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ABSTRACT This paper addresses the stability issues of the least mean absolute third (LMAT) algorithm
using the normalization based on the third order in the estimation error. A novel robust normalized least mean
absolute third (RNLMAT) algorithm is therefore proposed to be stable for all statistics of the input, noise, and
initial weights. For further improving the filtering performance of RNLMAT in different noises and initial
conditions, the variable step-size RNLMAT (VSSRNLMAT) and the switching RNLMAT (SWRNLMAT)
algorithms are proposed using the statistics of the estimation error and a switching method, respectively.
The filtering performance of RNLMAT is improved by VSSRNLMAT and SWRNLMAT at the expense
of affordable computational cost. RNLMAT with less computational complexity than other normalized
adaptive filtering algorithms, can provide better filtering accuracy and robustness against impulsive noises.
The steady-state performance of RNLMAT and SWRNLMAT in terms of the excess mean-square error
is performed for theoretical analysis. Simulations conducted in system identification under different noise
environments confirm the theoretical results and the superiorities of the proposed algorithms from the aspects
of filtering accuracy and robustness against large outliers.

INDEX TERMS Least mean absolute third algorithm, normalization, robustness, variable step-size,
switching, performance analysis, impulsive noise.

I. INTRODUCTION
In adaptive filters, the least mean square (LMS) algorithm
using the minimum mean squared error criterion is the opti-
mum under the Gaussian assumption [1]. However, in non-
Gaussian situations, LMS may suffer from performance
degradation and instability issues. To address these issues,
the adaptive filters using higher order moments of error have
therefore been proposed. For example, the least mean fourth
(LMF) algorithm using the mean fourth order of error out-
performs LMS in sub-Gaussian (light-tailed) noises [1], [2].
The least mean 2L (LM2L) algorithm [3] minimizes the 2Lth
order of error, where L is an integer greater than 1. Therefore,
LMF can be regarded as a special case of LM2L with L = 2.
The least mean absolute third (LMAT) algorithm using the
mean absolute third power of error [4]–[6] is superior to
LMS for most of noise probability densities [6]. Even for
Gaussian noise, LMAT can provide faster convergence rate
than LMS andLMF [6]. However, the convergence conditions

of LMF and LMAT strongly depend on input variance, noise
variance, and weight initialization [2], [7]–[11]. To address
these convergence dependencies, the normalization regarding
the weight update form is generally used to improve the
stability of the aforementioned filters.

For LMF, different normalized terms in the weight update
form generate different versions of normalized least mean
fourth (NLMF) algorithms [12]–[17]. In LMF, the numerator
of the weight update term is fourth order in the input. For
improving the stability, the normalized terms are given by a
squared norm of the input [12] and a weighted sum of the
squared norm of the input and the error [13], [16], which are
called NLMF1 and NLMF2 in this paper respectively. Since
in NLMF1 and NLMF2, the denominator is second order in
the input, NLMF1 and NLMF2 cannot converge when the
input variance exceeds a threshold value which is related
to their step-sizes. To overcome this issue, the normalized
term is modified by the fourth power of the norm of the
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input [17], which is called NLMF3. However, the stability
of NLMF3 still depends on both the noise variance and
the weight initialization [15]. A global stability of NLMF
(namely NLMF4) is therefore proposed using fourth order
in the input and second order in the error as the normalized
term [18]. The mean square deviation (MSD) of NLMF4 has
been shown to be bounded for all finite values of the input
variance, noise variance, initial MSD, and mean-square plant
parameter increment [19], [20]. To further address these lim-
itations of NLMF4 efficiently, a switchable normalization is
constructed by the product of the squared norm of the input
and the maximum of the squared error and the scaled squared
norm of the input, leading to a stable NLMF5 [21].

A nonparametric variable step-size least mean absolute
third (NVSLMAT) algorithm is proposed to improve the
capability of LMAT against non-Gaussian noises [22]. Fur-
ther, to combat Gaussian and non-Gaussian noises in the time-
varying unknown system under low signal-to-noise ratio,
an optimized least mean absolute third (OPLMAT) algo-
rithm is proposed in [23]. However, there exist the stability
issues in NVSLMAT and OPLMAT. The convergence per-
formance of the aforementioned LMAT and its extensions
still strongly depend on the input variance and the initial-
ization of filter weights, which is similar to LMF [6]. The
normalization strategy is also used to improve the stability
of LMAT. Unlike the aforementioned normalization methods
used in LMF, the upper bound of the squared error is com-
bined with the squared norm of the input as the normalization,
leading to a normalized least mean absolute third (NLMAT)
algorithm [24]. NLMAT can provide the robustness against
impulsive noise thanks to its limitation of the squared error.
However, the stability issues based on input variance, noise
variance, and weight initialization cannot be solved abso-
lutely since the normalization term in NLMAT is that the
numerator is second order in the estimation error while the
denominator is second order in the input. In addition, other
robust adaptive filters based on different error criteria, e.g.,
the correntropy-based algorithms [25]–[28], logarithm-based
algorithms [29], [30], mixed norm algorithms [31]–[34],
and others [35], [36], are proposed for impulsive noises.
However, all these algorithms cannot provides performance
improvement in both Gaussian and non-Gaussian noises,
simultaneously.

In this paper, to address the stability issues of LMAT,
a novel robust normalized least mean absolute third
(RNLMAT) algorithm is proposed by using the third order
in the estimation error as the normalization. The purpose
of the normalization in RNLMAT is to generate stability
with the increase of both the input variance and the noise
variance. Therefore, RNLMAT can provide the stability fea-
tures regarding the input, the noise, and the initialization of
filter weights. RNLMAT is developed by the variable step-
size RNLMAT (VSSRNLMAT) and the switching RNLMAT
(SWRNLMAT) algorithms for improvement of filtering per-
formance. Four contributions of this paper are summarized
as follows. (1) The stability of the proposed RNLMAT is

FIGURE 1. System identification structure.

not influenced by the input variance, the noise variance,
and initialization of filter weights. And RNLMAT provides
filtering performance improvement and robustness against
impulsive noises including large outliers, simultaneously.
(2) To dramatically improve the filtering performance of
RNLMAT in impulsive noise environments, VSSRNLMAT is
proposed using the statistics of the estimation error. (3) Using
the switching method for LMAT, SWRNLMAT is proposed
for the case of large weight initialization in the absence of
impulsive noises. And SWRNLMAT can provide excellent
convergence performance when the initial weight vector is
very large. (4) The steady-state performance of RNLMAT
and SWRNLMAT in terms of the excess mean-square error
(EMSE) is performed under different noise distributions.

The rest of the paper is organized as follows. Section II
describes the formulation of the system identification and
its algorithms. A novel robust NLMAT is presented in
Section III. The extensions of RNLMAT, i.e., VSSRNLMAT
and SWRNLMAT, are also proposed in this section.
In Section IV, the steady-state convergence performance of
RNLMAT and SWRNLMAT are obtained for theoretical
analysis. Monte Carlo simulations are conducted in the non-
impulsive and impulsive noises to validate the theoretical
results and the MSD performance of the proposed algorithms
in Section V. Section VI concludes this paper.

II. PROBLEM FORMULATION
The system identification model based on the finite impulse
response (FIR) is shown in Fig. 1. The desired response d(i)
in Fig. 1 is given by

d(i) = wT
ou(i)+ v(i), (1)

where wo = [wo,1,wo,2, . . . ,wo,N ]T is the unknown optimal
weight vector of the FIR system with length N ; u(i) =
[ui, ui−1, . . . , ui−N+1]T is the input vector at discrete time i
with (·)T being the transpose operator; v(i) is the system
background noise. The system identification is also modeled
by an FIR filter with the same structure as that of the unknown
system wo, and the estimation error is therefore defined by

e(i) = d(i)− wT(i)u(i), (2)
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where w(i) = [wi,1,wi,2, . . . ,wi,N ]T is the weight vector of
the adaptive filter.

The LMAT algorithm minimizes the mean absolute third
error, and its update form regarding weight vector w(i) is
therefore shown by [4]

w(i+ 1) = w(i)+ µe2(i)sign[e(i)]u(i), (3)

where µ > 0 is the step-size; sign[e(i)] denotes the signum
function of e(i), i.e., if e(i) > 0, then sign[e(i)] = 1, and if
e(i) = 0, then sign[e(i)] = 0, otherwise sign[e(i)] = −1.
The convergence performance of LMAT depends on the

power of the input [4], [6]. To overcome this dependency,
the normalized LMAT (NLMAT) using the squared norm of
the input is introduced in [24], and its weight update form is
described by

w(i+ 1) = w(i)+ µ
e2(i)sign[e(i)]

δ + ‖u(i)‖2
u(i), (4)

where ‖u(i)‖ is the Euclidean norm of u(i), i.e., ‖u(i)‖2 =
uT(i)u(i), and δ is a small positive constant.
To improve the stability of NLMAT, (4) is modified by [24]

w(i+ 1) = w(i)+ µ
sign[e(i)]u(i)

δ + ‖u(i)‖2
min

{
e2(i), eup

}
, (5)

where eup is the upper-bound of e2(i) and given by

eup <

√
2πσe(i)
µ

, (6)

where σe(i) is the standard deviation of e(i), i.e., σe(i) =√
E[e2(i)] with E being the mathematical expectation and

σe(i) being estimated by [24] and [31]

σe(i) =

√
1

Nw − K
OT(i)TwO(i), (7)

where O(i) = O([|e(i)| , |e(i− 1)| , . . . , |e(i− Nw + 1)|]T)
contains the Nw most recent absolute values of the error
(Nw = N is set in [24]) with O(·) sorting the ele-
ments in (·) from the smallest to the largest value; Tw =
diag[1, . . . , 1, 0, . . . , 0] denotes a diagonal matrix whose last
K elements are set to zero. The largest K elements in O(i)
are set to zero by Tw and the remainder is used to achieve
an unbiased estimate of σe(i). In addition, in the absence of
impulsive noise, σ 2

e (i) is estimated by [24]

σ 2
e (i) = βσ

2
e (i− 1)+ (1− β)e2(i), (8)

where β = 1 − 1/κN with κ > 2 being an exponential
weighting factor.

In [24], to guarantee the mean convergence of NLMAT,
the range of its step-size is given by

0 < µ <

√
π

2
1
σe(i)

. (9)

From (5) and (6), we see that the normalization term
of ||u(i)||2 in NLMAT is used to solve the stability issue
based on the input power, and the restricted error term of

min{e2(i), eup} is used to alleviate the stability issue based
on the noise power. However, it can be seen from (9) that
the upper bound of µ is influenced by the standard devia-
tion σe(i). And σe(i) is related to the variances of the input
and the noise. At the beginning of filtering process, σe(i) is
large generally. The range of the step-size of NLMAT for
convergence is therefore very small. Therefore, given a step-
size, the convergence of NLMAT strongly depends on the
initialization of weights and the variances of the input and
the noise. This dependence is caused by the normalization
based on a second order polynomial of the input, which is
shown in (4). Although there exists the limitation of the upper
bound of squared error in NLMAT (5), it cannot guarantee
filtering accuracy in the presence of large outliers. To this
end, a novel robust normalized least mean absolute third
(RNLMAT) algorithm and its extensions are proposed in the
following.

III. PROPOSED ALGORITHMS
A. RNLMAT ALGORITHM
First, we consider the following adaptive filter with error
nonlinearity [37]

w(i+ 1) = w(i)+ µf (e(i))u(i), (10)

with f (e(i)) being the error nonlinear function.
The optimal error nonlinear function is therefore obtained

by minimizing the steady-state mean square error, i.e., [37]

f opt (e(i)) =
p′e(e(i))
pe(e(i))

, (11)

where pe(e(i)) denotes the probability density function (PDF)
of estimation error e(i), and p′e(e(i)) is the first derivative
of pe(e(i)). Generally, owing to the unavailable pe(e(i)), it is
difficult to calculate the optimal nonlinearity (11).

Inspired by the optimal nonlinearity (11), for simplicity,
we replace pe(e(i)) in (11) with an even function h(e(i)),
to obtain the following error nonlinear function:

f (e(i)) =
h′(e(i))
h(e(i))

, (12)

where h′(e(i)) is the first derivative of h(e(i)). Then, accord-
ing to the LMAT algorithm (3), by setting h′(e(i)) =
e2(i)sign[e(i)], we can obtain h(e(i)) = α + 1

3 |e(i)|
3 with

α > 0.
Substituting h(e(i)) and h′(e(i)) into (12) and (10), gen-

erates a novel robust normalized least mean absolute third
(RNLMAT) algorithm as follows:

w(i+ 1) = w(i)+ µ
e2(i)sign[e(i)]

1+ β|e(i)|3
u(i), (13)

where β > 0 together with step-size µ can balance the
transient and the steady-state performance. Since e2(i) is a
function of u(i) from (2), the numerator e2(i)u(i) in (13) is
third order in u(i). Therefore, third order in e(i) is used as the
normalized term in (13), which is to combat the input variance
increase and the unboundedness of the input distribution.
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FIGURE 2. The cost function and its derivative of RNLMAT with different β.

In addition, (13) can also be regarded as a variable step-
size LMS algorithm with step-size being µ |e(i)|

1+β|e(i)|3
, which

is close to zero whenever e(i) contaminated by an impulsive
interference appears. Thus, the normalized term of (13) can
also combat the increases of the weight initialization and the
noise variance, efficiently.

In order to further illustrate the robustness of RNLMAT,
we need to consider its cost function, which can reflect the
essence of algorithm generally. Therefore, the cost function
of RNLMAT can be obtained from (13) as:

J (e(i)) = ln
(
1+ β|e(i)|3

)
, (14)

where factor 3β is assumed to be absorbed in step-sizeµ. The
cost function J (e(i)) and its first derivative J ′(e(i)) versus e(i)
are plotted in Fig. 2. As can be seen from Fig. 2, a sufficiently
small or large error results in a fairly smooth cost function or a
derivative that tends to zero. This illustrates that the proposed
RNLMAT algorithm based on the cost function (14) can pro-
vide the robustness against large errors and the smoothness to
small errors. We also see from Fig. 2 that the curves of J (e(i))
and J ′(e(i)) are steep when the error is of the medium size.
This illustrates that RNLMAT can provide fast convergence
rate in the transient stage. In addition, we see from Fig. 2
that the value of β affects the steepness of the cost function,
which can provide a trade-off between the convergence rate
and steady-state accuracy of RNLMAT at different stages of
filtering process.

It can be seen from (13) that, RNLMAT generally pro-
vides slower convergence rate than LMAT in the absence
of impulsive noise thanks to 1

1+β|e(i)|3
≤ 1 in (13). For the

case of impulsive noises, e2(i)
1+β|e(i)|3

� 1 in (13) also reduces

the convergence rate of RNLMAT. Thus, we next propose
the variable step-size version of RNLMAT to improve its
convergence rate.

B. VSSRNLMAT ALGORITHM
Generally, the variable step-size (VSS) strategies are applied
to improve the convergence rate of adaptive filters [38], [39].

In the VSS methods, a reasonably large step-size is needed to
improve the convergence rate in the transient filtering phase,
and a small value to achieve high filtering accuracy in the
steady-state phase. Since |e(i)| = e(i)sign[e(i)], (13) can be
rewritten as:

w(i+ 1) = w(i)+ µ
e(i) |e(i)|

1+ β|e(i)|3
u(i). (15)

To improve robustness and filtering performance simulta-
neously in the presence of impulsive noises, we apply the
following method to estimate ē(i) =

√
E[|e(i)|2], instead

of |e(i)| in (15) as follows:

e(i) = γ e(i− 1)+ (1− γ )σ̂emin (i), (16)

where 0 � γ < 1 is the smoothing factor; σ̂emin (i) is
estimated by [40]

σ̂emin (i) =

√
OT(i)TwO(i)

K
, (17)

where vector O(i) is the same as O(i) in (7); Tw =

diag[1, . . . , 1, 0, . . . , 0] is a diagonal matrix whose last
Nw−K elements are set to zero; the largest Nw−K elements
in O(i) are nullified by Tw and the remaining K smallest
elements in O(i) are used to obtain σ̂emin (i). Note that σ̂emin (i)
(17) is different from σe(i) (7) since only K (usually small)
smallest elements of O(i) are utilized to obtain σ̂emin (i) while
the more elements of O(i) are utilized to estimate σe(i),
generally. In addition, when K = 1, i.e., only the smallest
element of O(i) is used to estimate e(i), (17) is equivalent
to the method used in [36]. Essentially, unlike the traditional
VSS methods, the proposed VSS scheme in this paper uses
the statistics of the error, which can significantly improve
the convergence rate and steady-state filtering performance of
RNLMAT in impulsive noises. In addition, (16) can be seen
as the improvement of the estimate method proposed in [40]
since smoothing factor γ in (16) emphasizes the influence of
the recent values of σ̂emin (i) and forgets the past ones, thus
improving the traceability of data statistical variations.

Finally, we summarize the proposed variable step-size
RNLMAT (VSSRNLMAT) as follows:

w(i+ 1) = w(i)+ µ(i)
e(i)

1+ β|e(i)|3
u(i), (18)

where µ(i) = µē(i) with µ > 0 being the scale parameter
and ē(i) being obtained from (16) and (17).
In the VSSRNLMAT algorithm, variable step-size µ(i) is

used to improve both the convergence speed and steady-state
performance, and the error nonlinearity e(i)

1+β |e(i)|3
to guaran-

tee its convergence. In the transient phase, µ(i) is generally
large, which can speed up the convergence rate. And in the
steady-state phase, µ(i) is very small, which can generate the
low steady-state error. Note that only the first order statistic
of error is used in µ(i), and thus the numerator in (18) is
the second order of the error. Therefore, VSSRNLMAT can
guarantee the convergence in adaption.
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TABLE 1. Computational complexity of RNLMAT, SWRNLMAT, and VSSRNLMAT per iteration.

TABLE 2. Comparison of computational complexity between the proposed algorithms and the representative algorithms per iteration.

C. SWRNLMAT ALGORITHM
In the absence of impulsive noise, and when the initial weight
vector is assumed to be very large, both RNLMAT and
VSSRNLMAT cannot provide fast convergence rate. The
switching methods [3], [21] can solve this issue effectively,
which is achieved by adaptively switching the original algo-
rithm from one algorithm to the other in different filtering
phases.

Inspired by NLMF5 [21], we propose a novel switching
adaptive filtering algorithm, namely, the switching RNLMAT
(SWRNLMAT) algorithm based on the LMAT algorithm (3)
as follows:

w(i+ 1) = w(i)+
e2(i)sign[e(i)]

‖u(i)‖2max {ζ ‖u(i)‖ , |e(i)|}
u(i), (19)

where max{·} denotes themaximum function and ζ > 0 is the
scaling parameter. Note that there is no extra step-size param-
eter in (19), and the scaling parameter can achieve a trade-off
between the transient and the stead-state performance.

Since SWRNLMAT behaves as a normalized LMS
(NLMS) algorithm [41] with a unit step-size when the
error is very large, it can be stable for large values of
input variance, noise variance, and initial weights in non-
impulsive noises [1], [3], [18], [21]. Since SWRNLMAT
behaves as a LMAT algorithm with a step-size being

1
ζ‖u(i)‖3

when the error is small, it can provide perfor-
mance improvement in most noise environments [6]. Espe-
cially, in the case of large initial weights, SWRNLMAT
achieves performance improvement of RNLMAT and

VSSRNLMAT in Gaussian and sub-Gaussian noises. How-
ever, SWRNLMAT cannot provide robustness against impul-
sive noises like NLMF5 [21].

D. COMPLEXITY ANALYSIS
In this section, we discuss the computational complexities of
the proposed RNLMAT, SWRNLMAT, and VSSRNLMAT
algorithms. The detailed computational complexity
of RNLMAT, SWRNLMAT, and VSSRNLMAT is shown
in Table 1. Here, for VSSRNLMAT, the standard sort algo-
rithms are used to obtainO(i), and thusNw lnNw comparisons
are required. In addition, using the dot product, Nw multipli-
cations and Nw additions are required for the calculation of
OT(i)TwO(i). Further, Table 2 shows the comparison of the
computational complexity of RNLMAT, SWRNLMAT, and
VSSRNLMATwith NLMS [41], NLMAT [24], NLMF4 [18],
and NLMF5 [21] in terms of the total number of multiplica-
tions, divisions, additions, and comparisons at each iteration.
We see from Table 2 that RNLMAT has less computational
complexity than other normalized algorithms, and the compu-
tational complexity of SWRNLMAT is comparable to those
of NLMS and NLMF. In addition, the computational com-
plexity of VSSRNLMAT depends on Nw. Thus, we choose
Nw according to practical applications.

IV. PERFORMANCE ANALYSIS
In this section, we perform the steady-state performance anal-
ysis of the proposed algorithms. Since the probability density
function (PDF) of impulsive noise is generally unknown,
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we only perform the theoretical analysis of RNLMAT and
SWRNLMAT algorithms in the absence of impulsive noise.

Generally, the mean square deviation (MSD) [1] defined
below is used to evaluate the filtering accuracy of adaptive
filters

y(i) = E[‖w̃(i)‖2], (20)

where w̃(i) = w(i) − wo is the weight deviation vector. The
excess mean-square error (EMSE) is therefore defined as:

ξ (i) = E[e2a(i)], (21)

where ea(i) = w̃T(i)u(i) is the a priori estimation error.
The EMSE can also be used to evaluate the steady-state
performance of filters, effectively [1]. Combining Eqs. (1)
and (2), we have

e(i) = w̃T(i)u(i)+ v(i) = ea(i)+ v(i). (22)

Then, the mean-square error (MSE) can be obtained by

E[e2(i)] = σ 2
v + σ

2
uE[‖w̃(i)‖

2]. (23)

It can be seen from (23) that the convergence of
MSD or EMSE is equivalent to the convergence of MSE.
Thus, we analyze the steady-state performance of RNLMAT
and SWRNLMAT in terms of EMSE. To make the analysis
mathematically tractable, the following assumptions are used.
A1: The input {u(i)} is a stationary zero-mean indepen-

dently and identically distributed (i.i.d.) Gaussian sequence
with a finite variance σ 2

u .
A2: The noise {v(i)} is a stationary zero-mean i.i.d.

sequence with a finite variance σ 2
v and zero odd order

moments.
A3: The input and the noise are mutually independent.
A4: The weight vector w(i) is independent of the input.
A5: The a priori estimation error ea(i) is zero-mean and

independent of the noise.
A6 : ‖u(i)‖2 is asymptotically uncorrelated with f 2(e(i)),

where f (e(i)) is a nonlinear function regarding error.
Assumptions A1−A5 are commonly used in the theoretical

analysis of adaptive filters to enable mathematical tractability
for theoretical analysis [1]. The validity of Assumption A6
can be guaranteed when the filter is long enough such that
‖u(i)‖2 ≈ Nσ 2

u [19], [21], [24], and can be found in [37] for
more details.

A. PERFORMANCE OF RNLMAT
Subtracting wo from both sides of (13) and combining the
weight deviation vector w̃(i) generate

w̃(i+ 1) = w̃(i)− µf1(e(i))u(i), (24)

with f1(e(i)) =
e2(i)sign[e(i)]
1+β|e(i)|3

. Premultiplying both sides of (24)
by their transposes, using (22), and taking the expected value,
we obtain

E
[
‖w̃(i+ 1)‖2

]
= E

[
‖w̃(i)‖2

]
− 2µE [ea(i)f1(e(i))]

+µ2E
[
‖u(i)‖2f 21 (e(i))

]
, (25)

When RNLMAT approaches the steady-state, we have
E[‖w̃(i+ 1)‖2] = E[‖w̃(i)‖2] in (25). This implies that

2E [ea(i)f1(e(i))] = µE
[
‖u(i)‖2f 21 (e(i))

]
. (26)

According to Assumptions A1 and A6, (26) becomes

2E [ea(i)f1(e(i))] = µTr(Ru)E
[
f 21 (e(i))

]
, (27)

whereRu = E[u(i)uT(i)] is the covariancematrix of the input
and Tr(Ru) denotes the trace of Ru. Since the distributions of
ea(i) and e(i) are independent of i in the steady-state, we omit
the time index i and rewrite (27) as

2E [eaf1(e)] = µTr(Ru)E
[
f 21 (e)

]
. (28)

Next, we use the Taylor expansion method [42] to derive
the expectations in (28). Thus, taking the Taylor expansion
of f1(e) regarding ea around the noise v, we have

f1(e) = f1(ea + v)

= f1(v)+ f ′1(v)ea +
1
2
f ′′1 (v)e

2
a + o(e

2
a), (29)

with f ′1(v) and f
′′

1 (v) being the first and second derivatives, and
o(e2a) being the third and other higher-order terms. Define the
steady-state EMSE of RNLMAT by ξ1 = lim

i→∞
E
[
e2a(i)

]
=

E
[
e2a
]
. Then, if o(e2a) is small enough, we can obtain the

following results according to Assumptions A3− A5

E [eaf1(e)] = E
[
eaf1(v)+ e2af

′

1(v)+ o(e
2
a)
]

≈ E
[
f ′1(v)

]
ξ1, (30)

E
[
f 21 (e)

]
≈ E

[
f 21 (v)

]
+E

[
f1(v)f ′′1 (v)+

∣∣f ′1(v)∣∣2] ξ1. (31)

Substituting (30) and (31) into (28) generates

2E
[
f ′1(v)

]
ξ1 = µTr(Ru)

×

(
E
[
f 21 (v)

]
+ E

[
f1(v)f ′′1(v)+

∣∣f ′1(v)∣∣2] ξ1) . (32)

Finally, from (32), we can obtain the steady-state EMSE of
RNLMAT as follows:

ξ1 =
µTr(Ru)E

[
f 21 (v)

]
2E
[
f ′1(v)

]
− µTr(Ru)E

[
f1(v)f ′′1 (v)+ |f

′

1(v)|
2
] , (33)

where f1(v), f ′1(v) and f
′′

1 (v) are given respectively by

f1(v) =
|v|v

1+ β|v|3
, (34)

f ′1(v) =
2|v| − β|v|4(
1+ β|v|3

)2 , (35)

f ′′1 (v) =
2sign[v]− 14v3 + 2β2|v|5v(

1+ β|v|3
)3 . (36)

Thus, given a PDF of noise pv(·), one can obtain the expecta-
tions E[f 21 (v)], E[f

′

1(v)] and E[f1(v)f
′′

1 (v)+ |f
′

1(v)|
2] in (33)
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by numerical integration. A simple way to calculate these
expectations is shown as follows:

E
[
f 21 (v)

]
=

1
L

L∑
i=1

f 21 (v(i)),

E
[
f ′1(v)

]
=

1
L

L∑
i=1

f ′1(v(i)),

E
[
f1(v)f ′′1 (v)+ |f

′

1(v)|
2
]

=
1
L

L∑
i=1

(
f1(v(i))f ′′1 (v(i))+ |f

′

1(v(i))|
2
)
,

(37)

where L denotes the number of noise samples. Therefore,
the theoretical steady-state EMSEs of RNLMAT for different
noises are obtained by combining (33) and (37).

B. PERFORMANCE OF SWRNLMAT
When SWRNLMAT approaches the steady-state, assuming
that ζ is sufficient large, we obtain

w(i+ 1) = w(i)+
e2(i)sign[e(i)]

ζ‖u(i)‖3
u(i). (38)

Subtracting wo from both sides of (38) and combining the
weight deviation vector w̃(i) generate

w̃(i+ 1) = w̃(i)−
e2(i)sign[e(i)]

ζ‖u(i)‖3
u(i). (39)

Under Assumption A1, the dimensionality N is assumed
to be sufficiently large such that ‖u(i)‖2 ≈ Nσ 2

u , which is
usually used in [19], [21], and [24]. Actually this is also an
ergodic assumption, which means that the time average over
the taps is equal to its ensemble average. Then, according to
Assumptions A1− A4, we rewrite (39) as

w̃(i+ 1) = w̃(i)− µf2(e(i))u(i). (40)

with µ = 1
ζN
√
Nσ 3u

and f2(e(i)) = e2(i)sign[e(i)].
Define the steady-state EMSE of SWRNLMAT by ξ2.

Similar to the steady-state EMSE of RNLMAT, the steady-
state EMSE of SWRNLMAT can be derived as follows:

ξ2 =
µTr(Ru)E

[
f 22 (v)

]
2E
[
f ′2(v)

]
− µTr(Ru)E

[
f2(v)f ′′2 (v)+ |f

′

2(v)|
2
]

=
µTr(Ru)E

[
v4
]

4E [|v|]− 6µTr(Ru)E
[
v2
]

=
Tr(Ru)E

[
v4
]

4ζN
√
Nσ 3

uE [|v|]− 6Tr(Ru)E
[
v2
]

≈
E
[
v4
]

4ζ
√
NσuE [|v|]− 6E

[
v2
] , (41)

where we use the approximation Tr(Ru) ≈ Nσ 2
u for large

N [19], [21], [24] in the last line.
The theoretical results of (33) and (41) can be suitable

for any distribution of noise if its PDF is known. It is worth
noting that the steady-state EMSE of (33) or (41) is valid only
under the assumption that the steady-state a priori estimation

error is small enough to make its third and higher-order
terms negligible. In addition, the validity of (41) can only be
guaranteed when the dimension N is sufficient large owing to
the used approximation ‖u(i)‖2 ≈ Nσ 2

u .

V. SIMULATION RESULTS
To validate the performance of the proposed RNLMAT,
SWRNLMAT, and VSSRNLMAT algorithms, we perform
Monte Carlo (MC) independent runs in the FIR system
identification shown in Fig. 1. The input signal is a Gaus-
sian sequence with zero-mean and variance σ 2

u . The optimal
weight vector wo with length N = 20 and equal parame-
ters wo,i = 1

√
N
, i = 1, 2, . . . ,N , are used to model the

unknown system. The initial adaptive weight vector of adap-
tive filters is a zero vector with length N , unless otherwise
specified. And the noises with different distributions are used
to model impulsive and non-impulsive noise environments.
Here, the Gaussian and uniform noises are chosen to denote
non-impulsive noises, and the α-stable noise and the mixed
Gaussian and Laplace noises are chosen to denote impulsive
noises. In each simulation, the simulated results are obtained
from the ensemble averages of 100 independent runs.

A. THEORETICAL VERIFICATION
The simulations are conducted to validate the theoretical
steady-state EMSEs of RNLMAT and SWRNLMAT. The
initial weight is a zero vector, the input is a Gaussian sequence
with zero-mean and unit variance, and the noise is a zero-
mean uniform sequence. To verify the theoretical results
of RNLMAT, the theoretical steady-state EMSE in (33) is
compared with the simulated one under the cases of different
values of step-size and noise variance. In each simulation,
20000 iterations are performed, and the steady-state EMSEs
are obtained as averages over the last 1000 iterations. The
theoretical and simulated steady-state EMSEs of RNLMAT
are shown in Fig. 3. As can be seen from Fig. 3, the simulated
steady-state EMSEs match well with the theoretical ones
when the step-size is small (µ < 0.05).

For SWRNLMAT, the theoretical steady-state EMSE is
derived under the assumption that N is sufficient large. Thus,
we choose N = 64 for the simulation, and other settings are
the same as those in Fig. 3. To verify the theoretical results
of SWRNLMAT, the theoretical steady-state EMSE in (41) is
compared with the simulated one under the cases of different
values of scaling parameter ζ and noise variance. The the-
oretical and simulated steady-state EMSEs of SWRNLMAT
are shown in Fig. 4. From Fig. 4, we see that the simulated
steady-state EMSEs match well with the theoretical ones in
the considered uniform noises.

To further confirm the theoretical steady-state EMSEs of
RNLMAT and SWRNLMAT in different noises, the zero-
mean Gaussian noise with unit variance, the binary noise
at −1 or 1 with the same probability, and the zero-mean
Laplace noise with unit variance are considered for simula-
tions. The simulation settings of RNLMAT and SWRNLMAT
are the same as those in Fig. 3 and Fig. 4, respectively.
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TABLE 3. Theoretical and simulated steady-state EMSEs for different noises.

FIGURE 3. Theoretical and simulated steady-state EMSEs of RNLMAT in
uniform noises: (a) with different step-sizes (β = 1, σ2

v = 0.01); (b) with
different noise variances (β = 1, µ = 0.002).

The theoretical and simulated steady-state EMSEs of
RNLMAT and SWRNLMAT are presented in Table 3.We see
from Table 3 that the theoretical steady-state performance
analyses of RNLMAT and SWRNLMAT are also valid for
different noise distributions.

B. PERFORMANCE COMPARISON
1) NON-IMPULSIVE NOISES
We first compare the MSDs of RNLMAT and SWRNLMAT
to those of NLMS [41], NLMAT [24], and NLMF5 [21]
by the simulations conducted in the non-impulsive noise

FIGURE 4. Theoretical and simulated steady-state EMSEs of SWRNLMAT
in uniform noises: (a) with different scaling parameter ζ (σ2

v = 0.01);
(b) with different noise variances (ζ = 2).

environments, i.e., the Gaussian and uniform noises,
respectively.

2) GAUSSIAN NOISE:
In the Gaussian noise environment, both the input and noise
are zero-mean white Gaussian sequences with variance σ 2

u =

1 and variance σ 2
v = 0.01 respectively. We first discuss the

influence of β on the performance of RNLMAT. The learning
curves based on the MSDs of RNLMAT with different β are
shown in Fig. 5, where the step-size is chosen to achieve
almost the same steady-state performance for each curve.
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FIGURE 5. MSDs of RNLMAT with different β in the Gaussian noise
environment.

From Fig. 5, we see that the convergence rate of RNLMAT
can only be influenced by large values of β. Thus, we can
find an optimal β by trial and error methods in practice. In the
following simulations, we choose β such that the algorithm
achieves the desirable performance.

Next, the simulations are conducted to compare the fil-
tering performance of RNLMAT and SWRNLMAT with the
other algorithms. The parameters of filters are chosen such
that the compared algorithms have almost the same steady-
state performance. Hence, we compare the convergence rate
of filters in Gaussian noises. First, the initial weight vector
of filters is assumed to be a zero vector, and thus the ini-
tial MSD is 1. The compared results are shown in Fig. 6.
As can be seen from Fig. 6, RNLMAT has faster convergence
rate than SWRNLMAT, NLMS, NLMAT, and NLMF5, and
SWRNLMAT is slower than NLMAT but faster than NLMS
and NLMF5. We next consider the large weight initialization
in the filters. The initial weight vector is set as w1,i =
1+m
√
N

with i = 1, 2, . . . ,N and m = 100, and thus the

corresponding initial MSD is 104. The compared MSDs of
above algorithms are shown in Fig. 7. We see from Fig. 7
that both RNLMAT and SWRNLMAT provide faster con-
vergence rate than the other three algorithms, and SWRNL-
MAT has the fastest convergence rate in all the compared
algorithms.

3) UNIFORM NOISE:
In the uniform noise environment, the uniform noise with
zero-mean and variance σ 2

v = 0.01 is chosen for simulations.
The input signal and the criterion for choosing parameters of
filters are the same as those in Fig. 6. Similar to the settings
in Figs. 6 and 7, we also consider the zero and large weight
initializations of filters. The simulation results with zero
and large weight initializations are shown in Figs. 8 and 9,
respectively. From Fig. 8, we see that RNLMAT has
slightly slower convergence rate than NLMF5 but faster than
SWRNLMAT, NLMAT, and NLMS. It can be seen from
Fig. 9 that, SWRNLMAT has slightly slower convergence

FIGURE 6. MSDs of RNLMAT, SWRNLMAT, NLMS, NLMAT, and NLMF5 with
zero weight initialization in the Gaussian noise environment.

FIGURE 7. MSDs of RNLMAT, SWRNLMAT, NLMS, NLMAT, and NLMF5 with
large weight initialization in the Gaussian noise environment.

FIGURE 8. MSDs of RNLMAT, SWRNLMAT, NLMS, NLMAT, and NLMF5 with
zero weight initialization in the uniform noise environment.

rate than NLMF5 but dramatically faster than RNLMAT,
NLMAT and NLMS. Therefore, in uniform noises, the
proposed RNLMAT and SWRNLMAT approach the con-
vergence rate of NLMF5 for the cases of small and large
weight initializations, respectively. It is worth noting that,
RNLMAT has the lowest computational complexity in all
the compared algorithms. Thus, for the zero initial weight
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FIGURE 9. MSDs of RNLMAT, SWRNLMAT, NLMS, NLMAT, and NLMF5 with
large weight initialization in the uniform noise environment.

vector case, RNLMAT is the best choice in the uniform noise
environment.

4) IMPULSIVE NOISES
To validate the robustness of RNLMAT and VSSRNLMAT
against impulsive noise, the α-stable noise and the mixed
Gaussian and super-Gaussian noises are chosen for modeling
impulsive noises in the following.

5) α-STABLE NOISE:
The α-stable noise with a heavy-tailed PDF is usually used to
model the impulsive noise, and its characteristic function can
be described as follows [43]:

f (t) = exp{jδt − γ |t|α[1+ jβsign(t)S(t, α)]},

where

S(t, α) =

{
tan απ2 , if α 6= 1
2
π
log |t| , if α = 1

,

and α ∈ (0, 2] is the characteristic factor, β ∈ [−1, 1] is
the symmetry parameter, γ > 0 is the dispersion parameter,
and −∞ < δ <∞ is the location parameter. For simplicity,
the parameters of the characteristic function are set as a
parameter vector Vα−stable(α, β, γ, δ).
In this simulation, the parameters of α-stable noise

is set as Vα−stable(0.8, 0, 0.1, 0). The input signal is
a Gaussian sequence with zero-mean and variance
σ 2
u = 1. First, we compare the MSD performance of

RNLMATwith those of VSSRNLMAT, NLMS and, NLMF5.
The noise sequence is shown in Fig. 10, and we see
from Fig. 10 that there exist large impulses in the noise
sequence. The corresponding compared MSDs are shown
in Fig. 11. As we can see from Fig. 11, both RNLMAT and
VSSRNLMAT can combat impulsive noises effectively and
VSSRNLMAT has better filtering accuracy than RNLMAT.
Fig. 11 also illustrates that NLMS and NLMF5 cannot con-
verge in α-stable noises. Therefore, the typical robust adap-
tive filters, i.e., NLMAT [24], sign algorithm (SA) [44], least

FIGURE 10. α-stable noises with Vα−stable(0.8,0,0.1,0).

FIGURE 11. MSDs of RNLMAT, VSSRNLMAT, NLMS, and NLMF5 in the
α-stable noise environment.

FIGURE 12. MSDs of RNLMAT, VSSRNLMAT, NLMAT, SA, LLAD, Huber, and
GMCC in the α-stable noise environment.

logarithmic absolute difference (LLAD) [29], robust Huber
(Huber) [32], and generalized maximum correntropy crite-
rion (GMCC) algorithms are chosen for comparisons in the
same environment as in Fig. 11. The parameters are chosen
such that each algorithm achieves the desirable performance.
The compared MSDs of all algorithms are shown in Fig. 12.
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FIGURE 13. Mixed Gaussian and Laplace noises.

FIGURE 14. MSDs of RNLMAT, VSSRNLMAT, NLMS, and NLMF5 in the
mixed Gaussian and Laplace noises environment.

Here, K = 18 is configured in NLMAT to guarantee its
convergence. From Fig. 12, we obtain that VSSRNLMAT
dramatically outperforms the other robust adaptive filters
including NLMAT and GMCC in the considered impulsive
noise.

6) MIXED GAUSSIAN AND LAPLACE NOISES:
Generally, the mixed Gaussian and other noises are also used
to model the impulsive noises [26], [29]. Here, we use the
mixed Gaussian and Laplace noises to model the impulsive
noise. The noise model is described as v(i) = v1(i)+b(i)v2(i),
where v1(i) is the Laplace noise with zero-mean and unit
variance, v2(i) is a white Gaussian sequence with zero-mean
and variance σ 2

v2 = 104 to represent large outliers, and
b(i) is generated using a Bernoulli random process with
Pr {b(i) = 1} = c, Pr {b(i) = 0} = 1 − c (0 ≤ c ≤ 1 is an
occurrence probability). In the following, we select c = 0.05.
The initial weight vector of adaptive filters is a zero vector
and the input is a Gaussian sequence with zero-mean and unit
variance.

Similar to Fig. 11 and Fig. 12, we first compare the
MSDperformance of RNLMATwith those of VSSRNLMAT,
NLMS, and NLMF5. Then, the robust adaptive filters
are chosen to validate the superiorities of RNLMAT and
VSSRNLMAT. Fig. 13 shows the mixed Gaussian and

FIGURE 15. MSDs of RNLMAT, VSSRNLMAT, NLMAT, SA, LLAD, Huber, and
GMCC in the mixed Gaussian and Laplace noises environment.

Laplace noises. And the compared results are shown
in Fig. 14 and Fig. 15. As can be seen from Fig. 14, RNLMAT
and VSSRNLMAT can combat impulsive noises efficiently
while NLMS and NLMF5 cannot provide robustness against
such noises. It can be seen from Fig. 15 that VSSRNLMAT
provides the best filtering accuracy in all the compared robust
adaptive filters. And RNLMAT also has the comparable
filtering accuracy to GMCC. In addition, NLMAT cannot
combat the mixed Gaussian and Laplace noises, efficiently.
Therefore, both RNLMAT and VSSRNLMAT can effi-
ciently combat α-stable and mixed impulsive noises, and
VSSRNLMAT provides better filtering performance than
other robust adaptive filters.

To sum up, we see from all the above simulations that
when the weight initialization of filters is small, RNLMAT
is preferred in non-impulsive noises. For the large weight
initialization of filters in non-impulsive noises, SWRNLMAT
provides the best filtering performance in the Gaussian noise
and the comparable performance to NLMF5 in the uniform
noise, respectively. In impulsive noises, VSSRNLMAT is
preferred from the aspect of filtering accuracy, and RNLMAT
also can provide the similar filtering accuracy to GMCC.

VI. CONCLUSION
A novel robust normalized least mean absolute third
(RNLMAT) algorithm is proposed using the third order
in the estimation error as the normalization in this paper.
The influence of the input and the noise on the stability
of RNLMAT can be removed by third order in the estima-
tion error efficiently. RNLMAT is therefore stable for all
statistics of the input, noises and the weight initialization,
can improve filtering accuracy and robustness in impulsive
noises, simultaneously. Using the variable step-size (VSS)
and switching (SW) schemes in the RNLMAT and the least
mean absolute third (LMAT) algorithms, respectively, the
VSSRNLMAT and the SWRNLMAT algorithms are devel-
oped for accuracy improvement in impulsive noises and
non-impulsive noises respectively. The steady-state perfor-
mance of RNLMAT and SWRNLMAT in terms of the excess
mean-square error (EMSE) is also performed using the
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Taylor expansion method. Simulations on system identifi-
cation validate the theoretical results and the superiorities
of RNLMAT, VSSRNLMAT, and SWRNLMAT for
different noises. In Gaussian and uniform noises, RNLMAT
and SWRNLMAT improve the convergence rate for small and
large weight initializations, respectively. In impulsive noises,
VSSRNLMAT provides better robustness and filtering accu-
racy than the other robust adaptive filters including the
generalized maximum correntropy criterion (GMCC) and the
normalized least mean absolute third (NLMAT) algorithms.
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