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ABSTRACT With the rapid development of mobile Internet and sharing economy, carpooling over real-
time taxi-calling service has attracted more and more attention. Many popular taxi-calling service platforms,
e.g., didi and Uber, have developed carpooling service to the passengers. Their goal is maximizing overall
profit while meeting passengers’ convenience and economic benefits. Many researchers have deeply studied
this problem. They usually focus on minimizing the total travel distance of drivers or making passengers’
cost as fair as possible. However, these efforts ignore the fact that a ‘‘high quality’’ planning path crowed
with potential passengers is more valuable than a ‘‘low quality’’ path for both workers and passengers.
An effective high quality path planning algorithm is more desired. In this paper, we propose an efficient
framework, named PPVF(short for path prediction and verification-based framework) for path planning over
the road network. We first select a group of high quality paths from the historical transaction record set
and manage them by proposing a novel index named PCR-Tree. Then we use them for supporting the path
planning. Furthermore, we propose a searching and verification-based algorithm for further improving the
path planning quality. Theoretical analysis and extensive experimental results demonstrate the effectiveness
of the proposed algorithms.

INDEX TERMS Path planning, path selection, PCR-tree, ELM.

I. INTRODUCTION
With the rapid development of mobile Internet and sharing
economy, O2O (short for Online To, Offline) service plat-
forms has gained increasing popularity [1].Many commercial
applications have emerged in daily life. As a representa-
tive one, carpooling over real-time taxi-calling service has
attracted more and more attention. Many popular taxi-calling
service platforms, e.g. didi, Uber, have developed carpooling
services.

Different from traditional service pattern which restricts a
taxi to serve for a single passenger at one moment, carpooling
allows a taxi to provide service for multi-passengers [2], [3].
In other words, a group of passengers can share a taxi simul-
taneously. Once a passenger submits a request consisting of
the pick-up and drop-off points to the platform, the platform
determines a driver (even en-route) to pick up the passenger
according to their locations. From then on, the platform plans

paths for drivers and quotes to passengers according to the
trip distance. Within carpooling platforms, passengers could
reduce trip cost by sharing a taxi while enjoying fast and con-
venient transportation. Other than traditional path planning
problem that usually use the shortest path as the planning
path, path planning under carpooling allows distance con-
sumption with certain thresholds (i.e., detour) in exchange for
users’ economic benefits (i.e., a lower price).

Intuitively, the price under carpooling model is mainly
determined by two factors. (i) the distance between the start-
ing/destination locations of passengers; (ii) the number of
passengers sharing the taxi. Usually, the more the passengers
share the taxi together, the less the fees they pay. However,
if platform focuses too much on passengers’ economic bene-
fits, it may allow a taxi to be shared by too many passengers.
Besides, it may lead a big difference between the shortest path
and planning path. All the aforementioned issues may reduce
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the service quality. Therefore, it is very important to plan a
reasonable path to satisfy both passengers’ convenience and
economic benefits.

The rich application inspires lots of research works on
carpooling problem. To the best of our knowledge, the state-
of-the-art efforts on ride-sharing can be categorized into two
groups, namely distance-based approaches and price-based
approaches. The key of distance-based approaches is min-
imizing the total travel distance of drivers [4], [5], [5], [6].
However, minimizing drivers’ total travel distance is not
always equivalent to minimizing overall shorter trips for pas-
sengers [2]. In other words, when a taxi is assigned with a
new request, the minimum increase in total travel distance is
not necessarily the most cost-effective option. In this case,
parts of passengers’ convenience and economic benefits may
not be satisfied. Price-based approaches solve this problem
via allowing both passengers and taxis set their monetary
expectations for participating in ride-sharing based on their
predefined profiles [7], [8], [8].. However, these efforts still
ignore the fact that a ‘‘high quality’’ path crowed with poten-
tial passengers is more valuable than a ‘‘low quality’’ path for
both taxis and passengers. An effectively ‘‘high quality’’ path
planning algorithm is desired.

FIGURE 1. The Paths Diversity.

Example 1 (Path Planning Under Carpooling): Take an
example in Fig 1, passenger u in taxi w wants to go from
v1 to v5, two paths p1 and p2 can be used as the candidate
planning paths. Here, p1 is the shortest path between v1 and
v5, and p2 is another path between v1 and v5. Compared with
p1, p2 is more preferable. The reason behind is, the distance
between v1 and v5 over p2 is only a little longer than that
of under p1, but there are many other passengers around p1,
u has more chance to share the taxi with others, and hence
the traveling fee could can be effectively reduced. Therefore,
we regard the path p1 as a high quality path, and regard p2 as
a relatively low quality path.

Based on the above observation, in this paper, we propose
an efficient framework, named PPVF(short for path predic-
tion and verification based framework) for path planning.
For simplicity, we explain our solution under road network
environment. Given road network G, the key of PPVF is
pre-computing ‘‘high quality’’ paths between every two ver-
texes in G according to the historical transaction record set.
In this way, when a passenger submits a request to the plat-
form, the platform provides the passenger with a reasonable

path according to the pre-computing results. However, PPVF
meets the following three challenges:

A. CHALLENGES
First of all, it is difficult to evaluate which kinds of paths could
be regarded as ‘‘high quality’’. Secondly, it is impractical to
maintain ‘‘high quality’’ paths for every two vertexes, which
causes high maintenance cost. Whats more, the distribution
of taxis/passengers always changes over time, which leads
to that the pre-computing results may not be suitable as the
planing path. Therefore, the second challenge is effectively
verifying the pre-computing results and dynamically adjust-
ing the planning result if needed.

B. CONTRIBUTIONS
In summary, the contribution of this paper are as follows.
• A Novel Query Definition: We define a novel query
called (ε, ϕ)-CBPP (short for constraint based path plan-
ning) query over road network. We use two thresholds ε
and ϕ as the constraint condition, where ϕ is the passen-
gers amount threshold. As for ε, it is a threshold using
for bounding distance difference between shortest path
and planning path. Our goal is providing passengers with
high quality path in the premise of thresholds constraint
condition.

• High Quality Path Maintenance: We propose a group
of strategies for high quality path maintenance. First of
all, a novel algorithm distance-constraint based weight-
diversity is designed for high quality path selection. Fur-
thermore, we develop a compression algorithm to reduce
the selected paths scale. Finally, we propose a novel
index named PCR-Tree(short for Path-Compression-R)-
Tree to maintain these paths. As the basic, we self-
adaptively partition these paths into a few sub-paths
according to their location information. In this way,
PCR-Tree could use a group of MBRs with relatively
small area to bound these sub-paths, and enhance the
powerful filtering ability accordingly.

• Query Algorithm: We design the algorithm HQPS to
answer (ε, ϕ)-CBPP query. Its main idea is searching
on PCR-Tree for finding candidate paths. Based on the
searching results, we propose an ELM-based method for
verifying whether the taxi/passenger distribution over
candidate paths are similar with that of the ones in the
historical record set, and select the planning path based
on the verification results.

The rest of this paper is organized as follows. Section 2
reviews related work and presents the definition of
(ε, ϕ)-CBPP. Section 3 gives an overview of the framework.
Section 4 and Section 5 discuss high quality maintenance
and query processing algorithm. We report our experimental
results in Section 6. Section 7 concludes this paper.

II. PRELIMINARIES AND DEFINITIONS
In this section, we first review the algorithms about the
problem of spatio-temporal crowdsourcing, ride-sharing and
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TABLE 1. The summary of notations.

path planning. Thereafter, we introduce a novel machine
learning technique called ELM. Lastly, we define the (ε, ϕ)-
CBPP query over road network. Table1 summarizes themath-
ematical notations used in the paper.

A. RELATED WORK
1) SPATIO-TEMPORAL CROWDSOURCING
Recently, spatio-temporal crowdsourcing has attracted more
and more attention. The main participants in spatio-temporal
crowds mainly include crowdsourcing task requesters
and crowdsourcing participants, who connect through the
time-space crowdsourcing platform. The platform prepro-
cesses the requested task and participant information first,
and then feedback the relevant information to the requester
and participants.

The task could be divided into static offline tasks and
dynamic online tasks. The main difference between them
is that the tasks and participants in the dynamic online
tasks are unknown. Kazemi et al. [9] puts forward by the
spatial-temporal crowds allocation queries in static offline
scenarios, using bipartite graph to model the query. Partic-
ipants of the task are regarded as the left and right point
sets in the bipartite graph that do not intersect. Accordingly,
the query problem is reduced to the maximum bipartite graph
matching problem. However, the real-time is demand of more
spatial-temporal crowds is very high, which belongs to online
dynamic tasks.

Tong et al. [10] proposes a matching model for online
matching. The model allows tasks and participants to dynam-
ically appear in any position and any order. Whenever a
new task appears, the platform assigns a participant for it
immediately or ‘‘suspends’’ it until a subsequent participant
comes or the mission deadline. Some online algorithms are
used to solve such problems, such as simple greedy algo-
rithms. Its issue is the performance is affected by the arrival
order of tasks and participants. Tong et al. [11] further gives
an efficient online algorithm for analyzing the worst case
and the average case. Subsequently, they have shown that
the dynamic task allocation model of greedy algorithm has
good performance effect through a large number of real
and simulation experiments. Furthermore, they proposed a
two-step framework, which integrates both offline prediction
and online task assignment, aims at addressing the prob-
lem that a worker may move around while waiting for a
task. A prediction-based online task assignment algorithm is
designed, which achieve a 0.47 competitive ratio.

2) RIDE-SHARING
The majority of ride-sharing problem fall into two cate-
gories: static and dynamic ride sharing. In static condition,
the driving route is pre-computed since all drivers, passen-
gers are known and will not change dynamically over time.
Furuhata et al. [18] made a survey of various types of static
ride-sharing considering different settings and objectives.
Santi et al. [19] quantified the potential of ride-sharing based
on a graph-based approach. Furthermore Cici et al. [20] eval-
uated the potential of carpooling using four cities mobile
dataset. In addition, ride-sharing problem was proven to be
NP-hard.

There has been a surge of research in real-time ride-
sharing [22]–[25] due to the emergence of many ride-sharing
mobile applications (e.g., Uber and Lyft).In real-time ride-
sharing, high computation cost are not allowed since the
riders and drivers statuses changes over time. With the objec-
tive to reduce the total travel distance of drivers, Ma et al
used spatial-temporal index to retrieve the candidate drivers
and proposed a ride-sharing dispatch system named T-share.
On the other hand, Huang developed a kinect tree schedul-
ing algorithm which can dynamically assign trip request to
drivers with minimum travel distance. Ota et al introduced a
data-driven simulation framework that was capable of ana-
lyze ride-sharing. A ride-sharing system to maximize the
number of matched request was proposed by Santos et. al.
The majority of these studies aimed to minimize the total
travel distance of drivers, however, this did not mean shorter
travel distance for the riders. To maximize the total profit
of the platform, Asghari et al. [2] proposed an auction-based
framework called APART. In APART framework, drivers and
passengers are considered as bidders and goods respectively.
Once a new request is generated, each nearby driver submits
a bid to the server. The bid is computed by the pricing model
which satisfying both riders and passengers self-defined pro-
files. The driver who gives the highest bid will get the request.

3) PATH PLANNING OVER ROAD NETWORK
Generally, the shortest path algorithm can be divided into two
basic categories: Index-based and non-index-based.

Among those non-index-based algorithm, the Dijkstra’s
Algorithm [12] is a classic algorithm, which achieves a time
complexity of O(n2). It spreads outward from the source until
reaching to the end. To address the problem that the Dijkstra’s
Algorithm can not deal with negative weighted edges,
Bellman, Ford, andMoore developed the Bellman-Ford algo-
rithm [13] which can solve the shortest path on negative
weighted graph through repeated iterations. Whats more,
it can detect negative circles. However, the Bellman-Ford
algorithm is much slower than the Dijkstra’s Algorithm. Both
the Dijkstra’s Algorithm and the Bellman - Ford algorithm
solve single-source shortest path problems(sssp). Floyd algo-
rithm [14] attempts to solve all pairs shortest-paths (APSP).
It is actually a dynamic programming algorithm. The shortest
path matrix between each two points of a graph is obtained
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by the weight matrix of the graph. Its time complexity
is O(n3).

For the index-based algorithms, Fakcharoenphol and
Rao [15] propose a method that generates a non-planar
graph through vertex subsets then calculates the shortest
path tree. The space and time complexity of the prepro-
cessing stage is O(n). Klein et al. [16] use Jordan curve to
preprocess the graph and use the Dijkstra’s Algorithm and
the Bellman - Ford algorithm to calculate the shortest path.
Wulff-Nilsen [17] use the wiener index to find the path query
answers which can only deal with unweight graph.

B. EXTREME LEARNING MACHINE
In this subsection, we present a brief overview of extreme
learning machine (ELM) [26], developed by Huang et al,
which is used for identifying unreliable documents in
our paper. ELM is based on a generalized single-hidden-
layer feed forward network (SLFN). Also, it has many
variants [28]–[30]. Compared with neural networks, its
hidden-layer nodes are randomly chosen instead of iteratively
tuned. In this way, it provides good generalization perfor-
mance at thousands of times faster than traditional popular
learning algorithms (e.g,. SVM [31], neural networks). Also,
it gets better performance due to its universal approximation
capability and classification capability [26].

βk+1 = βk + Pk+1HT
k+1(Tk+1 −Hk+1βk ) (1)

Pk+1 = Pk − PkHT
k+1(I +Hk+1HkHT

k+1)
−1Hk+1Pk (2)

As an improved version, the online sequential extreme [26]
learning machine (abbreviated as OS-ELM) is proposed.
Compared with the basic ELM,OS-ELM could learn data one-
by-one or chunk-by-chunk with fixed or varied size. Thus,
it is suitable for processing streaming data.

Hk+1

=

G(a1, b1, x∑
Nj+1) . . . G(aN , bN , x∑

Nj+1)
... . . .

...

G(a1, b1, x∑
Nj+1) . . . G(a1, b1, x∑

Nj+1)


Nk+1×l

(3)

Specially, given a set of samples (xi, ti), where xi =
[xi1, xi2, . . . , xin]T ∈ Rn and ti = [ti1, ti2, . . . , tin]T ∈ Rm,
OS-ELM first selects the activation function, the hidden node
number and so on. Then,OS-ELM is employed in a two-phase
method including: (i)initialization (ii) sequential learning.

Tk+1 =
[
T(

∑k
j=0 Nj)+1

. . . T(
∑k

j=0 Nj)

]T
Nk+1×m

(4)

In the first phase, OS-ELM uses a small set of samples
for training. The second phase employs the learning in a
chunk-by-chunk way. In the k-th chunk of new training data,
OS-ELM firstly computes the partial hidden layer and the
output matrix Hk+1. Lastly, OS-ELM computes the output
weight matrix βk+1, where βk+1, Hk+1, and Tk+1 are com-
puted according to Equation 5 to Equation 4.

C. PROBLEM DEFINITION
Definition 2 (Task): A task t , denoted by the tuple
〈w, u, s, d, p〉, is created when a passenger u submits a
requirement to the platform with a starting location s and
a destination location d over road network. Once a task is
created, the platform should assign a worker w for t , and plan
a path p so as to transport u from s to d .
A moment thought could reveal that it is suitable for

using the shortest path as the planning path. However, in the
carpooling mode, it allows a taxi to execute multiple tasks
simultaneously. In other words, a taxi could transport more
than one passenger at the same time. For simplicity, in the
following, we call taxi as worker. In order to guarantee the
service quality, we propose the concept of (ϕ, ε)-worker.
A (ϕ, ε)-worker w contains three states, that are, empty, non-
full, and full. In the following, we will formally introduce
the concept of worker, (ϕ, ε)-worker, and three states of
a (ϕ, ε)-worker.
Definition 3 (Worker): A worker w, denoted by the tuple
〈s, T ,P〉, is serving for passengers, which transports passen-
gers from their starting locations to their destination loca-
tions. Here, s is the location of w, and T is the task sets, P
is the path sets. In addition, P should contain all the starting
locations(also destination locations) of the tasks in T .
Definition 4 ((ϕ, ε)-Worker): Given a set of tasks T
{t1, t2, . . . , tm} taken by the worker w, we call w as a (ϕ, ε)-
Worker if (i) w could take at most ϕ tasks simultaneously; (ii)
for each task ti, |sp(ti)| should be less than ε|ti.p|. Here, sp(ti)
refers to the shortest path between ti.s and ti.d , |sp(ti)| refers
to distance under sp(ti).
• Empty Worker: An empty worker executes none task
currently. Given an empty worker w and a new task t ,
if the distance between them is less than a threshold
r over 2D space, the platform assigns t to w with the
probability p1. Here, the probability computation will be
discussed in Section V-A.

• Non-Full Worker: A non-full worker w executes |w|
tasks currently, i.e., 0 < |w| < ϕ. When a new task
t is submitted, if w and t are satisfying the following
constraint conditions, the platform assigns t to w with
the probability p2. Here, the constraint conditions are:
(i) the distance between t.s and w.s is less than r in the
2D space; (ii) w should still be a (ϕ, ε)-worker once t is
assigned to w.

• Full Worker: A full worker w executes ε tasks currently.
The platform could not assign new task for it until it turns
to a non-full worker.

Example 5 (Worker States): Take an example in Fig 2. The
worker w is empty at the moment T0. Since the distance
between w.s and t1.s is less than the threshold r over 2D
space, the platform assigns t1 to w. We can find the corre-
sponding shortest path, p1, via accessing the road network
G according to t1.d(i.e., vertex v5). Among all the other
paths, for the reason that p2 satisfies the distance constraint
condition, and there exist many tasks around p2, we select p2
as the planning path. After w passes the vertexes v2, t2 and t3
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FIGURE 2. Worker States Statements.

are assigned to w. At that moment, the tasks set of w turns to
{t1, t2, t3}. In addition, since ϕ, w becomes a full worker, and
cannot take other tasks. After w achieves the task t1, w turns
to non-full, and has the ability to take new task again.
In order to evaluate the cost of tasks and benefit workers,

we introduce the parameter worker weight. For simplicity,
we call a path with the length m as a unit path. Given a
worker w with the unit paths set U(w), its weight, denoted by
sw(w), equals to

∑
sw(w,upi)
|U (w)| . Here, upi refers to the i-th unit

path contained in U(w), and sw(w, upi) refers to the maximal
number of tasks w executes during the moment w passes upi.

cost(t) =
|sp(t)|µ

∑
e(1−ρsw(w,upi))

|t.p|
(5)

gain(w) =
i=|T (w)|∑
i=0

µ|sp(ti)|
|ti.p|

Ce(1−ρsw(w,upi)) ti.p ∩ upj 6= ∅

(6)

Equation 5 and Equation 6 depict the cost of a task and
the revenue of a worker respectively. We can conclude that
the higher the worker weight is, the lower the task costs,
and the more the worker gains per unit path. Obviously, it is
significant for workers to execute, as much as possible, tasks
at the same time. However, if a region R contains many
workers but few tasks, the workers inR almost have no chance
to take many tasks(e.g., the path p2 in Fig 2). Therefore,
the goal of this paper is to plan ‘‘high quality’’ paths so as
to benefit workers and passengers.

In this paper, we introduce the cumulative weight function
for evaluating the quality of a path. Let e be an edge belong
to the road network G. For each point xi in e, its weight,
i.e., W(x) is computed by α

β
. Here, α refers to the number

of workers contained in the impact region of x, denoted by
IR(x), β refers to the number of tasks contained in IR(x),
where IR(x) is a circle with the center x and the radius r .
Based on the points weight, the cumulative weight function of
e could be described by the function CWF(x) (x ∈ e), and the
cumulative weight function of a path could be described by
CWF(x) (x ∈ p), i.e., equals to the expected worker weight of
w during the moment w passes p. We now formally introduce
the (ε, ϕ)-CBPP problem.
Definition 6: ((ε, ϕ)-CBPP problem). Given a

(ε, ϕ)-worker w, the passenger set P and the worker set W

over road network G, the (ε, ϕ)-CBPP problem is to find a
path p ∈ G according to its cumulative weight function of
edges in G so as to maximize the expected worker weight in
the premise of thresholds constraints.

THE PROBLEM ANALYSIS
It is difficult to answer (ε, ϕ)-CBPP problem both efficiently
and effectively. For the efficiency problem, when a task is
created, the platform should first access the road network G
for enumerating all the paths that are satisfying the distance
constraint. Since it is a NP-hard problem, we are not able to
find the solution in polynomial time. In addition, the platform
should use integral to compute the expected worker weight
over each path, this part of cost is still high. Therefore, we can
conclude that it is hard to answer (ε, ϕ)-CBPP problem in
real-time. For the effectiveness problem, it is difficult to find
a suitable cumulative weight function for each edge in the
road network.

III. THE PPVBF FRAMEWORK OVERVIEW
In this section, we present our framework PPVF(short for
path prediction and verification based framework) to answer
(ε, ϕ)-CBPP problem. Given the road network G, PPVF first
constructs summary information for each edge inG according
to the historical transaction records so as to approach the
characters of their cumulative weight function. Based on the
summarization results, we design the algorithm WDPS to
select a group of ‘‘high quality’’ paths for every two vertex.
Such pathes are maintained in the path set KP for providing
high quality paths to workers when they are going to carry
out a task.

To maintain the elements in KP both effectively and
efficiently, in this paper, we propose a novel index named
PCR-Tree(short for Path-Compression-R)-Tree. As the basic,
we propose a pre-processing algorithm named PCPS(short
for Path Cover-Partition- Substitution). Our goal is to reduce
the KP scale and provide PCR-Tree with powerful filtering
ability. The first phase of KP scale reduction is called as
path cover. Since some paths are covered by other paths,
we are going to deleting such paths. The second phase of
KP scale reduction is called as path substitution. Since there
exist multitudes of common subpaths among elements inKP ,
we could use a few ‘‘tags’’ to substitute the original paths by
effectively labeling these common subpaths. In such a way,
theKP scale could be further reduced. For the path partition,
we partition the elements in KP into a few sub-paths, use
a group of MBRs with relatively small area to bound these
paths. In this way, we could provide these paths with tight
boundary, and enhance the filtering ability of PCR-Tree.
Based on the pre-processing results, we construct

PCR-Tree. It is a R-tree based index, an MBR R bounding
all these sub-paths is computed according to the root of the
PCR-Tree and have an association with it. The construction
of PCR-Tree is done by recursively partitioning each region
into smaller subregions, which guarantees that the amount of
children in each subregion is roughly the same and less than
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FIGURE 3. The Framework Overview.

the page size (eg., 4KB). Finally, we construct an inverted list
for every leaf node ef to record which sub-paths are contained
in ef . A group of bit-compression techniques to express the
information maintained in PCR-Tree are proposed to further
reduce the space cost. Accordingly, the overall space cost of
PCR-Tree could be reduced a lot.

Once a task t is submitted, the platform should assign a
worker w to t and plan a suitable path. To achieve this goal,
the platform first submits a range query to the system, searchs
the workers contained in the query range. If there exist empty
workers contained in the query region, we randomly select
an empty worker for the task t . In addition, we search on the
PCR-Tree for selecting the candidate paths. Finally, we utilize
an ELM-based algorithm for verification. If there not exist
empty worker contained in the query region, we invoke the
algorithm PRP for finding a suitable worker, and incremen-
tally re-planning the path.

IV. HIGH QUALITY PATH MAINTENANCE
In this section, we first discuss the summary information
construction, and then discuss the high quality paths selection
and pre-condition. Last of this section, we discuss the index
PCR-Tree.

A. ROAD NETWORK SUMMARIZATION
As discussed in Section 3, it is difficult to construct a suitable
cumulative weight function for evaluating worker weight.
In this section, we address this challenge by computing
the summary information of tasks/workers distribution via
accessing the historical transaction record set. The summa-
rization algorithm contains two phases which are initializa-
tion and merge.

Let HT be the historical transaction record set. In the
initialization phase, we build a vector gv for each edge e ∈ G.
Its role is to describe the tasks/workers distribution over e.
To be more specific, given an edge e contained in G,
we first partition e into d |e|m e sub-edges. For each sub-edge ei,
we search onHT for finding the tasks/workers contained in its

impact region. Here, the impact region of e is ∪IR(xi)(xi ∈ e).
Assuming the tasks amount is αi and workers amount is βi,
we set gv[i] to αi

βi
. After accessing all the sub-edges, gv is

initialized to 〈α1
β1
, α2
β2
, . . .

α
d
|e|
m e

β
d
|e|
m e
〉.

After initializing, the algorithm enters into the merge
phase, where we merge the adjacent elements in gv together
if their difference is smaller than a threshold τ . Compared
with the initialization result, we could use as small space
cost as possible to describe the edge weight distribution
function. Specifically, given the i-th element gv[i] in gv,
if |gv[i]− gv[i− 1]| is smaller than a threshold τ , we use the
tuple 〈 gv[i]+gv[i−1]2 , cnt〉 to substitue the original one. Here,
cnt refers to the number of the elements which are merged
together. For each edges, the above operations are repeating
executed to construct vectors.

DISCUSSION
The distribution of workers/tasks is not only relate to their
location but also time. For example, the amount of work-
ers/tasks around an edge is usually large at eight o’ clock in
the morning, but small at eleven o’ clock in the evening. Thus,
in real applications, we should use a two-dimension vector to
describe the relationship among workers/tasks distribution,
namely location and time. The technique discussed in this
section could be applied to construct the two-dimension vec-
tor. In the following, we will use an example to explain the
details.
Example 7 (Road Network Summarization): Take an exa-

mple in Fig. 4. Given the historical transaction record set R,
we partition the records in R into 12 parts. Here, the records
in R1 are generated from the time period 0:00pm to 2:00pm
in each day, the records in Ri are generated from the time
period i + 2 : 00pm to i + 4 : 00pm in each day. After
partitioning, we compute the number of records contained
in each subset, and merge the subsets together if their size
difference is small. For each merging result, we compute the
summary information for each edge in G according to the
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FIGURE 4. The Records Summarization.

merging results, where we compute how many tasks/workers
are contained in the impact region of each edge respec-
tively. Given an edge e57(from V5 to V7), we partition it
into 4 sub-edges {e157, e

2
57, e

3
57, e

4
57}. For the sub-edge e157,

there exist 2 tasks and 1 worker in its impact region, we set
gv[0] to 2. After initializing, gv is set to {2, 1, 1, 3}. Since
τ = 1, we could merge gv[0], gv[1] and gv[2] together.
After merging, the vector turns to {〈1.3, 3〉, 〈3, 1〉}. Last of
all, we could use a two-dimensional vector to express the
summary information of an edge.

B. HIGH QUALITY PATH SELECTION ALGORITHM
Once the summary information of the road network G is
constructed, we select a group of high quality paths for every
two vertexes. In the following, we introduce the concept of
KPath and discuss the high quality path selection algorithm.
Definition 8 (KPath): Given two vertexes vi, vj ∈ G,

the path pu(i, j) in the KPath set KP(i, j) should satisfy the fol-
lowing two conditions: (i) the inequality |pu(i,j)|

|opt(i,j)| ≤ ε should
be satisfied; (ii) for all the paths satisfying condition (i),
the elements in KP(i, j) are the k paths with highest scores.
Here, the score of a path is computed based on Equation 7.

F(p) = EW(p)× Div(p) (7)

Here, EW(p) is the expected worker weight when w
passes the path p, which is computed by Equation 8. ψ(l),
i.e., 0 < ψ(l) < 1, describes the distribution of task distance.
Div(p) evaluates the diversity of p under KP(i, j). As depicted
in Fig 5, p1, p2, p3 are three paths with highest expected
work weight, i.e., EX(p1) > EX(p2) > EX(p3). Intuitively,
we usually recommend p1 as the planning path since it has
the highest expected worker weight. However, since p1 is
computed according to the historical transaction record set,
if the distribution of tasks andworkers around p1 is significant

FIGURE 5. The Paths Diversity.

different from the current condition, the quality of recom-
mendation result may be low. Hence we should select other
paths from KP(i, j). Among them, p2 is nearer to p1 than p3.
Although p2 has relatively higher expected worker weight,
the tasks and workers distribution over p2 may be similar
with that of p1. In this case, it still may be a low quality
recommendation result. In this case, p3 is more suitable to
the set KP(i, j) than p2.

EW(p)

=

i=d |p|m e∑
i=1

min(
∑

EW(upj)
∫ mj

m(j−1)
ψ(l)+W(upi), ϕ) (8)

Div(p)

=


x = 1 ∀pi,

∑
euclidean(c(upui ), c(up

d
mu
n e

j )) ≥ η

pi ∈ kPath

y = 0 ∃pi,
∑

euclidean(c(upui ), c(up
d
mu
n e

j )) < η

pi ∈ kPath
(9)
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Before explaining the kPath construction, we first explain
the path distance diversity evaluation. In this section, we use
the distance among paths to evaluate the diversity of paths.
Given two path pi, pj with the unit path set UPi and UPj,
if |UPi| = m and |UPj| = n(m > n), the distance between

pi and pj is
∑

euclidean(c(upui ), c(up
d
mu
n e

j )). Here, c(upui )
refers to center of the u-th unit path contained in the path pi.
euclidean(c(upui ), c(up

d
mu
n e

j )) refers to the Euclidean distance

between c(upui ) and c(up
d
mu
n e

j ). Accordingly, the diversity of a
path is computed based on Equation 9. The intuition behind
is given two paths with the same starting location/destination
location, if EW(p1) > EW(p2) and their distance is small, it is
unnecessary to maintain p2.
The kPath construction is depicted inAlgorithm 1.Wefirst

compute the shortest path between two given vertexes and
then enumerate all the pathes that are satisfying the distance
constraint condition. Subsequently,we sort them according to
their expected worker weight. Based on the sorting results,
we select the k-th highest scores as the final result. Since
the process is simple, we skip the details for the limitation
of space.

Algorithm 1 The kPath Construction Algorithm
Input: Road Network G, vertex vi, vj
Output: The kPath P

1 Path p← shortestPath(vi, vj);
2 Path Set PS ← constraintPath(vi, vj, ε);
3 comSharedWeight(PS), sort(PS) ;
4 PS[0].div← 1, P← P ∪ PS[0];
5 while i from 2 to |PS| do
6 F(PS[i])← comScore(PS[i]);
7 if |P| = k ∨min(P) < F(PS[i]) then
8 P← P ∪ PS[i];
9 P← P−min(P);
10 if |P| < k then
11 P← P ∪ PS[i];

12 return;

C. HIGH QUALITY PATH PRECONDITIONING ALGORITHM
Directly using kPath between every two vertexes to answer
(ε, ϕ)-CBPP problem is effective but impractical for the high
space cost. In addition, paths in KP are usually expressed
by irregular fold lines, it is difficult to effectively provide
themwith tight boundarywhen indexing them. In this section,
our solution is inspired by the following three observations.
From observation 4.1 and 4.3, we can conclude that if we
could delete the redundant paths(or sub-paths) inKP , theKP
scale could be effectively reduced. From observation 4.2,
if paths are properly partitioned into sub-paths, we could
provide elements in KP with tight boundary. Based on the
above observations, we propose the algorithm PCPS, which
contains three steps: covered path removing, path partition

and path substitution. In the following, we first discuss the
path cover.
Observation 9: Given two paths pi and pj in the path

setKP , if pi is a sub-path of pj,KP is equivalent toKP−pi.
Observation 10: Let pi be a path inKP , p1i and p

2
i are two

sub-paths of pi, i.e., p1i ∪ p
2
i = pi and p1i ∩ p

2
i = ∅, if we

construct three MBRs MBR(pi), MBR(p1i ) and MBR(p2i ) for
bounding them, |MBR(pi)| must be larger than |MBR(p1i )| +
|MBR(p2i )|.
Observation 11: Given two paths pi and pj in the path

set KP , if pi ∩ pj 6= ∅, |pi| + |pj| < |pi ∩ pj|.

1) THE COVERED PATH REMOVING
From observation 4.1, we can conclude that if a path pi is a
sub-path of pj in KP , it is unnecessary to maintain two paths
respectively. In other words, if we can find a path set that
could cover all the elements in KP , we could delete them,
and the overall space cost could be reduced a lot accordingly.

In order to achieve this goal, we construct the set V , where
the element Vi ∈ V contains all the vertexes in pi. Next,
we are going to find another set V ′. It should satisfy that, for
each Vi, we could find a set V ′u ∈ V ′ containing Vi. In the
following, we apply the greedy strategy to construct V ′. To be
more specifically, we sort all the elements in V according to
their size. After sorting, we input the element with the largest
size into V ′. From then on, we access the other ones in V . For
each element Vi, if it is contained by another element in V ′,
we ignore it. Otherwise, we insert it intoV ′.When all the ones
in V are accessed, we use the ones in V ′ as the compression
result.

Algorithm 2 The MPC Algorithm
Input: Path Set KP
Output: The Compression Result KP

1 Set V ← constructVSet(KP);
2 sort(V );
3 Set V ′← V [0];
4 while |V | 6= 0 do
5 if V [0] is a subset of the elements in V ′ then
6 V ′← V ′ ∪ V [0];

7 V ← V − V [0];

8 KP ← update(V );
9 Return;

2) THE PATH SELF-ADAPTIVELY PARTITION
As will be reviewed Section 4.4, we use a group of minimal
bounding rectangles (short for MBRs) as the boundaries of
these high quality paths in KP . In order to provide these
paths with tight boundary, we partition them into a group of
sub-paths. Accordingly, the corresponding MBRs area sum
could be reduced a lot. In this section, we employ the greedy
strategy for optimizing the partition. Our goal is to make the
area sum of these MBRs as small as possible in the premise
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FIGURE 6. The Records Summarization.

that the partition amount of a path is less than a thresh-
old ε|p|. Here, |p| is the vertexes amount contained in p, and
0 < ε < 1.

Algorithm 3 The Path Partition Algorithm
Input: Path p, Partition max size ε|p|
Output: Partition Result P

1 MBR Set Mr , Mv, Num Set 1;
2 Mr [1]← initMBR(v1, v2);
3 for i from 2 to |e| − 1 do
4 Mr [i]← initMBR(vi, vi+1);
5 Mv[i− 1]←mergeMBR(Mr [i− 1], Mr [i]);
6 1[i− 1]← |Mr [i]| − |Mv[i+ 1]| − |Mv[i]|;

7 Min-Heap H ← initMinHeap(1);
8 while |H | ≤ ε|e| do
9 Node 1[t]← getRoot(H );
10 Mv[u]← search(1[t]);
11 Mv[u− 1]←mergeMBR(Mv[u− 1], Mv[u]);
12 Mv[u+ 1]←mergeMBR(Mv[u], Mv[u+ 1]);
13 delete(Mu), adjust(H );

14 P ← partition(p, H );
15 return r ;

As depicted in Algorithm 4, given a set of vertexes con-
tained in the path p, we construct a set of MBRs, denoted
byMv, for every two adjacent vertexes. Based onMv, we then
construct another group of MBRs, denoted by Mr , for every
two adjacent MBRs contained inMv. The reason we construct
Mv is to evaluate the area difference relationship among
MBRs inMv andMr . Intuitively, if the area difference is small,
the corresponding vertexes could be partitioned into the
same sub-paths.Take an example in Fig.6(a), since |Mv[4]| −
|Mr [4]| − |Mr [5]| is small, the vertexes v4, v5 should be
partitioned into the same sub-path. In this case, the corre-
sponding MBR could also tightly bound the edges e4 and e5.
By contrast, |Mv[2]| − |Mr [2]| − |Mr [3]| is relatively large,
v2 and v3 should belong to different sub-paths.

1i = |Mr [i]| − |Mv[i+ 1]| − |Mv[i]| (10)

After initializing the set Mv and Mr , we construct another
set named 1. Here, 1i ∈ 1 is computed according to
Equation 10, andMr [i] is the i-th MBR contained inMr . The
elements in 1 are sorted in ascending order, and maintained
by a min-heap H . The reason we introduce H is to evaluate

which vertexes could be partitioned into the same sub-paths
according to the root ofH . To be more specifically, assuming
R(H ) is the root ofH , its corresponding MBRs inMr isMr [i],
we first updateMr [i− 1] toMr [i− 1]∪Mr [i], andMr [i+ 1]
to Mr [i] ∪ Mr [i + 1]. We then delete Mr [i]. Accordingly,
we updateH . From then on, we repeat the above operations to
maintainH . When the size ofH reduces to ε|p|, the algorithm
is terminated.

Back to the example in Fig6. There are 6 vertexes con-
tained in the path p and ε is 0.5. We should partition p into
3 sub-paths. We first construct the MBR set Mr , Mv, and ini-
tialize the min-heap H accordingly. From then on, we repeat
line7 to line13 in Algorithm 4 to maintain H . When the size
of H decreases to 3, the algorithm is terminated. At that
moment, the path p is partitioned into {v1, v2}, {v3}, and
{v4, v5, . . . , v6}.

3) THE PATH SUBSTITUTION
From observation 4.3, if there exist common sub-paths among
different paths in KP , we could construct a group of ‘‘tags’’
for substituting the original paths. Take an example in Fig 7.
p1 is constructed by {v1, v3, v5, v6}, and p3 is constructed by
{v1, v3, v5, v7}. p1 ∩ p3 is {v1, v3, v5}. If we use a tag V1 to
express {v1, v3, v5}, p1 and p3 could be substituted by {V1, v6}
and {V1, v7}.

FIGURE 7. Searching On PCR-Tree(k = 1).

Based on this observation, our goal is to find and label a
group of common sub-paths from KP , then use the labelling
results for substituting the original paths. In this paper,
we propose a hash-based approach to achieve this goal. To be
more specific, for each path p in KP , we first enumerate
all the sub-paths contained in p. We then initialize the hash
table HT , where the enumerating result is mapped to a hash
tableHT . Assuming enum(KP) contains all the enumerating
results of all the elements in KP , we set the size of the hash
table HT as 2 × |enum(KP)|. Furthermore, each element in
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HT is expressed by the tuple 〈p, cnt〉. Here, p refers to a sub-
path, cnt counts how many paths in KP have the common
sub-path p.

Let sp be a sub-path of p, HT be the hash table, and
HF be the hash function. If HF(sp) = i, we access HF[i].
If HF[i].p equals to sp, we add HF[i].cnt to HF[i].cnt + 1.
If HF[i] is null, and we set HF[i].p to sp, set HF[i].cnt to 1.
In particularly, if HF[i].p 6= sp, we adopt linear detection
method for maintaining sp. After initializing, we are going to
construct the common sub-paths set, and use these sub-paths
for substituting the original paths. We first sort the elements
in KP according to their length in descending order. After
sorting, we access the longest path plst in KP for construct-
ing the set cover(plst ). It contains two types of elements.
The first type of elements are the vertexes contained in plst .
The second type of elements are sub-paths in plst that are
‘‘shared’’ by the other paths. Intuitively, given a sub-path
sp ∈ plst , if HF[HF(sp)].cnt > 1, sp must be shared
with other paths. Next, we access cover(plst ), and construct
another set min(plst ), where the elements in min(plst ) should
satisfy the following three condition. Here, vertex(plst ) refers
to the vertex set of plst .
• for each two selected elements Si and Sj in cover(plst ),
Si ∩ Si = ∅;

• vertex(min(plst )) = vertex(plst ).
• the size of min(plst ) should be as small as possible.
In this paper, we use the key of greedy for constructing

min(plst ). Since the algorithm is similar with one discussed
in path cover, for the limitation of space, we skip the details.
For the sub-path sp′ that are not contained in min(plst ),
we access the corresponding hash table HF[HF(sp′)], and
set HF[HF(sp′)].cnt to HF[HF(sp′)].cnt − 1. We repeat the
above operations to construct min(p) for other path p. After
accessing all the paths contained in KP , we check hash table
HT for finding which sub-paths are selected as the common
sub-paths. For these ones, we associate them with an ID.
Accordingly, the paths inKP could be substituted by a group
of sub-path ID information.

D. THE PCR-TREE
In this section, we propose a novel index named PCR-Tree
for indexing high quality paths. It is a R-Tree based index.
Given a node e in the PCR-Tree T , it contains two types of
information, which are location and sub-paths. In this section,
we use bit vectors to store these two types of information
so as to reduce the space cost. For the location information
maintenance, given a MBR R that bounds all the vertexes,
we use a ‘‘virtual grid’’ VG(2m × 2m) to partition R. In this
way, we could use ‘‘cell ID’’ to approach the location of a
node. Since the ID information of a cell could be expressed
by a bits vector, we could use a m-bits vector to express the
left-bottom (right-upper) coordinates of a MBR. Compared
with using true coordinates to express the location of a MBR,
the bit vector helps us reduce the space cost a lot.

We then study the path information maintenance. In this
section, we use inverted-list to maintain sub-paths contained

in a node. Given a node e, the i-th sub-paths, i.e., denoted
by e.l[i], could be expressed by the tuple 〈gId, sId〉. Here,
gId refers to the Id of a path p, and sId is the sequence
number of p. In this section, we still use a dlog ue + dlog ve-
bits vector to express a tuple. Here, u is the total number
of paths in, and n is the maximal partition amount among
all these paths. Assuming we select 220 high quality paths
from the historical record set, and the partition amount is
bounded by 10, we could use a 23-bit vector to express
a tuple, and this part of space cost could be reduced a
lot.

V. INCREMENTAL PATH PLANNING
Recalling Section 3, when a task t is submitted, the platform
should select a worker, and plan the path for t . In the follow-
ing, we first discuss the worker selection.

A. WORKER SELECTION ALGORITHM
In this section, we propose the algorithm DCWS (short for
distance constraint based worker selection) for worker selec-
tion. The algorithm contains two steps, which are searching
and verification. In the first step, we submit a range query
r × r with the the center t.s to the platform, and then search
the workers contained in the query range. From then on,
algorithm enters into the second step.

Algorithm 4 The Worker Selection Algorithm
Input: Task t , Road NetWork G
Output: Worker S

1 Worker S ← RangeQuery(t.s, G);
2 if S = ∅ then
3 retrun ∅;

4 sort(W );
5 if existEmptySet(S 6= ∅) then
6 Worker S0← getEmptySet(W );
7 s← random(S0);
8 CPS(w);
9 return w;

10 for i from 1 to |S| do
11 if IncVer(S[i])=true then
12 IPP(S[i]) return S[i];

13 return ∅;

The second step is choosing the suitable worker. Recalling
Section 3, the workers can be divided into three types, which
are full, empty and non-full. In order to guarantee the ‘‘worker
load balance’’, we prior consider the empty workers in the
query result set S. Let S0 be the empty workers contained in
the query region. We randomly select a worker for the task t ,
and then invoke the CPS algorithm for planning the path(See
Section 5.2). If there is no empty worker in the query result,
we invoke the algorithm PRP for finding the suitable worker
and incrementally re-plan the path.
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B. THE CPS ALGORITHM
Once the platform assigns worker w to the task t , it should
search PCR-Tree to find the corresponding kPath according
to the starting location(destination location) of the task t .
Since kPath contains a group of paths, we design an ELM-
based algorithm for further verification. In the following,
we first discuss the PCR-Tree searching algorithm.

1) SEARCHING ON PCR-TREE
The searching algorithm is to find the corresponding set
kPath according to the starting location(destination location)
of the task t . In the following, we use observation 5.1 for
pruning subtrees that do not contain qualifying paths, and
observation 5.2 for finding leaf nodes that contain the final
kPath.
Observation 12: For a task t with starting location t.s and

destination location t.d , the subtree of an intermediate entry
e can be pruned if t.s (or t.d) does not intersect with MBR(e).
Observation 13: For a task t with starting position t.s

and destination t.d , assuming t.s is contained in es, t.d is
contained in ed , if es.tp ∩ ed .tp 6= ∅, the final e-path may
be contained in es.tp ∩ ed .tp.

Based on the above observations, we formally discuss the
kPath searching algorithm. Given the task t〈v, u, s, d, p〉,
the search starts from the root, and eliminates its entries
according to Observation 5.1. For each remaining entry,
we retrieve its child node, and perform the above process
recursively until a leaf node is reached. For the leaf nodes
that are not able to be pruned by Observation 5.1, we use
Observation 5.2 for further reducing the candidate leaf nodes
scale. After the necessary nodes in the PCR-tree have been
visited, we start the refinement step for processing scan.
In this phase, the intersection results, i.e., a set of sub-paths
are first grouped by their associated paths. For each path,
the scanning is performed to check the detailed information.
Last of all, we use the final result k as the candidate paths set.
Example 5.1 shows the details of searching on PCR-Tree. For
simplicity, we set k to 1.
Example 14 (Searching On PCR-Tree): Take an example

in Fig 7. The PCR-Tree T maintains 8 paths. Given the task
t〈v, u, s, d, p〉, we first search on T for finding the leaf nodes
that contain t.s and t.d . Because t.s is contained in e2 and
t.d is contained in e4, we further access these two nodes
for finding the final path. Since the paths corresponding to
e2 is {p2, p4, p5}, and the the paths corresponding to e4 is
{p1, p3, p4}, the final result is p4.

2) CANDIDATE PATH VERIFICATION
Since the size of a kPath set is larger than 1, we should
further access them for finding the final result. Usually,
we select the path with the highest score as the planning path.
However, in many cases, the distribution of tasks/workers
in the current road network is different from the one in
the historical transaction record set. In this case, we should
compute the excepted worker weight of the other path, and

select the one with the highest weight as the final result. From
Equation 8, we can conclude that it is costly to compute the
excepted worker weight of a path. In this section, we propose
a novel algorithm named EWP(ELM-based Worker Weight
Prediction) to solve this problem.

ELM is an efficient machine learning based algorithm.
Given the kPath set kp(i, j), ELM is used for judging whether
the current distribution of tasks(or workers) contained in
IR(pmax) is similar with the ones in the historical record set.
Here, pmax refers to a path in kp(i, j) with highest score,
and IR(pmax) refers to the impact region of pmax . Intuitively,
if the answer is yes, pmax can be used as the query result.
Otherwise, we should further check the other candidates.
In this case, the algorithm first constructs a feature vector
according to the tasks/servers distribution around candidate
paths, and then input the feature vector into an ELM-based
classifier for verification. In the following, we first discuss the
tasks/workers distribution summarization. Based on the sum-
marization result, we explain the feature vector construction.

a: TASKS/WORKERS DISTRIBUTION SUMMARIZATION
Given a path p, we use the summary information of the
tasks/workers distribution over p to evaluate the worker
weight. At the beginning, we discuss the workers and tasks
maintenance. Given the worker set W , we use a grid file G
with the resolution r × r for indexing the location of these
workers. In addition, we maintain the number of workers in
each cell c, denoted by |c.s|. When a worker moves from the
cell c1 to the cell c2, we add |c2.s| to |c2.s| + 1, and minus
|c1.s| to |c1.s| − 1. We use the same method to maintain
the passengers in G. For the limitation of space, we skip the
details.

Let UP(p) be the unit paths contained in the path p. Similar
with the algorithm discussed in Section 5.1, the summary
information is also described by a vector sv(p) with the size
|UP(p)|. In this paper, for each unit path upi ∈ p, we submit a
range query with the region IR(upi) to the system for finding
cells contained in (or intersected with) IR(upi). If a cell c
is contained in IR(upi), we add upi.w to upi.w + |c.s|. If a
cell c is intersected with IR(upi), we approach the number of
workers contained in c′ based on |c

′.s|Area (c,qi)
r×r . We use the

similar algorithm to compute the tasks contained in IR(upi).
Accordingly, the i-th element in the vector is computed
by Equation 11. We repeat the above operations to finish
constructing sv(p).

sv[i] =
u=|v|∑
u=0

|ci.p|Area(c, qi)
r × r

/

u=|v|∑
u=0

|ci.s|Area(c, qi)
r × r

(11)

b: FEATURE VECTOR DISCUSSION
Let sv(p) be the summary information vector of a path p,
we first study the relationship between worker weight and the
distribution of the elements in sv(p). And then, we extract a
few characters from sv(p) for constructing the feature vector.
To be more specifically, we use the tuple 〈sum,wsum, seg〉
as the feature vector. The first element named V(sum) is
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computed based on
∑

sv(p)[i]. Intuitively, the higher the
V(sum), the more the tasks a worker may take. It is significa-
tively to use V(sum) as an element of the feature vector.

V(wsum) is computed by Equation 12. Compared with
V(sum), we use the function f (i) to describe the weight of
elements in sv(p). Here, f (i) is decreasing with the parame-
ter i. Given two paths p1 and p2 with the summary information
vectors 〈3, 0.5, 1, 0.5〉 and 〈0.5, 0.5, 1, 3〉, although V1(sum)
equals to V2(sum), the workers under p1 may take more tasks
than that of p2. The reason is, the earlier the worker w takes
tasks, the earlier the w finishes these tasks, and it has more
chances for w to execute other tasks. Therefore, V(wsum)
could more effectively evaluate the expected worker weight
of a path.

V(wsum) =
∑

f (i)sv[i] 0 < c < 1 (12)

V(seg) is computed by Equation 13. Compared with
V(wsum), it could more effectively evaluate the number of
tasks a worker may execute in many cases. Given two paths
p3 and p4 with the vectors 〈3, 0.1, 3, 0.1〉 and 〈3, 3, 0.1, 0.1〉,
although V1(sum) = V2(sum) and V1(wsum) < V2(wsum),
theworkersw over p3 may takemore tasks than that of p4. The
reason is the worker wmay turn to full when it passes the first
unit path of p3 and p4. In this case, although sv(p4)[2] = 3,
the worker w may have no ability to take other tasks after
w passes the second unit path of p4. By contrast, although
sv(p3)[2] = 0, it has no impact to the benefit of w. When the
worker w arrives in the third unit path of p3, some tasks of w
may be finished, it could take new tasks with high probability
since sv(p3)[3] = 3.

V(seg) =
i=d∑
i=0

max(ϕ, sv(p)[seg ∗ i+ 1], . . . ,

sv(p)[seg ∗ (i+ 1)]) d =
|sv(p)|
seg

(13)

c: THE PATH SELECTION
In this section, we divide paths into five types, which are
High, rHigh, Median, rLow, and Low(See Equation 14).
Here, EX (p) refers to the excepted work weight of a path.
Given two vertexes vi and vj and their corresponding kPath
set kp(i, j), the role of path selection is if C(pmax) under
historical record set is no smaller than that of under current
road network, we use pmax as the planning path. Otherwise,
we should access the other elements in KP(i, j) for fur-
ther evaluation. Here, pmax is the path with highest score
in KP(i, j).
In this section, we propose an ELM-based algorithm for

evaluation. Since the classification speed of ELM is much
faster than that of the other machine learning algorithm, it is
suitable for classification in the high overload environment.
To be more specifically, we access the path in the candidate
set one by one, and end the algorithm when we find a suitable
path. We first construct the feature vector for pmax , and then
input it into the ELM-based classifier. After classifying, if the

path selection rule is satisfied, we use pmax as the final result.
Otherwise, we go on accessing other paths. In particularly,
if no path satisfies the path selection rule, we still use pmax as
the planning result.

C(p) =


high 0.8c ≤ EX (p) ≤ c
r-high 0.6c ≤ EX (p) ≤ 0.8c
median 0.4c ≤ EX (p) ≤ 0.6c
r-low 0.2c ≤ EX (p) ≤ 0.4c
low 0 ≤ EX (p) ≤ 0.2c

(14)

d: THE CACHE-BASED PATH SELECTION
In many real applications, some regions could be regarded
as ‘‘hot region’’, where these regions are usually regarded as
the starting/destination position. In this paper, we construct
a hash-based cache HC for such regions and their corre-
sponding high quality paths. Intuitively, if a user u submits a
requirement to the platformwith the starting/destination posi-
tion 〈u.s, u.d〉, and 〈u.s, u.d〉 is maintained by HC , we could
use the corresponding path for answer the query. In this case,
we could avoid searching on PCR-Tree and the classification.

To be more specifically, we construct a hash table H for
these hot regions. The elements in each bucket b ∈ H are
maintained by an inverted-list. In this section, we use the tuple
t 〈ED(s, d), p, cnt〉 to express the starting/destination posi-
tion 〈s, d〉 and their corresponding path p. Here, 〈ED(s, d)〉
refers to the encoding result of the tuple 〈s, d〉. cnt records
how many times t is accessed.
when a user submit a requirement to the planform with the

starting/destination position 〈u.s, u.d〉, we compute the hash
value according to F(E(u.s),E(u.d)). Here, F refers to the
hash function. Let F(E(u.s, u.d)) be v. If H (v) is not empty,
we check whether 〈E(u.s),E(u.d)〉 is contained in H accord-
ing to E(u.s, u.d). If so, we use the corresponding path as the
final result. Otherwise, we access PCR-Tree for searching.
In addition, we construct the tuple 〈ED(u.s, u.d), p, 1〉, and
insert it into H .

A natural question is if an element in H is maintained for
a long time, the distribution of workers/tasks may turn to dif-
ference. In addition, if too many elements are contained inH ,
the accessing cost may be high. In this paper, we periodically
update H . When this operation is invoked, we access all the
elements in H . For each of them t , if t.cnt ≤ δ, we delete is
fromH . Otherwise, we invoked the algorithm CPS for update
the path.

3) PATH RE-PLANNING ALGORITHM
If we cannot find empty workers in the query region,
we should select a non-full worker to execute the task t .
For each non-full worker w contained in the query region,
we should judge whether w is still a (ε, ϕ)-worker once t is
assigned to w. If so, we assign w to t , and then re-plan the
path for w.
Constraint 15 (Distance Constraint): Given the task ti

taken by the worker w, if its corresponding pre-planning path
is pi, pi should satisfy |spi|−|sp(pi)|

|spi|
≤ ε.
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Algorithm 5 The Incremental Path Re-Planning
Algorithm
Input: Road Network G, Worker w, Task t
Output: Worker w

1 Vertex v← (findNearest)(s.p, t.s); if 6 tsvv′ > 90◦ then
2 Path p1←CPR(ts, v);
3 Path p2←CPR(v, v′);
4 s.P← s.P ∪ p1 ∪ p2 − pvv′ ;

5 if 6 tsvv′ < 90◦ then
6 Path p1←CPR(ts, v);
7 Path p2←CPR(v, v′);
8 s.P← s.P ∪ p1 ∪ p2 − pvv′ ;

9 DisConstraint();
10 return ;

Constraint 16 (Benefit Constraint): Given the task set
T (w) of the worker w and a new task t ′, once t ′ is assigned
to w, the total cost of task set T ′(w)(i.e., cost(T ′(w))) should
be more than cost(T (w)).

To be more specifically, given the starting/destination
points set SU(w) of the worker w and the task t , we first
search on SU(w) for finding the point pi in SU(w) that is
nearest to ts. If 6 tspipi+1 > 90◦, we invoke theCPS algorithm
to plan the path that passes the vertexes pi−1, ts and pi.
Otherwise, we invoke the CPS algorithm to re-plan the path.
Next, we repeat the above operations to plan path for td .
After re-planning, we update the path set according to the
re-planning results, and check whether the new path of w
could satisfy Constraint 1. If so, we assign w to t . Otherwise,
we rollback the re-planned path to the original version.

VI. EXPERIMENTAL EVALUATION
In this section, we conduct extensive experiments to demon-
strate the efficiency of PPVF. The experiments are based
on three real datasets. In the following, we first explain
the settings of our experiments, and then report our
findings.

A. EXPERIMENTAL SETTING
1) DATA SET
In total, three real datasets are used in our experiments,
including BeiJing, California and Texas. BeiJing refers to
the road network of Beijing in China. In order expressed
the distribution of passengers/workers over G, we first par-
tition the whole space via a grid file with the resolution
len
r ×

width
r , where len and width refers to the length/width

of Beiging. After partitioning, we randomly generate a group
of passengers/workers for each cell, i.e., (5000 workers and
10000 tasks for defaults) In order to simulate the changing of
passengers/workers distribution, we further randomly gener-
ate a few passengers/workers for parts of cells. In addition,
we delete a few passengers/workers for other cells per period.
we use the similar method to construct tasks/workers sets

under California and Texas respectively. The details of these
three dataset could be seen from Table 2.

TABLE 2. Dataset description.

2) COMPARISONS, METRICS AND PARAMETERS SETTING
we compared the results of our framework named PPVF with
two other approaches: TREE and APART. When implement-
ing, for one thing, we randomly select a few passengers for
tasks construction. Once it is assigned to a driver, we delete
it from the current cell. In addition, we randomly construct a
group of new tasks for some cells in the grid file.

In our experiments, we measure the following metrics by
varying different parameters of the system, which are service
rate and response time. Here, service rate refers to the per-
centage of requests that were completed. response time refers
to the time a request is matched by a driver. We consider three
parameters in our study. The parameter settings are listed
in Table 3 with the default values bolded. All the algorithms
are implemented with C++, and all the experiments are con-
ducted on an CPU i7 with 32GB memory, running Microsoft
Windows 7.

TABLE 3. Parameter settings.

B. CLASSIFICATION EVALUATION
1) CLASSIFICATION EVALUATION
In this subsection, we are going to evaluate the effect of the
classifiers based on the ELM, DNN, and SVM under different
data sets, i.e., called as ELM-classifier, DNN-classifier, and
SVM-classifier respectively. First of all, we firstly evaluate
the training time against different training set. We find that
the training time of ELM-classifier is much smaller than that
of other two classifiers.

For the accuracy of these three classifiers, we count the
‘‘False Positive’’ (and ‘‘False Negative’’) times when we
run the partition algorithm on the three data set, and use
the accuracy ratio as the final result. We find that the accu-
racy of ELM-classifier is roughly as the same as that of
SVM-classifier and DNN-classifier. Most important of all,
we find that ELM-classifier is also advantageous in terms of
classification efficiency. The reason behind is it spent less
time than the other two classifiers.

In summary, ELM-classifier performs better than both
SVM-classifier and DNN-classifier due to its better training
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FIGURE 8. Running time comparison under different passengers amount.

FIGURE 9. Service ratio comparison under different passengers amount.

TABLE 4. Training time(s).

TABLE 5. Classification time(s).

efficiency and classification efficiency as well. We want
to highlight that, under real-time taxi-calling application,
the classification efficiency is vital important since the algo-
rithm should satisfy the real-time requirement of users,
and ELM-classifier is suitable for classifying under such
environment.

2) COMPRESSION EVALUATION
Next, we are going to evaluate the effect of the compression
under these three datasets. As is depicted in table 6, we find
that the larger the scale of road network, the higher the
compression ratio. When we use 10% of the vertexes in each
data set, the compression ratio is only 21%. When we use the
whole dataset for evaluation, the compression ratio is 10%.
The reason is, for one thing, we remove all the covered paths.
For another, the path substitution helps us further reduce the
path scale.

TABLE 6. Compression evaluation.

C. ALGORITHM PERFORMANCE
In this section, we compare our proposed framework PPVF
with that of TREE and APART. We first evaluate the impact
of passengers amount to the algorithm performance. We set
the parameter ϕ to 4 and ε to 0.2. As is depicted in Fig 8,
PPVF performs best of all. The reason behind is, for one
thing, we use a hash-based cache to maintain a group of
‘‘hot requirements’’. In this way, we could avoid searching on
PCR-Tree and classification.More important, it is unsensitive
to the scale of both workers/passengers amount. For another,
the algorithm CPS is very efficient, which helps us quickly
find the ‘‘high quality’’ paths.

For the service ratio, as is depicted in Fig 9, PPVF
always select high quality paths for the workers. Intuitively,
the higher quality of paths, the more tasks are taken, and the
higher the service ratio. With the increasing of the passengers
amounts, the service rate under PPVF decreases much slowly
than that of TREE and APART. Therefore, we can conclude
that PPVF could provide workers with as high quality as
service.

We then evaluate the impact of parameter ϕ to the algo-
rithm performance. We set the parameter passengers amount
to 10000. In addition, we set ε to 4. As is depicted in Fig 11,
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FIGURE 10. Running time comparison under different ϕ.

FIGURE 11. Service ratio comparison under different ϕ.

FIGURE 12. Running time comparison under different ε.

FIGURE 13. Service ratio comparison under different ε.

PPVF performs best of all. With the increasing of the param-
eter ϕ, we could find that the service ratio under PPVF
increases much faster than that of TREE and APART before
ϕ achieves to 4. When ϕ achieves to 6, the service rate under
PPVF is similar with that of under 4. The reason is when ϕ is
large, most of tasks could be taken.

For the response time, from Fig 10, we find that PPVF
performs slightly better than the other two ones(only 66%
of the previous algorithms). The reason is PCR-Tree could

provide us with a powerful filtering ability for one thing.
For another, the classifying speed of ELM is much faster
than the others. Most important of all, we could use our
proposed hash-based cache to find high quality paths under
O(1) computational time.
Last of all, we evaluate the impact of parameter ε to

the algorithm performance. We set the parameter passengers
amount to 10000. In addition, we set ϕ to 4. As is depicted
in Fig 12 and Fig 13, PPVF still performs best of all. With the
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increasing of the parameter ε, the service ratio under APART
and TREE increases faster than that of PPVF. The reason is the
higher the ε, the more the tasks could be taken by workers.
By contrast, PPVF could provide workers with high quality
paths, it has the ability to process, as much as possible, tasks
in real-time. Therefore, PPVF is stable which help workers to
obtain high revenue in the premise of low ε.

VII. CONCLUSION
In this paper, we propose a novel framework named PPVF
for supporting path planning over carpooling. Different from
existing works, we focus on planning high quality paths
for workers to meet both passengers/workers’ convenience
and economic benefits. The algorithm HQPS for selecting
high quality paths among vertexes is proposed firstly, and
then we propose a novel index named PCR-Tree to main-
tain these paths. Furthermore, we propose a prediction-and-
verification-based algorithm for path planning. We conduct
extensive experiments to evaluate the performance of PPVF.
The results demonstrate the superior performance of PPVF.
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