness function is designed as the reciprocal of tr(P), i.e.,

f (ε) =
1

tr(P(ε))
. (30)

Let S be the swarm size (number of particles in the swarm),
each having a position εi > 0, i = 1, 2, ..., S in the search
space [εl, εu] where εu � εl > 0 with εl sufficiently small,
and a velocity vi ∈ R. Let pi be the best known position of
particle i, i.e., with themaximumfitness value f (εi), and gb be
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the best known position of the entire swarm. The termination
criterion for the algorithm is related to the total number of iter-
ations performed, and the number of consecutive iterations
where the global best position gb remains the same.
The parameters of the PSO, including the inertia factor w,

the cognitive factor φp, the social factor φg, and the upper
threshold of velocity magnitude vm, have considerable influ-
ence on the behavior and efficacy of the algorithm. In this
work, we tune these parameters by means of fuzzy logic,
and each particle is associated with its own values for these
parameters.

Since εu � εl > 0, the size of search space could be
set as εu instead of εu − εl , without noticeable effect on
the performance. Then the normalized distance between two
particles i, j ∈ 1, 2, ..., S is defined as

d ij(k) =:
|εi(k)− εj(k)|

εu
(31)

where k = 1, 2, ... denotes the number of iterations per-
formed so far. Similarly, the normalized distance of the same
particle i, which considers the positions of the particle at the
current and previous iterations, is defined as

d i(k) =:
|εi(k)− εi(k − 1)|

εu
. (32)

Accordingly, the normalized fitness increment for particle i
is defined as

Γ i(k) =:
f (εi(k))− f (εi(k − 1))

f (gb)
. (33)

TABLE 1. Fuzzy rules for PSO parameters.

On these bases, a rule system including 12 fuzzy rules is
designed, as illustrated in Tab. 1. The rules are based on two
linguistic variables: a number d , which is to characterize the
fuzzy distance between the particle position and the global
best position; and a number Γ , which is a measurement of
the fitness improvement for each particle with respect to
the previous iteration. The term set of d is composed by
three linguistic values: Near, Medium, and Far. The term set
of Γ is composed by three linguistic values: Better, Same
and Worse. The term set for each of the output variables

(w, φp, φg, and vm) is also composed by three linguistic
values: Low, Medium, and High. Note that during every
iteration, each particle computes its own values of d and Γ
independently.

The base variable of d corresponds to the interval [0, 1].
The membership function of d , which is shown in Fig. 1,
is described as follows:

µN (d) =

{
0.5(cos(2.5πd)+ 1), 0 ≤ d ≤ 0.4
0, 0.4 < d ≤ 1;

(34)

µM (d) =


0.5(sin(2.5π (d − 0.2))+ 1), 0 ≤ d ≤ 0.4
0.5(cos(2.5π (d − 0.4))+ 1), 0.4 < d ≤ 0.8
0, 0.8 < d ≤ 1;

(35)

µF (d) =


0, 0 ≤ d ≤ 0.4
0.5(sin(2.5π (d − 0.6))+ 1), 0.4 < d ≤ 0.8
1, 0.8 < d ≤ 1.

(36)

FIGURE 1. Membership function of normalized distance d .

The base variable of Γ corresponds to the interval [−1, 1].
The membership function of Γ , which is shown in Fig. 2,
is described as follows:

µW (Γ ) =


1, −1≤Γ ≤−0.5
0.5(cos(2π (Γ + 0.5))+ 1), −0.5 < Γ ≤ 0
0, 0 < Γ ≤ 1;

(37)

µS (Γ ) =


0, −1≤Γ ≤−0.5
0.5(sin(2π (Γ + 0.25))+ 1), −0.5<Γ ≤ 0
0.5(cos(2π (Γ + 0.25))+ 1), 0<Γ ≤ 0.5
0, 0.5<Γ ≤ 1;

(38)

µB(Γ ) =


0, −1 ≤ Γ ≤ 0
0.5(sin(2π (Γ − 0.25))+ 1), 0 < Γ ≤ 0.5
1, 0.5 < Γ ≤ 1.

(39)
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FIGURE 2. Membership function of normalized fitness increment Γ .

The linguistic values of output variables are modeled in
Tab. 2.

TABLE 2. Crisp values of output variables.

For defuzzification, the center-of-gravity method [38] is
applied, calculating the final numerical value of each out-
put variable as the weighted average output of rules that
has this output variable as their consequent. The formula is
described as

Os =

∑ls
t=1 ρstϕst∑ls
t=1 ρst

(40)

where ls is the number of rules that has the s-th output variable
(s = 1, 2, 3, 4 correspond to w, φp, φg, vm, respectively) as
consequent (in this case ls = 3 for s = 1, 2, 3, 4), ρst denotes
the maximum membership degree for the input variables in
the t-th rule, and ϕst denotes the crisp value of the s-th output
variable for the t-th rule, as given in Tab. 2.
Take s = 1 as an example. Suppose we have d = 0.2, Γ =

0.5 for article i. According to Tab. 2, we know ϕ11 = 0.5,
ϕ12 = 0.8, ϕ13 = 1, and

ρ11 = max {µNear (0.2), µWorse(0.5)}

= max {0.5, 0} = 0.5,

ρ12 = max {µMedium(0.2), µSame(0.5)}

= max {0.5, 0} = 0.5,

ρ13 = max {µFar (0.2), µBetter (0.5)}

= max {0, 1} = 1.

Then the output value of inertia factor for article i can be
obtained as wi = O1 = (0.5 × 0.5 + 0.8 × 0.5 + 1 × 1)/
(0.5+ 0.5+ 1) = 0.825.

The above proposed PSO framework with adaptive
fuzzy-tuned parameters is reported as Algorithm 2.

During every iteration, it makes use of Algorithm 1 to com-
pute the fitness for each particle, and update the parameters
through the above fuzzy logic.

Algorithm 2 PSO Algorithm With Adaptive Parameters
Initialzation:
gb ∼ U(εl, εu)
for each particle i = 1, 2, ..., S do

wi← 0.8, φip← 1, φig← 2, vim← 0.1εu; εi←
i× εu
N

,

vi ∼ U(−vm, vm); pi← εi

if f (pi) > f (gb) then
gb← pi

end if
end for

Optimization:
repeat
for each particle i = 1, 2, ..., S do
Pick cip, c

i
g ∼ U(0, 1)

vi← wivi + φipc
i
p(p

i
− εi)+ φigc

i
g(gb − ε

i)
if vi > vim or vi < −vim then
vi← vim or vi←−vim

end if
εi← εi + vi

if εi > εu or εi ≤ 0 then
εi← εu or εi← εl

end if
Solve f (εi) via Algorithm 1 using Dxx and Ixx
if f (εi) > f (pi) then
pi← εi

if f (pi) > f (gb) then
gb← pi

end if
end if
Update (wi, φip, φ

i
g, v

i
m) via fuzzy logic

end for
until the termination criterion is met

Finally, the flowchart of the data-driven adaptive optimal
control strategy for linear systems with time-varying uncer-
tainty is illustrated in Fig. 3.

IV. EXAMPLE
The effectiveness of the above proposed strategy is validated
via simulations on the dynamic model of a 2-degree-of-
freedom helicopter [39], which is illustrated in Fig. 4.

The state is defined to be x = [θ, ψ, θ̇ , ψ̇]T , with the initial
value x0 = [0.5, 0.5,−0.5,−0.5]T , and the control input is
u = [Fp,FY ]T . The matrices of the nominal system are

A0 =


0 0 1 0
0 0 0 1

0 0 −
Bp

Jp + ml2cm
0

0 0 0
By

Jy + ml2cm

,
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FIGURE 3. Flowchart of the data-driven adaptive optimal control strategy.

FIGURE 4. Free-body diagram of 2-DoF helicopter.

B =


0 0
0 0
Kpp

Jp + ml2cm

Kpy
Jp + ml2cm

Kyp
Jy + ml2cm

Kyy
Jy + ml2cm

. (41)

The meanings and values of the physical parameters involved
are shown in Tab. 3. Accordingly, we obtain

A0 =


0 0 1 0
0 0 0 1
0 0 −9.259 0
0 0 0 3.487

, B =


0 0
0 0

2.361 0.0787
0.24 0.789

 .

TABLE 3. Meanings and values of physical parameters.

The uncertainty matrices areD = diag(0, 0, 0.1, 0.2), F(t) =
diag(sin (t), cos (t), 1, 1), and E = I4. The weight matrices
are set as Q = I4 and R = I2.
The data collection process of the ADP algorithm is

from t0 = 0s to tr = 1s, where r = 100, and
the state signal is collected every 0.01 seconds. The ini-
tial stabilizing feedback gain is chosen to be K0 =

[2.139,−0.2134, 0, 0;−6.508, 6.402, 0, 0], and the explo-
ration noise is e = [

∑5
i=1 sin (ωit),

∑5
j=1 sin (ωjt)]

T where
ωi, ωj ∼ U(−100, 100).
The learning process starts at t = 1s, and the control

input during this process is u = −K0x. The threshold of
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FIGURE 5. Initial particle positions of PSO with adaptive parameters.

FIGURE 6. Ultimate particle positions of PSO with adaptive parameters.

stopping criterion for policy iteration is fixed as κ = 10−8.
The dimension of the PSO search spaceM = 1, so the swarm
size is set to be S = 10 + 2

√
M = 12 [40]. The maximum

number of iterations is set as N = 100. The PSO iteration
would also stop if the global best position gb remains the
same for 10 consecutive iterations. Based on experience and
experiment results, the bounds for search space are fixed to
be εl = 0.1, εu = 15. The PSO parameters are initialized
as in Algorithm 2. The particle positions at start and end of
the learning process are shown in Figs. 5 and 6, respectively,
together with the corresponding value of cost upper bounds.
Note that the 12 particles are evenly distributed on the search
space at start (see Fig. 5), and the values of their correspond-
ing cost upper bounds are quite different. When the learning
is complete, as can be read from Fig. 6, all particles converge
to the optimal position, which is 4.216, and the minimized
cost upper bound is 11.88.

Fig. 7 demonstrates The convergence process of the global
best solution obtained by the proposed PSO with adaptive
parameters. For the sake of comparison, we use the con-
ventional PSO algorithm with constant parameters w = 0.8,
φp = 1, φg = 2, vm = 1.5 for all particles to deal

FIGURE 7. Convergence process of PSO with adaptive parameters.

FIGURE 8. Convergence process of PSO with constant parameters.

with the same problem, and the convergence process is
shown in Fig. 8. It is indicated that the PSO with adaptive
fuzzy-tuned parameters can converge with about half less
number of iterations than the conventional PSO method with
constant parameters.

When the learning is over, the control input is switched
to the optimal GCC law u∗ = −K∗x, where K∗ =
R̄(ε∗)−1BTP(ε∗), with ε∗ being the global best position
obtained by the proposed strategy and P(ε∗) being the corre-
spondingminimumupper bound of cost. The state and control
input trajectories of the closed-loop system controlled by the
proposed strategy are shown in Figs. 9 and 10, respectively.
By contrast, the state and input trajectories with the conven-
tional ADP method which did not consider the time-varying
uncertainty are also shown in Figs. 11 and 12, respectively.

As we can see, in Figs. 9 and 10 the data collection and
learning is completed at about t = 5s, and then the optimal
GCC law is employed, which is able to accelerate the con-
vergence of state and input trajectories. In Figs. 11 and 12,
though it takes less time to implement the learning process,
all of the state and input trajectories fail to converge. In fact,
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FIGURE 9. State trajectories with proposed adaptive optimal control.

FIGURE 10. Input trajectories with proposed adaptive optimal control.

FIGURE 11. State trajectories with the conventional ADP method.

from Theorem 1 and Corollary 1 it is clear that the control law
obtained by the proposed adaptive optimal control method
is able to guarantee the quadratic stability as well as min-
imized upper bound of cost for the closed-loop system (1)
with time-varying uncertainty, while the conventional ADP
method cannot guarantee the stability and convergence.

FIGURE 12. Input trajectories with the conventional ADP method.

TABLE 4. Comparisons of performance among different strategies.

The above simulation results are summarized in Tab. 4,
which illustrates comparisons of performance among the
conventional ADP, the PSO-ADP with constant parameters
(PSO-ADP I), and the PSO-ADP with adaptive parameters
(PSO-ADP II), showing the superiority of PSO-ADP II,
i.e., the proposed control strategy, in terms of stabilization
and convergence properties.

V. CONCLUSION
Most previously obtained model-free optimal control results
are limited within time-invariant systems. In this paper,
a data-driven adaptive optimal strategy for linear systems
with structured time-varying uncertainty is proposed, which
bridges the gap between ADP methods and modern intelli-
gent control methods such as PSO and fuzzy logic, guaran-
teeing the quadratic stability of the closed-loop system and
minimizing the upper bound of the predefined cost function.
The results have been validated via an example of 2-DoF heli-
copter, showing the superiority of the proposed strategy over
the conventional ADP and PSO methods. This, we believe,
is an important step towards extending RL and ADP methods
to more general time-varying nonlinear systems.

REFERENCES
[1] R. K. Yedavalli, Robust Control of Uncertain Dynamic Systems. NewYork,

NY, USA: Springer, 2016.
[2] F. Amato, Robust Control of Linear Systems Subject to Uncertain Time-

Varying Parameters. Berlin, Germany: Springer, 2006.
[3] L. Wang, X. Gao, S. Cai, and X. Xiong, ‘‘Robust finite-time H∞ filtering

for uncertain discrete-time nonhomogeneous Markovian jump systems,’’
IEEE Access, vol. 6, pp. 52561–52569, 2018.

[4] K. Zhou and P. P. Khargonekar, ‘‘Stability robustness bounds for linear
state-space models with structured uncertainty,’’ IEEE Trans. Autom. Con-
trol, vol. AC-32, no. 7, pp. 621–623, Jul. 1987.

VOLUME 7, 2019 9223



M. Zhang, M.-G. Gan: Data-Driven Adaptive Optimal Control for Linear Systems With Structured Time-Varying Uncertainty

[5] L. Xie and C. E. de Souza, ‘‘Robust H∞ control for linear systems with
norm-bounded time-varying uncertainty,’’ IEEE Trans. Autom. Control,
vol. 37, no. 8, pp. 1188–1191, Aug. 1992.

[6] R. K. Yedavalli, ‘‘Perturbation bounds for robust stability in linear state
space models,’’ Int. J. Control, vol. 42, no. 6, pp. 1507–1517, Jun. 1985.

[7] K. Zhou and P. P. Khargonekar, ‘‘Robust stabilization of linear systems
with norm-bounded time-varying uncertainty,’’ Syst. Control Lett., vol. 10,
no. 7, pp. 17–20, Jan. 1988.

[8] P. P. Khargonekar, I. R. Petersen, and K. Zhou, ‘‘Robust stabilization of
uncertain linear systems: Quadratic stabilizability and H∞ control theory,’’
IEEE Trans. Autom. Control, vol. 35, no. 3, pp. 356–361, Mar. 1990.

[9] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic
Methods. New York, NY, USA: Courier Corporation, 2007.

[10] D. Mehdi, M. Al Hamid, and F. Perrin, ‘‘Robustness and optimality of
linear quadratic controller for uncertain systems,’’ Automatica, vol. 32,
no. 7, pp. 1081–1083, Jul. 1996.

[11] D. S. Bernstein and M. M. Haddad, ‘‘Robust stability and performance
analysis for linear dynamic systems,’’ IEEE Trans. Autom. Control, vol. 34,
no. 7, pp. 751–758, Jul. 1989.

[12] M. Khammash and J. B. Pearson, ‘‘Analysis and design for robust per-
formance with structured uncertainty,’’ Syst. Control Lett., vol. 20, no. 3,
pp. 179–187, Mar. 1993.

[13] S. S. L. Chang and T. Peng, ‘‘Adaptive guaranteed cost control of systems
with uncertain parameters,’’ IEEE Trans. Autom. Control, vol. AC-17,
no. 4, pp. 474–483, Aug. 1972.

[14] I. R. Petersen and D. C. McFarlane, ‘‘Optimizing the guaranteed cost
in the control of uncertain linear systems,’’ in Robustness of Dynamic
Systems with Parameter Uncertainties. Basel, Switzerland: Birkhäuser,
1992, pp. 241–250.

[15] X. Luo, Y. Lv, R. Li, and Y. Chen, ‘‘Web service QoS prediction based
on adaptive dynamic programming using fuzzy neural networks for cloud
services,’’ IEEE Access, vol. 3, pp. 2260–2269, 2015.

[16] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, ‘‘Optimal
and autonomous control using reinforcement learning: A survey,’’ IEEE
Trans. Neural Netw. Learn. Syst, vol. 29, no. 6, pp. 2042–2062, Jun. 2018.

[17] F. L. Lewis and D. Vrabie, ‘‘Reinforcement learning and adaptive dynamic
programming for feedback control,’’ IEEECircuits Syst. Mag., vol. 9, no. 3,
pp. 32–50, 3rd Quart., 2009.

[18] F.-Y. Wang, H. Zhang, and D. Liu, ‘‘Adaptive dynamic programming:
An introduction,’’ IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39–47,
May 2009.

[19] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, ‘‘Adaptive opti-
mal control for continuous-time linear systems based on policy iteration,’’
Automatica, vol. 45, no. 2, pp. 477–484, Feb. 2009.

[20] Y. Jiang and Z.-P. Jiang, ‘‘Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics,’’
Automatica, vol. 48, no. 10, pp. 2699–2704, 2012.

[21] T. Bian, Y. Jiang, and Z.-P. Jiang, ‘‘Adaptive dynamic programming and
optimal control of nonlinear nonaffine systems,’’ Automatica, vol. 50,
no. 10, pp. 2624–2632, Oct. 2014.

[22] T. Bian and Z.-P. Jiang, ‘‘Value iteration and adaptive dynamic program-
ming for data-driven adaptive optimal control design,’’Automatica, vol. 71,
pp. 348–360, Sep. 2016.

[23] Y. Jiang and Z.-P. Jiang, Robust Adaptive Dynamic Programming.
Hoboken, NJ, USA: Wiley, 2017.

[24] X. Yang, D. Liu, and Q. L. Wei, ‘‘Online approximate optimal control for
affine non-linear systems with unknown internal dynamics using adap-
tive dynamic programming,’’ IET Control Theory Appl., vol. 8, no. 16,
pp. 1676–1688, Nov. 2014.

[25] Z.-S. Hou and Z. Wang, ‘‘From model-based control to data-driven con-
trol: Survey, classification and perspective,’’ Inf. Sci., vol. 235, pp. 3–35,
Jun. 2013.

[26] B. Zhou, ‘‘On asymptotic stability of linear time-varying systems,’’ Auto-
matica, vol. 68, pp. 266–276, Jun. 2016.

[27] L. Tong, X. Li, J. Hu, and L. Ren, ‘‘A PSO optimization scale-
transformation stochastic-resonance algorithm with stability mutation
operator,’’ IEEE Access, vol. 6, pp. 1167–1176, 2018.

[28] Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, ‘‘Orthogonal learning par-
ticle swarm optimization,’’ IEEE Trans. Evol. Comput., vol. 15, no. 6,
pp. 832–847, Dec. 2011.

[29] E. V. Kumar, G. S. Raaja, and J. Jerome, ‘‘Adaptive PSO for optimal
LQR tracking control of 2 DoF laboratory helicopter,’’ Appl. Soft Comput.,
vol. 41, pp. 77–90, Apr. 2016.

[30] M. Meissner, M. Schmuker, and G. Schneider, ‘‘Optimized particle swarm
optimization (OPSO) and its application to artificial neural network train-
ing,’’ Bioinformatics, vol. 7, no. 1, p. 125, 2006.

[31] K. Mason, J. Duggan, and E. Howley, ‘‘A meta optimisation analysis of
particle swarm optimisation velocity update equations for watershed man-
agement learning,’’ Appl. Soft Comput., vol. 62, pp. 148–161, Jan. 2018.

[32] M. Taherkhani andR. Safabakhsh, ‘‘A novel stability-based adaptive inertia
weight for particle swarm optimization,’’ Appl. Soft. Comput., vol. 38,
pp. 281–295, Jan. 2016.

[33] M. S. Nobile, P. Cazzaniga, D. Besozzi, R. Colombo, G. Mauri, and
G. Pasi, ‘‘Fuzzy self-tuning PSO: A settings-free algorithm for global
optimization,’’ Swarm Evol. Comput., vol. 39, pp. 70–85, Apr. 2018.

[34] M.-G. Gan, M. Zhang, C.-Y. Zheng, and J. Chen, ‘‘An adaptive sliding
mode observer over wide speed range for sensorless control of a brushless
DC motor,’’ Control Eng. Pract., vol. 77, pp. 52–62, Aug. 2018.

[35] I. R. Petersen and D. C. McFarlane, ‘‘Optimal guaranteed cost control
and filtering for uncertain linear systems,’’ IEEE Trans. Autom. Control,
vol. 39, no. 9, pp. 1971–1977, Sep. 1994.

[36] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems. New York,
NY, USA: Wiley, 1972.

[37] D. L. Kleinman, ‘‘On an iterative technique for Riccati equation compu-
tations,’’ IEEE Trans. Autom. Control, vol. AC-13, no. 1, pp. 114–115,
Feb. 1968.

[38] J. Xu, Y. Tan, J. Gao, and E. Feng, ‘‘Pricing currency option based on the
extension principle and defuzzification via weighting parameter identifi-
cation,’’ J. Appl. Math, vol. 2013, Jan. 2013, Art. no. 623945.

[39] Q. Quanser, 2 DOF Helicopter User Control Manual. Markham, ON,
Canada: Quanser Inc., 2006.

[40] N. Hansen, R. Ros, N. Mauny, M. Schoenauer, and A. Auger, ‘‘Impacts
of invariance in search: When CMA-ES and PSO face ill-conditioned
and non-separable problems,’’ Appl. Soft Comput., vol. 11, no. 8,
pp. 5755–5769, Dec. 2011.

MENG ZHANG received the B.E. degree in
automation from the Beijing Institute of Technol-
ogy, Beijing, China, in 2013, where he is currently
pursuing the Ph.D. degree in control science and
engineeringwith the State Key Laboratory of Intel-
ligent Control and Decision of Complex Systems,
School of Automation.

His main research interests include reinforce-
ment learning and adaptive optimal control.

Mr. Zhang received the Best Paper Award at the
11th Asian Control Conference.

MING-GANG GAN (M’17) received the B.E.
and Ph.D. degrees in control science and engi-
neering from the Beijing Institute of Technology,
Beijing, China, in 2001 and 2007, respectively.
From 2015 to 2016, he was a Visiting Scholar with
New York University.

He is currently a Professor with the State Key
Laboratory of Intelligent Control and Decision of
Complex Systems, School of Automation, Beijing
Institute of Technology. His main research inter-

ests include intelligent information processing and intelligent control.
Dr. Gan received the Best Paper Award at the 11th Asian Control

Conference.

9224 VOLUME 7, 2019


	INTRODUCTION
	PROBLEM FORMULATION AND PRELIMINARIES
	MAIN RESULTS
	AN OFF-POLICY DATA-DRIVEN ADP ALGORITHM
	COMPUTATION OF OPTIMAL GCC VIA PSO WITH ADAPTIVE PARAMETERS

	EXAMPLE
	CONCLUSION
	REFERENCES
	Biographies
	MENG ZHANG
	MING-GANG GAN


