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ABSTRACT Deep neural networks usually require large labeled datasets to construct accurate models;
however, in many real-world scenarios, such as medical image segmentation, labeling data are a
time-consuming and costly human (expert) intelligent task. Semi-supervised methods leverage this issue
by making use of a small labeled dataset and a larger set of unlabeled data. In this paper, we present
a flexible framework for semi-supervised learning that combines the power of supervised methods that
learn feature representations using state-of-the-art deep convolutional neural networks with the deeply
embedded clustering algorithm that assigns data points to clusters based on their probability distributions
and feature representations learned by the networks. Our proposed semi-supervised learning algorithm based
on deeply embedded clustering (SSLDEC) learns feature representations via iterations by alternatively
using labeled and unlabeled data points and computing target distributions from predictions. During this
iterative procedure, the algorithm uses labeled samples to keep the model consistent and tuned with labeling,
as it simultaneously learns to improve feature representation and predictions. The SSLDEC requires a few
hyper-parameters and thus does not need large labeled validation sets, which addresses one of the main
limitations of many semi-supervised learning algorithms. It is also flexible and can be used with many state-
of-the-art deep neural network configurations for image classification and segmentation tasks. To this end,
we implemented and tested our approach on benchmark image classification tasks as well as in a challenging
medical image segmentation scenario. In benchmark classification tasks, the SSLDEC outperformed several
state-of-the-art semi-supervised learning methods, achieving 0.46% error on MNIST with 1000 labeled
points and 4.43% error on SVHN with 500 labeled points. In the iso-intense infant brain MRI tissue
segmentation task, we implemented SSLDEC on a 3D densely connected fully convolutional neural network
where we achieved significant improvement over supervised-only training as well as a semi-supervised
method based on pseudo-labeling. Our results show that the SSLDEC can be effectively used to reduce the
need for costly expert annotations, enhancing applications, such as automatic medical image segmentation.

INDEX TERMS Deep learning, semi-supervised learning, deep embedded clustering, image segmentation.

I. INTRODUCTION
Semi-supervised learning has recently attracted enormous
attention due to its capacity to reduce the need for large
labeled datasets that are needed to efficiently train deep
models based on artificial neural networks. Obtaining labeled
data, in practice, can be associated with significant cost

and/or require expertise. For instance, reliably labeling
or segmenting large medical imaging data requires excessive
amount of work by a group of expert radiologists or well-
trained technologists. For example, manual segmentation of
each brain MRI scan in the isointense infant brain MRI seg-
mentation challenge (iSeg2017) took, on average, one week
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of a neuroradiologist’s time [1]. On the other hand, in many
domains including medical imaging, getting access to large
unlabeled data is relatively easy and inexpensive.

One of the main assets of deep learning methods over other
machine learning algorithms is their great modeling capac-
ity, which allows them to handle complex, high-dimensional
datasets through feature representations [2], [3]. Con-
sequently, neural networks have achieved state-of-the-art
results in computer vision where they have shown great
success in making inference from high-dimensional image
data. The majority of deep learning algorithms, however, are
supervised as they learn to predict or classify from labeled
training samples. These algorithms have been modified in
various ways, some of them presented in the next section,
to handle semi-supervised or unsupervised learning tasks.

Conventionally, unsupervised learning methods are
applied as pre-training for supervised learning tasks [4].
Unsupervised learning or ‘‘clustering’’ algorithms handle
unlabeled data through sorting them into a number of clus-
ters based on similarities or distances between data points.
These algorithms, however, are, by definition, uninformed
of class labels. Moreover, while clustering algorithms often
perform well for low-dimensional data, they often suffer
from the ‘‘curse of dimensionality’’ when dealing with
high-dimensional data. As data samples become distant from
each other in high dimensional spaces, clustering algorithms
would require an excessively large number of data points to
effectively measure the effect of parameters on data to make
inferences. As an example, the infamous K-Means clustering
algorithm achieves an accuracy score of only about 55% on
the MNIST dataset [5] which is one of the basic benchmark
datasets used in computer vision.

In this paper, we take advantage of the recently developed
deep embedded clustering (DEC) algorithm [6] to design
a robust, accurate, flexible, and computationally efficient
semi-supervised deep learning method. DEC combines a
deep stacked autoencoder with a clustering algorithm to
iteratively optimize a cost function based on target proba-
bility distributions to refine cluster centroids. To this end,
by adding a clustering layer to a deep convolutional neu-
ral network (CNN), we present a new training algorithm
for a semi-supervised method that learns feature represen-
tations from unlabeled data while keeping the model con-
sistent with the labeled data. We apply this method, called
Semi-Supervised Learning with Deep Embedded Cluster-
ing (SSLDEC) to benchmark image classification datasets
that have been routinely used in the evaluation and compari-
son of semi-supervised learning algorithms, as well as a chal-
lenging medical image segmentation task, i.e. the isointense
infant brain MRI segmentation based on the iSeg2017 chal-
lenge [1]. Experimental results show that our proposed
method achieved competitive results for semi-supervised
learning on MNIST, SVHN and iSeg2017 when only a small
portion of data is labeled.

In the section that follows, we review the most
closely related literature on 1) semi-supervised learning,

2) semi-supervised learning for medical image segmentation,
and 3) deep embedded clustering for unsupervised learning.
Then in Section III we present our proposed method and
algorithm; followed by the details of the networks used
for image classification and segmentation, experiments, and
results in Section IV; and a discussion and conclusion in
Section V.

II. RELATED WORK
A. SEMI-SUPERVISED DEEP LEARNING
The literature on semi-supervised deep learning is rich
and is growing rapidly, showing significant gains in per-
formance in recent years. One of the early methods in
this class of techniques used deep network generated
predictions as pseudo-labels to retrain the network with
unlabeled (unknown) data points [7]. Another group of
semi-supervisedmethods are referred to as ‘‘multi-view train-
ing’’ techniques, in which multiple models are trained to
generate different representations of data. For instance, tri-
training [8] consists of 3 different models trained on the
same dataset using bootstrap sampling. After a supervised
training of every model, an unlabeled data point is added to
the training set of one model only if the other two models
agree on its label.

Another very competitive class of semi-supervised meth-
ods can be referred to as ‘‘self ensembling’’ methods. These
algorithms learn to exploit robustness to stochastic pertur-
bations caused by noise or randomness in data augmenta-
tion or model design [9], [10]. These methods use additional
loss terms for consistency regularization. For instance, in this
category ladder networks [9] achieved competitive results on
MNIST and CIFAR-10 by trying to reconstruct the original
signal of the lower layers using the signal of the last layer
and a noisy output of the hidden layers. By using consis-
tency regularization, the method developed in [10] pushes the
boundary decision function to less dense areas of the decision
space and enforces mutual exclusivity of classes.

The 5 model [11] uses a similar idea: part of its training
loss consists of the mean squared error between predictions
of the same input obtained with different noise or data aug-
mentation. The training algorithm for the5model, therefore,
is designed to reduce this error and make predictions con-
sistent over small perturbations. The 5 model has also been
extended by a method called temporal ensembling, which
involves averaging predictions over each epoch to make them
more consistent [11]. Another method in this class is the
Mean Teacher [12], which averages weights instead of pre-
dictions as for the5 model. Furthermore, the Virtual Adver-
sarial Training (VAT)method [13] uses generative adversarial
networks (GANs) to generate the most effective perturbations
for improved semi-supervised learning.

Other works tried to augment deep supervised neural
networks with additional autoencoders to improve data repre-
sentations [14], [15]. And recently the ‘‘learning by associa-
tion’’ algorithm proposed in [16] aims to associate unlabeled
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data with labeled data through optimizing side loss functions
added to a CNN. This approach has been successfully used for
semi-supervised learning and domain adaptation on SVHN
and MNIST, as well as on generated datasets.

B. SEMI-SUPERVISED LEARNING FOR MEDICAL
IMAGE SEGMENTATION
Because of the cost and complexity of voxel-by-voxel man-
ual image segmentation and a critical unmet need for accu-
rate and reliable voxelwise segmentation of medical images
for quantitative analysis, there is substantial rapidly-growing
interest in semi-supervised learning for medical image seg-
mentation. Different classes of techniques have been stud-
ied, such as self training, which consists of using predic-
tions made by a deep neural network to retrain it using
these (self) predictions as labels [17], [18]. For example,
a residual fully convolutional deep CNN was pre-trained
in [19] with limited training samples and fine tuned via
such iterative self training approach for pelvic MR image
segmentation.

Another class of strategies uses unlabeled data to regu-
larize supervised classifiers. Examples of these techniques
involve methods based on graph based classifiers [20], [21],
in which each sample is considered as a node of a graph
whose edges are similarities between two different samples.
In these techniques, two samples that are similar have the
same output. A graph-cut algorithm thus ensures that labeled
training samples are classified correctly and that the outputs
of other samples are smooth along the graphs. Based on
this description these techniques share similarity with the
self-ensembling techniques discussed before. In [22] unla-
beled samples were considered samples with missing anno-
tations, and a self-consistency score that quantified annotator
consistency based on low-level image features was used as
a penalty term in a second order Markov random field cost
function to optimize graph cuts. In another work [23] forest
oriented super pixels or super voxels were used to augment
a random forest classifier for 2D or 3D biomedical image
segmentation.

Among other techniques that can help reduce the need for
large amount of labeled data for automatic medical image
segmentation, we refer to transfer learning [24]–[28] and
active learning [29], [30] methods, and the recent survey
in [31]. Transfer learning consists of pretraining a neural
network on a large labeled dataset from a source domain,
before fine-tuning it on a small labeled dataset from the target
domain [25], [27]. Active deep learning, on the other hand,
aims to choose most informative unlabeled samples in an
intelligent and selective manner for annotation, thus aims to
minimize expert time needed for optimal labeling. Active
learning using uncertainty sampling was suggested in [29] to
segment histology and ultrasound images using fully convo-
lutional networks, and deep active learning based on Fisher
information was developed in [30] for transfer learning and
semi-automatic segmentation of brain MRI scans.

C. DEEP EMBBEDED CLUSTERING FOR
UNSUPERVISED LEARNING
Unsupervised methods that aim to overcome the curse of
dimensionality for high-dimensional data have also evolved.
As opposed to traditional techniques that perform dimen-
sionality reduction and clustering in sequence, discrimina-
tive embedded clustering [32] alternates between dimension
reduction and clustering. In [33] a deep autoencoder network
was used to generate low-dimensional embedded represen-
tations for clustering through locality-persevering and group
sparsity constraints on learned representations. The deep
embedded clustering algorithm proposed in [6] combines a
deep autoencoder with the t-SNE algorithm in a two-part
training process: the autoencoder is trained to obtain fea-
ture representations from raw data, and the t-SNE algorithm
uses pseudo-labels to refine the results obtained from the
autoencoder. With only few hyperparameters, this algorithm
showed significantly better results than baseline unsupervised
learning methods such as K-means clustering.

III. METHODS
A. SEMI-SUPERVISED LEARNING WITH DEEP
EMBEDDED CLUSTERING
In the classification task setting, a convolutional neural net-
work (CNN) aims to produce predictions yi, i = 1, .., n from
a labeled dataset L = {xi ∈ X}n1. By learning this mapping,
the algorithm reduces the dimension of the data space X to a
much smaller space, with the help of max-pooling and fully
convolutional layers. The CNN, therefore, summarizes useful
information from the data as the dimension of each layer
decreases, and, as a result, each of its layers can be interpreted
as a feature embedding of the data.

A clustering algorithm, on the other hand, aims at group-
ing an unlabeled dataset U = {xi ∈ X}n1 into k clusters
represented by their mean values µj, j = 1, .., k . Compared
to supervised CNNs, clustering algorithms have the advan-
tage of being able to produce clusters directly from the data
without needing any labels; but they are, by definition, unin-
formed of class labeling task, and are adversely affected by
the curse of dimensionality. These algorithms, therefore, per-
form better as the dimension of the data space X is reduced.

The main idea in this work was to combine both of these
approaches, in order to take advantage of the high capacity of
a deep CNN and the ability of a robust clustering algorithm
based on [6] to learn without labels, while circumventing
the above-mentioned problems associated with the clustering
algorithms. In this framework, the CNN learns a mapping
between the data X and an embedding Z of smaller dimen-
sion, and the clustering algorithm aggregates the data points
into different categories from this lower-dimensional embed-
ding. Moreover, both of these tasks, namely learning the
embedding and the clusters, are performed simultaneously.

Our algorithm is designed as follows: we construct a CNN
such that its last layer is a fully connected layer without a
softmax activation, with number of units equal to the number
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FIGURE 1. (a) The 5 model with temporal ensembling as described in [11]; and (b) our model (SSLDEC) that, compared to the 5

model, has an additional clustering layer instead of a dense layer with a softmax activation, where a prediction is passed through
a target distribution as explained in equation (3). While the 5 model uses weighted sum of cross-entropy and squared difference
between predictions, our model uses Kullback-Leibler divergence as the loss for both labeled and unlabeled data points as
described in Section III-B. Both models use stochastic data augmentation and network dropout for regularization.

of classes of the dataset. Then, as in [6], we add on top of
this last fully connected layer a clustering layer similar to the
t-SNE algorithm [34]. This layer uses a t-distribution kernel
to measure the similarity between an embedding zi and the
mean of a cluster distribution µj:

qi,j =
(1+ ||zi − µj||2/α)

−α+1
2∑

j′ (1+ ||zi − µj′ ||2/α)
−α+1

2

(1)

In this equation, qi,j can be interpreted as the probability of
a data point i to belong to a cluster j, and therefore as a
prediction. To compare it with the last layer of a CNN, which
is usually a dense layer, this layer learns means or centroids of
different clusters representing each class from the embedding
of the penultimate layer. On the other hand, a dense layer
learns a mapping between an embedding and the predictions,
and its parameters are, therefore, the weights of this mapping.
The choice of a t-SNE type algorithm as the clustering layer is
motivated by the fact that t-SNE uses a gradient descent algo-
rithm for optimization. Therefore, the same gradient descent
algorithm can be used for both training the CNN and this last
layer as a whole. The hyper-parameter α here is chosen to be
equal to 1 for all of our experiments.

Figure 1 shows our proposed model (SSLDEC) compared
to the 5 model with temporal ensembling [11]. As can be
seen, our method shares similarities with the self-ensembling
methods discussed Section II as at each epoch, we compute a
target distribution pi based on the predictions of the network
and use it to reduce the difference between this prediction and
another prediction computed from the same input but with
different data augmentation. Network dropout is also used in
both models to improve consistency and robustness in net-
work parameter optimization. The main difference between
our model and the5model and its variations is that we added
a clustering layer in the penultimate layer of the network. The
implication of this is that while the 5 model evaluates the

network outputs twice in the same way, we use a different
target distribution which aims to create more accurate clus-
ters by a powerful training algorithm for SSLDEC that is
described next.

B. THE TRAINING ALGORITHM
To train SSLDEC we need to define a target distribution for
the unlabeled points. Similar to DEC, this distribution should
have the following properties:
• Increase the purity of each cluster
• Put more emphasis over points with high confident pre-
dictions

• Prevent one large cluster to distort the embedding space
Therefore, following [6], we define this distribution as:

pi,j =
q2i,j/fj∑
j′ q

2
i,j′/fj′

, (2)

with fj =
∑

i qi,j. The square term over q is added to increase
the purity of the clusters, and the frequencies f are designed
to prevent distortion from large clusters.

Also following [6] and similar to the parametric t-SNE
algorithm [35] we use the Kullback-Leibler (KL) divergence
as a loss function to compare target (P) and embedding (Q)
probability distributions:

DKL(P||Q) =
∑
i

∑
j

pi,jlog(
pi,j
qi,j

)

=

∑
i

∑
j

pi,jlog(pi,j)

−

∑
i

∑
j

pi,jlog(qi,j)

= −H (P)+ H (P,Q) (3)

In a supervised learning task, this function is equivalent to
the commonly used cross-entropy. In other words, if the true
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distribution P is fixed, as in a supervised framework, then the
entropyH (P) is constant, and the KL divergence is equivalent
to the cross-entropy. In semi-supervised training, our goal is
to match the predictions to the target distribution, and thus the
KL divergence is suitable as, although not a distance, it is a
measure of divergence between two distributions.

Algorithm 1 Training Method
Input: model M , labeled set L, unlabeled set U
M ← train_model (L), for 100 epochs
repeat

Q← predictions (M , L and U) defined in (1)
P← target_distribution (Q) defined in (2)
P′← select balanced subset of P
M ← train_model (P′), for 1 epoch
while Train accuracy < threshold do

M ← train_model (L)
end

until end condition is met;

Algorithm 1 presents our training method, which involves
pretraining using labeled data for 100 epochs, followed by
iterations of making predictions using labeled and unlabeled
data, computing target distributions through equation (2),
selecting a balanced subset of P, and training the model with
the balanced subset until an accuracy condition meets. The
selection of this balanced subset P′ is based on predictions
from the algorithm. We select the same number of samples
whose prediction given by the neural network is one of each
label. The total number of selected labels, therefore, depends
on the minimum of samples whose predictions are one par-
ticular label. The algorithm uses standard backpropagation to
compute parameters and gradients of the clustering layer as
well as those of the CNN. For the clustering layer, the gra-
dients of the loss L associated with the cluster centers µ and
the embeddings z follow these equations:

∂L
∂zi
= 2

∑
j

(1+ ||zi − µj||2)−1

× (pi,j − qi,j)(zi − µj)
∂L
∂µj
= −2

∑
i

(1+ ‖|zi − µj||2)−1

× (pi,j − qi,j)(zi − µj) (4)

These gradients are then passed to the CNN.
The training of the model is performed in two parts.

We first pretrain it using only the available labeled data.
Despite using only a relatively small set of labeled data, this
part has significant influence on the results, as the target
distribution defined in equation (2) is based on the output
of this pretraining, which, therefore, needs to be as accurate
as possible. During this pretraining, the loss of the CNN is
the KL divergence between q and an empirical distribution
obtained from the labeled data. Moreover, the centroids of
the clustering layer, randomly initialized, are also trained

along with the rest of the algorithm. Then we train the CNN
using every data point. In this part, we repeat a cycle of two
training steps. The first step involves training the algorithm
with labeled and unlabeled data using target distributions as
true labels, and the second step involves training the network
using only the labeled data until a training accuracy score is
achieved. During the training step using the target distribu-
tion, we randomly select a balanced subset of the data to avoid
one class distorting the embedding space.

Here we explain the rationale behind using the second step
of training using the labeled data only. During the two-step
training process the algorithm makes mistakes and corrects
them. Indeed, during the second part of the training, the algo-
rithm is trained using pseudo-labels, even when true labels
are available, therefore it is prone to making mistakes. If the
mis-classification rate is too large, it is possible that some
of the labeled data will be misclassified as well. Retrain-
ing the network with only labeled points can correct these
classification mistakes, and the combination of the training
steps in Algorithm 1 ultimately results in a more accurately
trained model. As a result, after each epoch of training using
unlabeled data, we retrain the network with the labeled points
until the training accuracy reaches a certain level, which we
choose to be 100% on the labeled training data. This choice
of 100% accuracy was empirically made, and can induce
overfitting if the labeled set is relatively large compared to
the unlabeled dataset. However, in typical semi-supervised
learning scenarios when the labeled set is much smaller than
the unlabeled set, it is possible to reach 100% accuracy on
labeled data without a risk of overfitting.

IV. EXPERIMENTS
To evaluate the performance of our proposed method
(SSLDEC), we performed several experiments on various
benchmark datasets under standard experimental conditions
where we were able to compare our results with the results
reported by other semi-supervised learning methods. In par-
ticular, we applied our method to the following datasets:
• Two half moons drawn using the Sklearn package [36]
• The MNIST dataset, consisting of 70,000 hand written
digits [5],

• The SVHN, consisting of around 125,000 pictures of
digits from street house numbers [37],

• The iSeg, consisting of 3D T1-weighted (T1w) and
T2-weighted (T2w) brain MRI scans of 23 six-month
old infants as part of the iSeg2017 challenge [1]. Brain
tissue segmentation in iSeg is challenging as gray matter
and white matter appear with isointensity values on
both T1w and T2w MRI scans around six months of
age.

We used the half moons data for illustration, the MNIST and
SVHN as standard image classification benchmarks, and the
iSeg as a medical image segmentation task. In this section,
first we present the network architectures for the classifica-
tion and segmentation tasks, and then describe the details of
the experimental setup and results for each experiment.
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A. SSLDEC NETWORK FOR IMAGE CLASSIFICATION
For image classification using SSLDEC, we used a CNNwith
the architecture presented in Figure 2 for every image classi-
fication experiment except the half moon test. This network
consists of 9 convolutional layers, followed by 2 dense layers
and by the clustering layer shown in Figure 1. Each convo-
lutional and fully connected layer has a batch normalization
unit, along with an exponential linear unit (ELU) activation
function [38]. We also applied a L2 kernel regularization with
weight 10−4 on every convolutional and dense layer. In this
network, the last layer does not have any softmax activation
layer, as the clustering layer returns normalized probabilities
for each sample.

FIGURE 2. Description of the CNN architecture used in all classification
experiments except the two half moons experiment. Dropout was used
after every convolutional layer, and a clustering layer shown in Figure 1
was added to the top of the network. ELU: exponential linear unit.

We trained this network by feeding it with batches of
samples of size 128, and used the Adam optimizer func-
tion [39] with common settings (β1 = 0.9, β2 = 0.999).
As described in Section III-A we used the KL divergence as
our loss, and trained the network with Algorithm 1 in two
steps: first the network was pretrained using only labeled data
for 100 epochs in a supervised setting to initialize the clusters,
and second it was trained iteratively by using all labeled and
unlabeled data samples along with computing target distri-
bution based on equation (2). We used a learning rate that
linearly decayed from 10−3 to 10−4 during the pretraining,

and a steady learning rate of 10−4 for the second part of
the training. Finally, for this classification problem, we used
an ensemble of five models to improve generalization on
unlabeled data and boost the performance of the algorithm.

B. SSLDEC NETWORK FOR 3D IMAGE SEGMENTATION
For 3D medical image segmentation and its application to
iSeg, we implemented SSLDEC on a 3D fully convolutional
CNN with forward skip connections from convolutional lay-
ers to fully connected layers based on [40], which resembles
a 3D densely connected network [41] with 3 blocks of 3
convolutional layers. These blocks are followed by 3 fully
connected layers and a last layer which is our clustering layer
defined before (also see Figure 1). The input of the network is
a patch of size 27×27×27, and the output is of size 9×9×9,
as the dimension is progressively reduced due to a choice of
not including any padding in the convolutional layers. The
full segmentation network architecture is shown in Figure 3.

FIGURE 3. Description of the densely connected 3D CNN architecture with
3 dense blocks used for 3D image segmentation. A clustering layer shown
in Figure 1 was added to the top of the network. In this application the
clustering layer was applied to every voxel instead of the whole image for
the segmentation task. PReLu: parametric rectified linear unit.

As Figure 3 shows, the first 9 convolutional layers are
grouped in 3 dense blocks. Each convolutional layer is fol-
lowed by a batch normalization layer and a parametric rec-
tified linear unit (PReLu) activation function [42]. We did
not include any padding for these layers, so the size of each
output decreases from patches of sizes 27× 27× 27 to sizes
9 × 9 × 9. The outputs of all dense blocks are concatenated
and added to 3 additional convolutional layers along with
batch normalization, PReLu activation and dropout. The top
of the network involved our clustering layer. As opposed
to the clustering layer in the classification network, which
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discriminates whole images, the clustering layer of the seg-
mentation network discriminates each voxel. As a result,
the input and the output of this layer is 9 × 9 × 9 × 3,
corresponding respectively to the size of a patch (9× 9× 9)
and to the number of labels (3 labels for the iSeg challenge
corresponding to grey matter, white matter, and cerebrospinal
fluid).

C. HALF MOONS
In this section, we show a simple demonstration of SSLDEC
in action applied to the half-moons dataset. In this test,
we drew 1000 points from a two half-moons distribution
using the python package Sklearn [36], with a noise stan-
dard deviation of 0.1. We randomly selected 4 points from
each half-moon as labeled data, and considered the rest of
the points as unlabeled data. In this section only, our CNN
consisted of 4 dense layers of size 10 with RELU activation
function, followed by one dense layer of size 2 and a cluster-
ing layer. Figure 4 shows the decision boundary of our model
after training the algorithm only with the labeled data, and
after SSLDEC training; which shows that SSLDEC was able
to recover the underlying distribution of the two half moons
after using the unlabeled data.

FIGURE 4. Simple test of our semi-supervised algorithm (SSLDEC) using
a two-half-moons distribution. (a) Data distribution: 8 labeled points
(orange points, 4 of each label) were used as labeled training data and
the rest (blue points) were considered unlabeled data; (b) decision
boundary after supervised training with labeled data; (c) decision
boundary after SSLDEC. The accuracy score after SSLDEC reached 99.8%.

This simple experiment meant to display the advan-
tage of the proposed semi-supervised method compared to
supervised-only trainingwith limited data. Separating the two
half moons using a limited amount of points is considered
a hard problem and the results depend on the number and
position of the labeled points. In our experiments we observed
that by using a total of 8 points (4 of each label) fairly
distributed over the dataset, SSLDEC could accurately find
the decision boundary and achieve a high accuracy.

D. MNIST
The hand-written digits database, MNIST [5], has been
widely used as a standard benchmark to compare
semi-supervised learning algorithms. This dataset consists
of 70,000 small images, among which 10,000 are used as
the test set. Following the standard semi-supervised learning
experiments with this dataset, we randomly selected 100 (and
1000) images, 10 (and 100) of each class, of the training
set as labeled data, and used the rest of the training data
as unlabeled samples. For this classification task, we used
moderate data augmentation through small translations of one
pixel along the width and the height of each image.We found,
experimentally, that using this augmentation to draw different
predictions from the same input generated better results than
computing the prediction of a noisy input.

FIGURE 5. MNIST results for 100 and 1000 labeled samples for training,
compared with Semi-supervised embedding [15], AtlasRBF [43],
the Ladder network [9], Improved GAN [44], Virtual adversarial training
(VAT) [45], Mutual exclusivity [10] and Learning by association [16]. The
best results in each column are shown in bold text.

Following standard evaluation criteria for semi-supervised
learning, we randomly selected 10 different subsets, and
reported mean accuracy score on the test set along with its
standard deviation reported in brackets. Figure 5 presents our
results as well as the results of several recent semi-supervised
methods for labeled sets of size 100 and 1000. Our
method generated competitive results on this dataset, par-
ticularly outperforming [16] using a labeled dataset of
size 1000.

Figures 6 and 7 illustrate sample results and the perfor-
mance of our proposed semi-supervised method (SSLDEC)
on MNIST classification. Figure 6 displays the training
set along with some misclassified examples, as well as the
confusion matrix on the test set. Among the misclassified
images, many can be stated as ambiguous for a human anno-
tator. Figure 7 displays the 10 clusters recovered by the clas-
sification network after the pre-training stage (with labeled
data) and after our semi-supervised method (SSLDEC). This
figure shows how the initial clusters were refined after
semi-supervised training leading to very small misclassifica-
tion rate (very few data points were associated to a wrong
cluster).
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FIGURE 6. Sample results of our MNIST classification: (a) labeled
samples; (b) mis-classified samples from the test set; and (c) confusion
matrix of the test set. In this test, the accuracy score was 99.28%.

FIGURE 7. t-SNE visualization of 1000 data points from the MNIST
dataset after pretraining the network using 100 labeled data (left), and
after iterations of our semi-supervised training algorithm (right).

FIGURE 8. SVHN results for 500 and 1000 labeled samples in the training
set, compared with semi-supervised learning with Deep generative
network (DGN) [46], Skip Deep Generative Model [47], Improved
GAN [44], Mutual exclusivity [10], Learning by association [16], the 5

model [11] and the VAT model [13]. The best results in each column are
shown in bold text.

E. SVHN
SVHN [37] is a real-world image dataset consisting of pic-
tures of house numbers separated as digits. The task associ-
ated with this dataset is therefore to classify each of these
numbers as a digit, similar to MNIST. This dataset dif-
fers from MNIST in two main aspects: it is significantly
larger, containing around 125,000 images, and its classes
are slightly imbalanced, as the frequency of classes (1,2,3)
appears to be higher than the other digits. In training classi-
fication networks we used the same data augmentation that

FIGURE 9. Dice scores for white (WM) matter segmentation, compared
with the lower and higher bound trained models, and the pseudo-labeling
semi-supervised method for experiments with 1, 2, and 5 labeled training
images. For WM segmentation our method outperformed all other
models including the higher bound model which used full labeled images
instead of only using one-fifth of the labels of each training image.

FIGURE 10. Dice scores for grey matter (GM), compared with the lower
and higher bound trained models, and the pseudo-labeling
semi-supervised method for experiments with 1, 2, and 5 labeled training
images. For GM segmentation, which is more challenging due to the
narrow boundaries and shape of the cortex, our method outperformed
the lower bound and pseudo models in experiments with 1 and 2 labeled
images, but did not reach as high accuracy as the higher bound model.

FIGURE 11. Dice scores for the cerebrospinal fluid (CSF) segmentation,
compared with the lower and higher bound trained models and the
pseudo-labeling semi-supervised method for experiments with 1, 2,
and 5 labeled training images. For CSF segmentation our method
outperformed all other models including the higher bound model which
used full labeled images instead of only using one-fifth of the labels of
each training image.

we used for MNIST: translations of one pixel along both
directions.

SVHN has also been used as a standard benchmark for
semi-supervised methods, where 500 and 1000 samples from
the training set are used as labeled data and the rest of the
training data are used as unlabeled samples. Figure 8 presents
our results for the SVHN dataset. Similar to the MNIST
dataset, we report the mean accuracy score of 10 different
experiments as well as its standard deviation, reported in
brackets. These results show that our method outperformed
most of the other methods tested on the same dataset, with
the exception of the VAT with 1000 labeled points. Note that
on MNIST our method outperformed VAT by a large margin
(Figure 5). Also note that while ourmethod did not perform as
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FIGURE 12. Results of (d) our model (SSLDEC) on a case from the isointense infant brain MRI segmentation challenge (iSeg), compared to (c) the
ground truth (manual segmentation) and (e) a pseudo-labeling technique. Original T1- and T2-weighted MRI images of this case are also displayed
in (a) and (b) which show the difficulty in distinguishing WM and GM due to their isointensity appearance at this age. These slices were extracted
from image 6 on the iSeg dataset, after training models on one fifth of 2 images only (images 1 and 2 in the iSeg dataset). These results show that
the pseudo-labeling technique includes several CSF zones, which are not present in the ground truth or in the results of our semi-supervised
technique (black circles). Overall, SSLDEC also seems to be more accurate in separating gray and white matters as several WM zones are correctly
linked by our SSLDEC model, whereas not by the pseudo-labeling technique (black rectangles). There are areas in which the pseudo-labeling
segmentation seems more similar to ground truth than SSLDEC segmentation, but the overall results show that SSLDEC outperformed
pseudo-labeling in this case and other cases, as confirmed by average Dice scores obtained and reported in Figures 9, 10, and 11. The average Dice
score (over the three classes) of the SSLDEC model for this case was 89.3%, while it was 87.5% for the pseudo-labeling technique.

well as ‘‘mutual exclusivity’’ [10] onMNIST, it outperformed
mutual exclusivity by a margin on SVHN. Considered all
together, the results on both MNIST and SVHN datasets,
presented in Figures 5 and 8, indicate that our technique per-
formed better than other semi-supervised learning algorithms
in these image classification tasks.

F. ISOINTENSE INFANT BRAIN MRI SEGMENTATION
Segmenting brain MRI of infants to white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) when infants
are at around 6 months of age is extremely challenging
because the T1 and T2 relaxation times of the WM and
GM tissue of the rapidly myelinating brain at this age are
similar and thus these tissues appear as isointense regions
on both T1w and T2w MRI scans. This motivated the recent
iSeg2017 challenge that involves T1w and T2w pairs of MRI
scans of 23 infants scanned at around 6 months old. The
tissues were manually segmented for all cases by a neurora-
diologist [1]. MRI scans of 10 subjects constitute the training
set that is available along with their manual segmentations,
and the rest of the subjects remain for test. Only challenge
organizers have access to the manual labels for the 13 test
subjects.

We used iSeg training and test data to evaluate our
semi-supervised learning method (SSLDEC) for segmenta-
tion. To train our 3D densely connected CNN with SSLDEC,
we randomly selected a subset of the training dataset in three

scenarios: from the training set of 10 images, we only kept
one fifth of 1, 2, and 5 images to draw labeled training
samples. For semi-supervised learning we used the rest of the
unlabeled training and test data to improve the performance
of the CNN using SSLDEC, following the training algorithm
described in Section III. We tested the trained model on the
5 cases from the iSeg training set that were not used as labeled
data in training as well as on iSeg test data.

We compared SSLDEC results against two supervised-only
settings: one using the labeled training set used in each
SSLDEC trained model as defined above (i.e. using only one
fifth of 1, 2, and 5 cases). This defined the lower bound base-
line model; and another using full labeled training images
(i.e. 1, 2, and 5 full images). This was considered the baseline
for higher bound performance on full labeled images.We also
compared our method against a pseudo-labeling method,
which was implemented using our segmentation network
without the clustering layer and thus without computing the
target distribution. We refer to these methods as lower bound,
higher bound, and pseudo labeling model in our results.

To evaluate segmentation we computed the Dice score for
every class (tissue type in iSeg), which is defined as

Dice =
2 ∗ TP

2 ∗ TP+ FP+ FN
where TP, FP and FN represent the true positive, false
positive and false negative rates, respectively. The aver-
age of Dice scores over the test set for three experiments

VOLUME 7, 2019 11101



J. Enguehard et al.: Semi-Supervised Learning With Deep Embedded Clustering for Image Classification and Segmentation

(with 1, 2, and 5 labeled images for training) is shown
in Figures 9, 10 and 11, for WM, GM, and CSF classes,
respectively. The results show that for the WM and CSF
classes SSLDEC achieved better results than the higher
bound and the pseudo model, especially with a large margin
in training with only 1 and 2 images. Note that the higher
bound model used 5 times more number of labeled samples
for training than SSLDEC. For GM which was more difficult
to segment (due to its narrow boundaries and shape and
isointense appearance with WM), SSLDEC results did not
reach as high level of accuracy as the higher bound model,
but exceeded the accuracy obtained from both lower bound
and pseudo models by a large margin in experiments with
1 and 2 labeled images.

Overall, the results of these experiments show that a high
level of accuracy can be achieved by labeling only one-tenth
of the original data and using the rest of the data as unlabeled
samples, which using our proposed algorithm improved the
performance of a pretrained supervised-only model signif-
icantly. On official iSeg test data, by using only one-fifth
of the slices of each training image as labeled data and
using the rest of the training and test images as unlabeled
data, we obtained Dice scores of 93.7%, 88.8% and 86.3%
for CSF, GM, and WM, respectively, compared to 94.8%,
90.6% and 88.5% for the fully-supervised model trained on
all training data. Figure 12 shows sample axial and sagittal
slices of T1w and T2w images as well as segmentations of
a case from the test set (the 6th case in the iSeg training
data that was used as a test case in our study), compar-
ing our semi-supervised method (SSLDEC) using one fifth
of 2 images as the labeled training data, with segmentation
obtained from the pseudo-labeling method and the ground
truth (manual segmentation provided by challenge organiz-
ers). This figure shows that our method (SSLDEC) provided
fairly accurate segmentation of WM, GM, and CSF in this
challenging application by using a small fraction of the
labeled training data, as it outperformed the pseudo-labeling
method in most areas.

V. DISCUSSION AND CONCLUSION
We have proposed a novel semi-supervised learning method,
utilizing the powerful deep embedded clustering approach,
that can be easily used with any neural network. This method
achieved competitive results for the classification of small 2D
images using a classification network as well as accurate vox-
elwise segmentation of 3D medical images using a densely
connected fully convolutional neural network. Moreover, this
method did not require a large validation set to tune hyper-
parameters. This is considered a huge advantage over many
state-of-the-art semi-supervised deep learning algorithms,
where the dependency on large validation sets to adjust
hyper-parameters is considered a disadvantage as it is con-
trary to the motivation behind the design of semi-supervised
learning methods [9], [48]. In fact, we used the same network
for every experiment made for image classification, along

with the same optimizer and learning rate and achieved results
that, overall, were better than state-of-the-art semi-supervised
learning methods. Our proposed semi-supervised learning
method (SSLDEC) inherits its robustness and minimal need
for hyper-parameter tuning from the deep embedded cluster-
ing algorithm [6].

Our results in image classification and segmentation indi-
cate that the performance of supervised-only methods with
limited number of labeled training samples can be signif-
icantly improved by using the proposed semi-supervised
learning algorithm. This method, therefore, has the potential
to enhance applications of deep learning in areas where data
labeling is costly and time-consuming, such as medical image
segmentation. It can reduce the amount of data samples and
the time experts need to spend to label samples or voxels to
generate training data. In Section II-B we briefly mentioned
techniques other than semi-supervised learning that can help
reduce the need for labeling large amounts of data for deep
learning. In particular, we referred to transfer learning and
active learning approaches. In some very interesting future
extensions, our proposed method (SSLDEC) may be adopted
and used for transfer learning, where a CNN is pre-trained
using large labeled data in one domain and then trained
with unlabeled and labeled data in a target domain. SSLDEC
may also be combined with active learning to query most
informative unlabeled samples to be labeled by an expert, thus
effectively taking advantage of both semi-supervised learning
(using unlabeled data) as well as active learning.
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