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ABSTRACT One of the most widely used frameworks for image-based sequence recognition is the convolu-
tional recurrent neural network, which uses a convolutional neural network (CNN) for feature extraction and
a recurrent neural network (RNN) for sequence modeling. However, the RNN is computationally expensive
in both training and inference, which limits its application in time-constrained systems. Somemodels replace
the RNN with an attention mechanism for sequence modeling but still, require expensive iterative computa-
tions. In this paper, we argue that a CNN with sufficient depth can capture contextual information, eliminate
the need for recurrent operations and thus be fully parallelized.We focus on the problem of water meter num-
ber reading (WNR), which is a typical sequence recognition task but has rarely been investigated.We propose
a fully convolutional sequence recognition network (FCSRN) for the fast and accurate reading of water meter
numbers. Furthermore, we design an augmented loss (AugLoss) function to manage the intermediate states
of the digits and effectively improve performance. The experimental results demonstrate that the FCSRN has
the ability to capture contextual information and eliminate the need for recurrent layers, and simultaneously
requires fewer parameters and less computation. The FCSRN with AugLoss outperforms RNN-based and
attention-based models. In addition, AugLoss can effectively improve the performance for RNN-based and
attention-based models. Moreover, we constructed and released a dataset that contains 6000 water meter
images with labels, which is available at https://github.com/HCIILAB/Water-Meter-Number-DataSet.

INDEX TERMS Image-based sequence recognition, water meter number reading, augmented loss function,
water meter number dataset.

I. INTRODUCTION
Automatic water meter reading is in great demand in many
practical applications, such as water charging systems and
real-timemonitoring of water consumption. Among the water
meter number reading methods proposed in the literature,
the most common are to count or measure the water flow
rate using an embedded electronic device, for example,
an optoelectronic device or ultrasonic wave unit. In recent
years, a novel method has begun to attract the attention of
researchers, which uses a camera to capture water meter
images and then recognizes the numbers in the images. This
method is highly flexible, easy to implement and can take
full advantage of the available measuring units. For instance,
a mechanical water meter is the most popular and stable
measure unit in water transmission systems, and it is very
unlikely that it will be replaced by electronic meters in the
foreseeable future. The most important point is that, the

capture of water meter images can be used to prevent cheating
regarding water consumption because, currently, it is easier
to cheat on electronic devices than on images. The pipeline
for reading number in a water meter image consists of first
detecting and cropping the number area in the image and then
recognizing the water meter number in the cropped image.
In this paper, we focus on the second part, that is the water
meter number reading (WNR) problem, which is a typical
image-based sequence recognition task.

There are several general solutions for the image-based
sequence recognition task. The first category is called the
segmentation-based method [2]–[9], which involves two
steps: character segmentation and recognition. For example,
Bissacco et al. [2] detected characters using bounding boxes,
recognized the detected characters using a pre-trained convo-
lutional neural network (CNN) model, and finally combined
the contextual information to obtain the recognition result.
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FIGURE 1. Samples in the water meter image dataset. (a) Difficult samples. (b) Easy samples.

Suchmethods require that each character is easily located and
labeled, therefore they are not suitable for recognizing images
in which characters are difficult to segment.

The second category of solution is called the segmentation-
free method, which includes the holistic method, recurrent
neural network (RNN)-based method and attention-based
method. The holistic method [10]–[13] recognizes words in
an image as a whole without recognizing each individual
character. For instance, Jaderberg et al. [10] trained a CNN
to directly classify different English words. These methods
rely heavily on a predefined vocabulary and lack the ability
to recognize out-of-vocabulary words. Moreover, for a water
meter image with a label such as ‘‘0 0 0 0 0’’ (which has
only five digits but each digit ranges from ‘‘0’’ to ‘‘19’’,
as explained in Section II), the total number of possible
combinations can be up to 205 = 3.2× 106, which precludes
the use of the holistic method.

The RNN-based method [1], [14]–[19] avoids the seg-
mentation problem by iterating over the feature sequence
(often derived from a CNN) and performing recognition at
each time step. Most segmentation-free sequence recognition
systems use an RNN with long short-term memory (LSTM)
units [1], [14]–[16], which have successfully demonstrated
the ability to align input and output sequenceswithout explicit
segmentation. Although the results of RNN-based systems
are impressive, there exist two important drawbacks: (1) the
training speed may be slow because of the iterative matrix
multiplication over time steps in the recurrent layers; and
(2) the optimization process may suffer from gradient van-
ishing/exploding problems [20], [21].

Recently, attention mechanisms have become an important
part of compelling sequence modeling and transduction mod-
els in various tasks, thereby allowing the modeling of depen-
dencies without regard to their distance in the input or output
sequences [22], [23]. In most cases [24], attention mech-
anisms are used in conjunction with an RNN. However,
generally, attention modules [25] can be used in any neu-
ral network-based models. Gehring et al. [26] proposed a
convolutional seq2seq learning model. The representation of
the input is computed by a CNN in a parallel style for the
attention mechanism; the decoder state is also determined
by a CNN with features that are already produced [27].
Although the results of attention-based convolutional systems
are impressive, there exists one drawback: the computation of
attention weights can be fully parallelized only during train-
ing, whereas at inference time the calculation of the attention

weight at the current time step must depend on the output at
the last time step, which cannot be easily parallelized.

WNR is similar to the text recognition task; however,
its decoding process is slightly different because, in WNR,
there exists some ‘‘mid-state’’ characters (as explained in
Section II). To build a fast and accurateWNR system, we pro-
pose a fully convolutional sequence recognition network
(FCSRN), which combines a fully convolutional network
(FCN) [28] and CTC [29] without any intermediate recur-
rent connections. Moreover, by analyzing the post-processing
method after decoding (in Section III-D), we propose an
augmented loss (AugLoss) function to effectively improve
network performance.

The experimental results demonstrate that the FCSRN has
the ability to capture contextual information and eliminate the
need for recurrent layers and simultaneously requires fewer
parameters and less computation. The FCSRN with AugLoss
outperforms RNN-based and attention-based models. Addi-
tionally, AugLoss can effectively improve performance for
RNN-based and attention-based models.

The remainder of this paper is organized as follows:
In Section II, we describe the constructed water meter
image dataset. Then we introduce the proposed FCSRN in
Section III and AugLoss in Section IV. We present the exper-
imental results in Section V and then we conclude the paper.

II. WATER METER IMAGE DATASET
For the study of WNR, we constructed a dataset named
SCUT-WMN for non-commercial use, which is available at
https://github.com/HCIILAB/Water-Meter-Number-DataSet.
To the best of our knowledge, this is the first public water
meter image dataset.

The water meter images were captured by a camera and
labeled using bounding boxes and water meter numbers.
We cropped the bounding-box area to build our dataset for
recognition. The dataset consists of two parts. The first
part contains 5,000 difficult samples (as shown in Fig. 1a).
Within the difficult samples, there is a wide range of vari-
ation caused by, for example, illumination, refraction and
occlusion. The second part contains 1,000 easy samples (as
shown in Fig. 1b). Both the difficult and easy samples are
labeled with sequential characters such ‘‘1 2 2 5 8’’. Addi-
tionally, the number of each character in the dataset is shown
in Table 1.

In WNR, there exist some ‘‘mid-state’’ characters,
as shown in Fig. 2. Considering the 4th image (in row 2,
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TABLE 1. Number of characters in the water meter image dataset.

FIGURE 2. Samples in the water meter image dataset with ‘‘mid-state’’ characters marked in red. (a) Difficult
samples. (b) Easy samples.

FIGURE 3. Proposed network architecture. First, the model extracts features with a fully convolutional network. Then a temporal mapper is
used to transfer the two-dimensional feature map into a one-dimensional feature sequence. Finally, a transcription layer outputs the predicted
label using the sequential features.

column 1) in Fig. 2b as an example, the number exceeds
‘‘20369’’ but does not reach ‘‘20370’’, so the last two char-
acters in the number appear in the ‘‘mid-state’’. Addition-
ally, the proper water meter number should be ‘‘20369.5’’.
To manage ‘‘mid-state’’ characters, we consider them as
separate classes, with labels ranging from ‘‘10’’ to ‘‘19’’,
as shown in Fig. 2. Label l ∈ [10, 19] denotes a character
that exceeds ‘‘l − 10’’ (called the ‘‘lower-state’’) but does
not reach ‘‘l − 9’’ (called the ‘‘higher-state’’). As a special
case, label ‘‘l = 19’’ indicates that the character is in the
‘‘mid-state’’ between ‘‘9’’ and ‘‘0’’ (ignoring carry). In such
a setting, the label for the 4th image in Fig. 2b is ‘‘2 0 3 16 19’’.
This label sequence could be further processed to the water
meter number ‘‘20369.5’’ as described in Section III-D,
which is more reasonable and practically useful in real-world
applications.

III. FULLY CONVOLUTIONAL SEQUENCE
RECOGNITION NETWORK
The proposed FCSRN consists of three components: a fully
convolutional backbone network, temporal mapper and tran-
scription layer (as shown in Fig. 3). Convolutional layers are
powerful in terms of learning features from images, and we
use an FCN [28] as the backbone network. On the top of
FCN, a temporal mapper is used to generate one-dimensional
feature sequences from the two-dimensional feature maps.
Finally a transcription layer translates these sequential fea-
tures into the final label sequences.

FIGURE 4. Two types of residual blocks. (Left: residual block A) The
dimensions of the input (x) and output (y ) are the same. (Right: residual
block B) The feature map size of y is halved and the number of filters is
doubled compared with x .

A. FULLY CONVOLUTIONAL NETWORK
We use the residual block proposed in [30] to build the FCN
as the backbone network. Two types of residual blocks are
adopted in our FCSRN, which are shown in Fig. 4. When
input x and output y are of the same dimension, residual
block A (shown left) is used to obtain a large receptive
field from the increased model depth and avoid the notorious
vanishing/exploding gradients problem [20], [21], whereas
residual block B (shown right) is used to reduce the feature
map and double the number of filters to increase the model
capabilities and preserve model complexity [30]. A batch
normalization [31] layer and ReLU [32] are used after each
convolutional layer.

We construct a 16-layer FCN with residual blocks to
extract features from input images, as shown in Table 2.
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TABLE 2. Architecture of the fully convolutional backbone network.

We use small convolutional kernel sizes (3× 3) to learn fine-
grained local features, and stack multi-convolutional layers to
extract long-term features with large receptive fields. As dis-
cussed in [33], locations in the response maps correspond
to rectangular regions (called receptive fields) in the input
images. Layer-wise formulations to calculate exact locations
and receptive field sizes are provided as (1, 2):

ri = (ri+1 − 1)× si + ki, (1)

pi = si × pi+1 + (
ki − 1
2
− di), (2)

where ri is the local region size of the ith layer, k is the kernel
size, s is the stride size, p denotes the position and d is the
padding size of a particular layer [33].We found that the high-
layer features in a CNN with sufficient depth correspond to
large receptive fields, and are capable of capturing long-term
dependencies with contextual information.

B. TEMPORAL MAPPER
As features extracted from the FCN already contain context
information, we use a temporal mapper rather than any recur-
rent or fully connected layers to generate feature sequences
before the transcription layer. The temporal mapper consists
of a convolution layer, batch normalization [31] layer, and
height normalization layer. The convolutional layer outputs
K (total character classes plus blank) channel feature maps,
to generate one feature map for each corresponding category.
A convolutional layer is preferred over the fully connected
layer because it is more natural for the convolutional structure
to enforce the correspondences between the feature maps and
the categories [34]. The kernel size, stride, and padding size
of the convolutional layer are set to 3 × 3, 1 × 1, and 1 × 1,
respectively. We assume that each column of the input feature
map is a time step to be predicted; therefore, we use a height
normalization layer (also called the average pooling layer) to
normalize the features along each column. Therefore, we can
map the two-dimensional feature maps to one-dimensional
sequential features, which are to be fed into the final tran-
scription layer. As discussed in Section V-D3, the mapped
sequential features contain contextual information required
for transcription.

C. TRANSCRIPTION LAYER
In WNR, transcription is used to convert features into
a sequence of characters that range from ‘‘0’’ to ‘‘19’’.

We use connectionist temporal classification (CTC) [29] as
the transcription layer. CTC allows the training of the model
without any prior alignment between input sequences and
labels.

Let’s denote the character set asC = {0, 1, · · · , 19, blank},
where blank represents no prediction at the corresponding
time step. Given input feature sequence ‘‘sk = sk1 s

k
2 · · · s

k
t ’’,

with channels k = 21 and total time steps T , CTC spec-
ifies a distribution over the sequences by applying a soft-
max function to each time step, and provides the proba-
bility of outputting predicted characters at the correspond-
ing time step. Each latent sequence sampled from this
distribution could be transformed into an output sequence
using a mapping function σ , which first merges the con-
secutively repeated non-blank characters into one character
and then removes the blank characters. As an example,
‘‘1 2 2 5 8’’ can be transformed by σ from the sequence
‘‘b b 1 1 b 2 2 2 b b 2 b b b 5 8 8 b b b’’ (where b represents
blank and T = 20). The final output sequence probability is
the summation over all possible sequences for the same target
result after applying function σ .

D. DECODING
We use the naive decoding algorithm, which is also referred
to as best path decoding in [29], to make predictions from
the output of the FCSRN. We first apply a softmax func-
tion to every time step, then the predicted sequence is
obtained by considering the most probable label lt at each
time step t , and finally we map the result using function σ
(in Section III-C).

As described in Section II, the transcription result of the
image (in Fig. 2b, in row 2, column 1) after decoding is:
‘‘2 0 3 16 19’’, and this prediction should be transformed to
‘‘20369.5’’ in real-world applications. Therefore, we intro-
duce a post-processing method for each character c in the
‘‘mid-state’’:

c =

{
c− 9.5 c is at the end of sequence
c− 10 otherwise.

(3)

If the predicted digit is at the end of the sequence and is
in the ‘‘mid-state’’ (see Section II for details), we subtract
9.5 from the digit. For example, for a predicted result ‘‘12’’,
which means that the corresponding number exceeds ‘‘2’’ but
does not reach ‘‘3’’, we choose to predict it as ‘‘2’’ and append
a ‘‘mid-state’’ flag to the result by adding 0.5 to the final
number. If the ‘‘mid-state’’ character is not the last character,
then we simply subtract 10 from the digit, thereby indicating
that the ‘‘lower-state’’ is selected, which is intuitively more
reasonable.

IV. AUGMENTED LOSS FUNCTION
A. AUGMENTED LOSS FOR CTC
For the FCSRN and RNN-based models, we use CTC [29] as
the objective function. Given input sequence x with length T ,
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vectors yt are normalized using the softmax function, then
interpreted as the probability of emitting the label (or blank)
with index k at time step t:

Pr(k, t|x) =
exp(ykt )∑
k ′ exp(y

k ′
t )
. (4)

where ykt is element k of yt . A CTC alignment a is a sequence
of blanks and labels with length T . Probability Pr(a|x) of
a is the product of the emission probabilities at every time
step:

Pr(a|x) =
T∏
t=1

Pr(at , t|x). (5)

For a given transcription sequence, there are as many possible
alignments as different ways of separating labels with blanks.
Additionally, the total probability of an output transcription
y is equal to the sum of the probabilities of the alignments
corresponding to it:

Pr(y|x) =
∑

a∈σ−1(y)

Pr(a|x). (6)

Given target transcription y∗, the model can then be trained
to minimize the CTC objective function [35]:

CTC(x) = −logPr(y∗|x). (7)

As described in Section II, a character that exceeds ‘‘5’’
(‘‘lower-state’’) but does not reach ‘‘6’’ (‘‘higher-state’’) is
defined as ‘‘mid-state’’ and should be labeled as ‘‘15’’. Intu-
itively, it is confusing for the model to distinguish among the
‘‘lower-state’’, ‘‘mid-state’’ and ‘‘higher-state’’ characters.
However, for a sample with label: ‘‘1 2 12 15 8’’, it is tolerable
to predict it as, for example, ‘‘1 12 12 15 8’’ or ‘‘1 12 2 15 8’’,
because all these possible predictions can be decoded to the
same result, ‘‘12258’’, as described in Section III-D. There-
fore, we introduce an augmented loss (denoted as AugLoss),
which computes the CTC loss of predictions with correspond-
ing ‘‘lower-state’’ labels (denoted as y′), in addition to the
normal CTC loss (denoted as CTCLoss) which is calculated
using ground truth labels:

Aug(x) = −logPr(y′|x). (8)

Intuitively, these two losses are both proxies for the
recognition accuracy in WNR. We jointly train the net-
work with these two losses to improve the discriminative
ability:

loss = CTCLoss+ α × AugLoss, α ∈ [0, 1]

= −logPr(y∗|x)− α × logPr(y′|x), (9)

where adjustment parameter α represents the importance
of AugLoss. AugLoss can be interpreted as biasing the
‘‘mid-state’’ to the ‘‘lower-state’’ rather than the ‘‘higher-
state’’ or ‘‘out-of-state’’ (e.g. predicting ‘‘1’’ to ‘‘7’’) pre-
dictions. We refer the first scenario as the ‘‘mis-state’’

error (MSE), and the others as the ‘‘mis-recognition’’ error
(MRE). As shown in Section V-E, AugLoss can effectively
reduce the MRE and improve performance.

B. AUGMENTED LOSS FOR THE
ATTENTION-BASED MODEL
For the attention-based model, we use the softmax cross
entropy function as the objective function. The probability
PrA(y|x) of output y is the product of the emission probabili-
ties at every time step:

PrA(y|x) =
T∏
t=1

Pr(yt , t|x). (10)

Given target transcription y∗, the model can then be trained
to minimize the following objective function:

Att(x) = −logPrA(y∗|x). (11)

As described in Section IV-A, we define the augmented loss
function as follows:

Aug(x) = −logPrA(y′|x). (12)

Additionally, the loss function for attention-based model is:

lossA = AttLoss+ α × AugLoss, α ∈ [0, 1]

= −logPrA(y∗|x)− α × logPrA(y′|x). (13)

V. EXPERIMENTS
A. DATA PREPROCESSING
The SCUT-WMN dataset contains 5,000 difficult and
1,000 easy samples that encompass a wide range of image
sizes and ratios. The maximum and minimum widths of
all (difficult and easy) samples are 418 and 201 pixels,
respectively. The maximum and minimum heights are 111
and 37 pixels, respectively. Additionally, the maximum and
minimum aspect ratios (width/height) are 6.619 and 2.933,
respectively.

For parallel computation, we resized all the images so that
they had the same heightH and widthW , with necessary zero
padding on the relatively short side of the image (by compar-
ing the image ratio withW/H ). The aim of data preprocessing
is to manage different image sizes while preserving the ratios
to avoid distortion. We set W = 160 and H = 48, as shown
in Fig. 5.

FIGURE 5. Data preprocessing. We first resize the image while
maintaining the ratio, and then pad the resized image to a fixed size.
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B. PERFORMANCE EVALUATION
ForWNR, we used two criteria [36] to measure performance:

LCR = Nc/Nl, (14)

AR = 1− (De + Se + Ie)/Nt , (15)

where LCR represents the line correct rate and AR represents
the accuracy rate. Nc is the number of correctly recognized
samples, Nl is the number of test samples, and Nt is the
number of characters in the test set. The substitution errors Se,
deletion errors De and insertion errors Ie are calculated by
error correcting string matching using dynamic program-
ming [36].

We also proposed another criterion, called the line partial-
accuracy rate (LPR):

LPR = (Nc + N ′c)/Nl, (16)

where N ′c is the number of partial correctly recognized
samples, which refers to samples for which the predictions
contain error characters but can be decoded to the correct
target numbers, as described in Section III-D. For instance,
a sample with ground truth ‘‘1 2 12 15 8’’ and prediction
‘‘1 12 12 15 8’’ or ‘‘1 12 2 15 8’’, is a partial correctly
recognized sample because both predictions can be decoded
to the same water meter number: ‘‘12258’’. There exist sev-
eral possible predictions that yield the same target number
after decoding. Therefore, LPR is a more accurate measure-
ment of the model performance. Additionally, the error rates
caused by ‘‘mis-recognition’’ and ‘‘mis-state’’ (described in
Section IV) are denoted as the following, respectively:

MRE = 1− LPR (17)

MSE = LPR− LCR (18)

C. TRAINING DETAIL
We constructed the training set based on the SCUT-WMN
dataset. The training set contained 4,000 difficult sam-
ples, and the test set was constructed with the remaining
1,000 difficult samples. For the data augmentation exper-
iment, we added an additional 1,000 easy samples to the
training set.

The objective function of the model was minimized using
stochastic gradient descent. A batch size of 100was used. The
learning rate, momentum, and weight decay were set to 0.01,
0.9, and 0.0001, respectively. The parameters of the network
were initialized using a uniform distribution with a bound
range of 0.01. We trained each model for 100 epochs using
the MxNet deep-learning framework [37].

D. COMPARISON WITH STATE-OF-THE-ART METHODS
We evaluated various methods for the WNR task. For the
segmentation-based methods, we evaluated two convolu-
tional neural networks (ResNet [30] and the backbone net-
work of FCSRN which we call it CharNet). Because all
the images in SCUT-WMN contained five digits, we first
performed data preprocessing as described in Section V-A

and then manually divided each processed image into five
equal columns. Then, the taskwas reduced to an isolated char-
acter recognition problem. However, it is notable that in real-
world applications, water meters may have various numbers
of digits. For the segmentation-free methods, we evaluated
the proposed FCSRN, RNN-based CRNN [1], and attention-
based ConvS2S [26] models. The detailed settings are as
follows:

1) ISOLATED CHARACTER RECOGNITION
We trained an 18-layer ResNet [30] (with output channels set
to 20) as the baseline. For the purpose of fair comparison with
the FCSRN, we trained a CNN that consisted of the same
backbone network as the FCSRN, convolutional layer (with
kernel size set to 3×3, stride set to 1×1, and output channels
set to 20), batch normalization layer, and global pooling layer.
We called this network CharNet. The objective function was
the softmax cross entropy loss function.

2) RNN-BASED CRNN AND ATTENTION-BASED CONVS2S
To fairly compare the FCSRN and CRNN [1], we constructed
a series of models to determine the optimal hyper param-
eters. The backbone networks of the CRNN models were
the same as the FCN in the FCSRN. We used a multi-layer
LSTM (with k layers, where each layer contains n hidden
units) and two fully-connected layers (which output c and
21 channel features, respectively), before the final CTC layer
on top. We trained a series of models with k ∈ [1, 2, 3, 4],
n ∈ [32, 48, 64, 128] and c ∈ [32, 48, 64, 96, 128, 256], and
reported the best result, which was obtained at k = 1, n = 32,
c = 64.

For the attention-based ConvS2S [26] model, the backbone
network was the same as that of the FCSRN. We used 64 hid-
den units for both the encoder and decoder. All embeddings,
including the output produced by the decoder before the final
linear layer, had a dimensionality of 32.

3) PROPOSED FCSRN AND AUGMENTED LOSS
We evaluated the proposed FCSRN with/without AugLoss.
For the FCSRN with AugLoss, two temporal mappers and
two transcription layers were adopted to compute CTCLoss
and AugLoss, respectively, and the same FCN was shared
across the two losses. We trained a series of models to deter-
mine the optimal hyper parameter α defined in Eq. (9), and
reported the best result achieved at α = 0.2 (explained in the
next section).

The experimental results of the above models are shown
in Table 3. We can observe that the FCSRN performed bet-
ter than the digit recognition models (ResNet18 and Char-
Net) and comparably with the best CRNN and the ConvS2S
models. Therefore, we can conclude that the convolutional
model with sufficient depth and a large context window is
also able to learn contextual dependence (as discussed in
Section III-A) that is required for transcription. The FCSRN
took 35% (25%) less training time and involved 45% (33%)
fewer parameters compared with the CRNN (ConvS2S).
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TABLE 3. Comparison of the proposed methods with state-of-the-art methods.

TABLE 4. Effectiveness of the augmented loss function.

TABLE 5. Data augmentation experimental results.

TABLE 6. Optimal hyper parameter α of augmented loss function for different models.

The superior training speed of the FCSRN over the CRNN
and ConvS2S was mainly caused by the parallel nature
of convolutional operations, as computations in a recur-
rent model are sequential and cannot be easily parallelized,
whereas the decoder in an attention mechanism requires
parameters and therefore takes more training time.

The FCSRN equipped with AugLoss outperformed the iso-
lated recognition, RNN-based and attention-based models by
a large margin. We achieved a relative reduction for 54.29%
on MRE compared with the FCSRN without AugLoss. The
AugLoss regarded the ‘‘lower-state’’ and ‘‘mid-state’’ char-
acters as the same class; that is, a character with label ‘‘2’’
predicted as ‘‘2’’ or ‘‘12’’ resulted in no error in AugLoss.
However, a character with label ‘‘5’’ predicted as ‘‘12’’
yielded errors for both CTCLoss and AugLoss. Therefore,
the model learned to avoid the MRE when being optimized
against AugLoss and to distinguish among ‘‘different-states’’

to minimize CTCLoss. Thus, AugLoss effectively reduced
the MRE and improved performance.

E. EFFECTIVENESS OF THE AUGMENTED LOSS
The proposed AugLoss could not only be used with the
FCSRN, but also improved the performance of CharNet,
CRNN, and ConvS2S. We trained these models with the
proposed loss function and conducted a series of experiments
to determine the optimal hyper parameter α for each model.
The experimental results are shown in Table 6, and the best
results are shown in Table 4 for comparison.

The optimal α∗ for the FCSRN, CRNN, ConvS2S,
and CharNet were 0.2, 0.3, 0.2, and 0.8, with relative
MRE reductions of 54.29%, 64.00%, 40.30%, and 40.26%,
respectively. We conclude that AugLoss is a general tech-
nique that effectively improves performance for the WNR
task.
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F. DATA AUGMENTATION
We adopted data augmentation to improve performance.
The training set was constructed with 4,000 difficult and
1,000 easy samples. We enhanced the images by adding noise
and randomly adjusting the brightness, saturation, hue, and
contrast. The noise consisted of Gaussian-distributed additive
noise, Poisson-distributed noise, salt noise, pepper noise, and
a random combination of these types of noise. The exper-
imental results (in Table 5) demonstrate that data augmen-
tation slightly improved performance. Further improvements
will be considered in future work.

VI. CONCLUSION
In this paper, we focused on the problem of WNR, which
is a typical image-based sequence recognition task. We con-
structed a dataset called SCUT-WMN for open research, and
proposed the FCSRN for fast and accurate reading. Fur-
thermore, an augmented loss function to manage intermedi-
ate states of characters and reduce the MRE was proposed.
The experimental results demonstrate that the FCSRN has
the ability to capture contextual information and eliminate
the need for recurrent layers, and simultaneously requires
fewer parameters and less computation. The FCSRN with
AugLoss outperforms RNN-based and attention-based mod-
els. Additionally, AugLoss effectively improves performance
for RNN-based and attention-based models. WNR has many
promising applications in the real world, and we hope that our
method along with the dataset can benefit future research on
this topic.
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