
Received November 9, 2018, accepted December 2, 2018, date of publication January 9, 2019, date of current version January 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2891597

Toward High-Performance Implementation
of 5G SCMA Algorithms
ALIREZA GHAFFARI 1, MATHIEU LÉONARDON 2, ADRIEN CASSAGNE 2,3,
CAMILLE LEROUX 2, AND YVON SAVARIA 1, (Fellow, IEEE)
1École Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada
2CNRS IMS Laboratory, Bordeaux INP, University of Bordeaux, 33400 Bordeaux, France
3Inria, Bordeaux Institute of Technology, LaBRI/CNRS, 33405 Bordeaux, France

Corresponding author: Alireza Ghaffari (seyed-alireza.ghaffari@polymtl.ca)

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada, in part by the Huawei Canada, and
in part by the Prompt Quebec.

ABSTRACT The recent evolution of mobile communication systems toward a 5G network is associated
with the search for new types of non-orthogonal modulations such as sparse code multiple access (SCMA).
Such modulations are proposed in response to demands for increasing the number of connected users.
SCMA is a non-orthogonal multiple access technique that offers improved bit error rate performance and
higher spectral efficiency than other comparable techniques, but these improvements come at the cost of
complex decoders. There are many challenges in designing near-optimum high throughput SCMA decoders.
This paper explores means to enhance the performance of SCMA decoders. To achieve this goal, various
improvements to the MPA algorithms are proposed. They notably aim at adapting SCMA decoding to
the single instruction multiple data paradigm. Approximate modeling of noise is performed to reduce the
complexity of floating-point calculations. The effects of forwarding error corrections such as polar, turbo,
and LDPC codes, as well as different ways of accessingmemory and improving power efficiency of modified
MPAs are investigated. The results show that the throughput of an SCMA decoder can be increased by
3.1 to 21 times when compared to the original MPA on different computing platforms using the suggested
improvements.

INDEX TERMS 5G, BER, exponential estimations, intel advanced vector extensions (AVX), iterative
multi-user detection, knights corner instruction (KNCI), log-MPA, maximum likelihood (ML), message
passing algorithm (MPA), power efficiency, SCMA, single instruction multiple data (SIMD), streaming
SIMD extension (SSE).

I. INTRODUCTION
Non-orthogonal Multiple Access (NOMA) mechanisms are
investigated as means to improve the fifth-generation mobile
communication systems (5G) [1] to realize massive connec-
tivity and to reduce bit error rates. Sparse Code Multiple
Access (SCMA) is a NOMAmechanism that offers better bit
error rate performance and higher spectral efficiency, while
the sparsity of the codebooks ensures lower complexity of
decoding compared to other non-orthogonal modulations [2].
SCMA is a promising candidate for 5G communication
systems since it provides up to 300% more connectivity
by spreading information of each user’s codebook over
sets of shared OFDM frequency tones [3]. According to
the NGMN white paper [4], 5G is seriously considered to
fulfill more diverse scenarios compared to 4G. Applica-
tions can be broadband support in dense areas, low latency

connectivity for Augmented Reality (AR) and reliable com-
munication for intelligent industrial controls, Internet of
Things (IoT) or Internet of Mission Critical Things (IoMCT).
Unfortunately, massive connectivity and spectral efficiency
of SCMA come at the cost of high complexity in the decoder,
making the design of high throughput and low complexity
decoders a challenge for systems exploiting SCMA [5].

Exploiting sparsity of the codebooks, Belief Propagation
(BP) or Message Passing Algorithm (MPA) decoders were
introduced to achieve near Maximum Likelihood perfor-
mance with lower complexity [6]. Substantial research works
were conducted on improving SCMA decoders to satisfy
the uplink requirements of 5G. Indeed, MPA is populated
withmany exponential computations to calculate the extrinsic
information and probabilities of the received signal. This
is based on modeling the channel noise with a Gaussian

10402
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-1953-9343
https://orcid.org/0000-0002-9973-843X
https://orcid.org/0000-0002-6741-5329
https://orcid.org/0000-0002-4984-3485
https://orcid.org/0000-0002-3404-9959

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

probability density function (PDF). A classical improvement
to this bottleneck is the computation of extrinsic information
in the logarithm domain, which led to develop the log-MPA
decoder. In [7], fixed point and floating-point implemen-
tations of the MPA and log-MPA on FPGA are studied.
The bit error rate performance and complexity of the MPA
and log-MPA are compared and it is concluded that using
log-MPA with 4 message passing iterations achieves a good
tradeoff between performance and complexity. In [8], several
complexity reduction techniques are proposed to increase the
system throughput. These techniques are 1) SCMA code-
book design with minimum number of projections, 2) clus-
tered MPA (CMPA) which defines sub-graphs in MPA and
runs MPA on them, and 3) selected exponential computa-
tions. In [9] an adaptive Gaussian approximation is used
to unselect the edges of the graph with smaller modulus.
In addition, mean and variance feedbacks are employed to
compensate information loss caused by unselected edges.
User’s codebooks play an important role for fast conver-
gence of the MPA or log-MPA. As investigated in [10]–[12],
revisiting codebook design can help to reduce the number
of iterations needed for MPA decoding of SCMA. In [13],
an improved MPA is proposed which eliminates determined
user codewords after certain number of iterations and con-
tinue the iterations for undetermined user’s codewords. Sim-
ilarly, in [14], a belief threshold is set to choose the most
reliable edge probabilities and continue the iterations for
the others. A Shuffled MPA (S-MPA) is introduced in [15].
S-MPA is based on shuffling the messages between func-
tion nodes and variable nodes. As a result, the convergence
rate is accelerated. A Monte Carlo Markov Chain Method
is proposed in [16] to decode SCMA signals and sphere
decoding is also explored in [17] and [18] for SCMA receiver
design.

The main difference between this work and previously
cited works is that the present paper combines an analytic
view of MPA complexity with hardware and resource aware
programming, exploiting hardware features available in gen-
eral purpose processors (GPPs). The SCMA decoding algo-
rithms are revised in light of the needs of Cloud Radio
Access Networks (C-RANs) and to take full advantage of
key hardware features available in GPPs such as their SIMD
engine. In the early 2000s, the performance of many pro-
cessors improved significantly due to clock rate increases.
This increase of performance needed very minimal if any
programming effort, however the drawbacks of high clock
rate was more power and energy consumption, overheating
of processors, leakage currents and signal integrity problems.
These disadvantages led designers to follow new paradigms
such as thread-level and data-level parallelisms that pro-
vide good performance at lower clock speeds. Another chal-
lenge was data access efficiency in cache and RAM for
performance critical algorithms. Higher performance also
came from improved cache access efficiency of heteroge-
neous processors and parallel access to the L1 cache through

vectorized instructions. Therefore, complicated and control
heavy algorithms such as MPA have to be adapted for
efficient execution on heterogeneous architectures and their
exploitable parallelism must be expressed at every level of
the code, whether in arithmetic or memory access instruc-
tions. Particularly, various Single Instruction Multiple Data
(SIMD) extensions and thread-level parallelism are used
to increase the throughput of MPA decoding on various
platforms.

This paper reports on two contributions that can be useful
for any variation of the aforementioned MPA. First, MPA
and log-MPA have been adapted to use SIMD extensions
leveraging the available data-level parallelism. The algo-
rithms are revised to have aligned and contiguous access to
memory, which is crucial to achieve high memory through-
put. Various SIMD instruction set architectures (ISAs) such
as Advanced Vector Extensions (AVX), Streaming SIMD
Extension (SSE), Knights Corner Instruction (KNCI) and
ARM NEON are used to enhance the performance of var-
ious parts of the algorithm. Multi-threaded programming
technique and power efficiency are also studied in this
paper.

Second, efforts have beenmade to reduce the high dynamic
ranges and high storage burden that are induced by the numer-
ous calculations of the exponential function embedded in
MPA, which is one of its main points of congestion. To elim-
inate calculations of the exponentials in the MPA, this paper
uses approximate modeling of noise. Indeed, a Gaussian
Probability Density Function (PDF) is estimated with sub-
optimal, bell shaped, polynomial PDFs. Using polynomial
PDFs enables a significant throughput improvement with a
very small degradation on the bit error rate performance. In
addition, this technique enables to use vectorized instructions
for the calculation of the probabilities, as opposed to log-
MPA. Details will be explained in the sequel. The impacts
of turbo codes [19], polar codes [20] and LDPC codes [21]
are investigated.

In this paper, symbols B, N, Z, R and C denote binary,
natural, integer, real and complex numbers. Scalar, vector and
matrix are presented as x, x, X respectively. The n’th element
of a vector denoted by xn and Xn,m is the element of n’th row
and m’th column of matrix X . Notation diag(x) shows a diag-
onal matrix where its n’th diagonal element is xn. In addition,
the transpose of a matrix is expressed as XT . The paper is
organized as follows, Section II introduces the SCMA algo-
rithm. Maximum Likelihood, MPA and log-MPA decoding
methods are explained in this section as a background to this
research. Section III elaborates on proposed improvements
such as vectorizing the algorithm, exponential estimations,
contiguous access to memory and other hardware oriented
techniques. Section IV explores the bit error rate performance
as well as the throughput, the latency, the power consumption,
and the energy efficiency of the proposed MPA and log-
MPA implementations. Some profiling metrics are given to
better understand the results. Section V is dedicated to study

VOLUME 7, 2019 10403

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

FIGURE 1. a) SCMA encoder with 6 users (layers) and 4 physical resources, b) SCMA uplink chain with
channel coding, c) Factor graph representation of a decoder, d) Message Passing Algorithm based on
Bayesian factor graph: (I) Resource to user message, (II) Guess swap at each user and user to resource
message, (III) Final guess at each user.

the effects of suggested techniques on block error rate after
channel coding. Finally, the main findings of this research are
summarized in Section VI.

II. BACKGROUND
A. OVERVIEW OF THE SCMA SYSTEM MODEL
An SCMA encoder with J users (layers) and K physical
resources is a function that maps a binary stream of data
to K -dimensional complex constellations f : Blog2(M)

→

X, x = f (b) where X ⊂ Ck . The K -dimensional complex
codeword x is a sparse vector with N < K non-zero entries.
Each layer j = 1, . . . , J has its own codebook to generate
the desired codeword according to the binary input stream.
Fig. 1 shows SCMA uplink chain with J = 6, K = 4
and N = 2. SCMA codewords are spread over K physical
resources, such as OFDMA tones. Fig. 1a shows that in the
multiplexed scheme of SCMA, all chosen codewords of the J
layers are added together after being multiplied by the chan-
nel coefficient hj. Then, the entire uplink chain is shown
in Fig. 1b. The output of the SCMA encoder is affected by
the white additive noise n.

y =
J∑
j=1

diag(hj)xj + n, (1)

where xj = (x1, . . . , xKj)T and hj = (h1, . . . , hKj)T are
respectively codeword and channel coefficients of layer j.

B. SCMA DETECTION SCHEMES
1) MAXIMUM LIKELIHOOD
For an arbitrary codeword, the optimum decision, i.e. the
one that minimizes the likelihood of transmission errors after
decoding, is the one resulting from the Maximum Likeli-
hood (ML) estimation, which can be described as:

ˆxML = argmin
c∈X

||y− c||2, (2)

given the received codeword. In (2), the soft outputs x̂ are also
called Log-Likelihood Ratios (LLRs) that can be calculated
with the following equation:

LLRx = ln
(∑

C∈L0
x
P(y|c)∑

C∈L1
x
P(y|c)

)
, (3)

where LLRx is the log likelihood ratio of bit x obtained from
codeword x̂. This codeword comes from L1

x the set of code-
words in which bit x is 1 andL0

x the set of codewords in which
bit x is 0. The probability function P(y|c) can be expressed
as in (4) when a signal is transmitted over an additive white

10404 VOLUME 7, 2019

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

Gaussian channel with σ 2 variance:

P(y|c) =
1

√
2πσ

exp
(
−
||y− c||2

2σ 2

)
. (4)

Although the ML method provides the best guess forOxML,
performing the computation with this method requires unac-
ceptable complexity in real applications. In the case of six
users and codebooks matrices size 4 × 4 as in Fig. 1a,
the calculation of the soft output for each bit in (4) needs
4096 exponential function computations, which is unaccept-
able. Nevertheless, in this article the result of this method is
used to compare with practical methods to characterize the
BER performance degradation of MPA and log-MPA.

2) MESSAGE PASSING ALGORITHM (MPA)
Fig. 1c shows a Bayesian factor graph representation of an
MPA decoder with six users and four physical resources.
Thanks to sparsity of the codebooks, exactly three users
collide in each physical resource. There are four possible
codewords for each of the three connected user’s codebooks
which gives 64 possible combined codewords in each phys-
ical resource. In the first step of the MPA, the 64 distances
between each possible combined codewords and the actual
received codeword are calculated.

dRESβ (m,H) = ||yβ −
∑

hl,muxl,mu ||
l⊂ζ,mu∈{1,...,K }

, (5)

ζ is the set of users connected to resource β and the con-
sidered codeword is denoted as m. For instance, (5) can be
re-written for resource 4 as:

dRES4(m2,m4,m6,h2,h4,h5)

= ||y4 −
(
h2x2(m2)+ (h4x4(m4)+ (h5x5(m5)

)
||

m2,4,6=1,2,3,4
. (6)

In which m2, m4, m5 indicate the different codewords for
users 5, 4, and 2 in (6). Assuming perfect channel estima-
tion and Gaussian noise, these Euclidean distances can be
expressed as probabilities using (7):

9(dRESβ) = exp
(
−
d2RESβ
2σ 2

)
. (7)

After calculating the residual probability of each codeword
with (7), iterative MPA starts exchanging beliefs (probabil-
ities) on possible received codewords among the users and
resources nodes of the factor-graph. According to Fig. 1d(I),
a message from resources to users has been defined to con-
tain extrinsic information of two other connected users. For
instance, a message from resource 4 to user 2 containing the
probability information of codeword i can be expressed as:

µRES4→UE2(i) =
4∑
j=1

4∑
k=1

9
(
dRES4(i, j, k,H)

)
×µUE4→RES4(j)× µUE5→RES4(k). (8)

As shown in Fig. 1d(II) there are only two resources con-
nected to each user. A message from a user to a resource is a
normalized guess swap at the user node:

µUE3→RES1(i) =
µRES3→UE3(i)∑
i µRES3→UE3(i)

, (9)

message passing between users and resources (see (8)
and (9)) will be repeated three to eight times to reach
the desired decoding performance. The final belief at each
user B (i) is the multiplication of all incoming messages as
illustrated in Fig. 1d(III) and (10) for UE4 and codeword i.
Finally, (11) is used to calculate soft outputs for bit bx :

B3(i) = µRES1→UE3(i)× µRES3→UE3(i), (10)

LLRx = ln
(
P(y|bx = 0)
P(y|bx = 1)

)
= ln

(∑
m Bm(i) when bx=0∑
m Bm(i) when bx=1

)
. (11)

3) LOG-MAP
Since calculation of exponentials in (7) requires relatively
high computational effort, changing the algorithm to log
domain using the Jacobi formula (12) is a classical improve-
ment of MPA:

ln
(N∑

i−1

exp(fi)
)
≈ max{f1, f2, . . . , fN } (12)

using Jacobi formula, (8) can be reduced to:

µRES1→UE5(i) = max
(
−
d2RES1(i, j, k,H)

2σ 2

)
j,k=1,...,4

+µUE2→RES1(j)+ µUE3→RES1(k), (13)

due to elimination of exponential’s high dynamic ranges,
there is no need to normalize the guess swap and (9) will be:

µUE3→RES1(i) = µRES3→UE3(i). (14)

The rest of the algorithm can be expressed as follows:

B3(i) = µRES3→UE3(i)+ µRES1→UE3(i), (15)

LLRx = max
i
(Bm(i) when bx=0)−max

i
(Bm(i) when bx=1).

(16)

III. PROPOSED IMPROVEMENTS
Besides methodical improvements of the MPA such as log-
MPA, hardware oriented improvements are important to take
full benefit of C-RAN servers capabilities. Since MPA and
log-MPA are control heavy algorithms, mishandling of data
can induce huge performance losses. This section explores
how MPA can be reformulated: 1) to improve data locality
in cache and to reduce cache misses and branch mispredic-
tions 2) to reorder the data paths in order to help exploiting
data-level parallelism at each step of the MPA and log-MPA
algorithms and 3) to exploit approximated modeling of addi-
tive white Gaussian noise in order to eliminate exponential

VOLUME 7, 2019 10405

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

calculations and to drastically reduce the number of instruc-
tions for SSE, NEON, AVX and KNCI ISAs.

A. FLATTENING MATRICES TO REDUCE CACHE
MISSES AND BRANCH MISSES
Considering (6) and (7), there are 64 calculations of distances
and probabilities for each resource (256 for all resources).
Using a multidimensional array (4×4×4) should be avoided,
because it typically causes bad data locality, which leads to an
increased number of cache misses. These misses negatively
affect the throughput, and this is significant, since this process
must be repeated in the decoder for each received 12-bit
block of data. Flattening a d-dimensional array to a vector
using (17) is appropriate to prevent cache misses and improve
the spatial locality of data. This is done with the help of an
index defined as:

index =
d∑
i=1

(d∏
j=i+1

Nj

)
ni. (17)

where Nj is the size of the jth dimension of the array and ni is
the location of a target element in that dimension. Improving
data locality with a stride of a single floating-point number in
each element makes it easier for the processor to have aligned
and contiguous accesses to the memory through SIMD ISA.
Utilizing SIMD instructions helps to reduce the total num-
ber of mispredicted branches in the algorithm. Contiguous
accesses to the L1 cache are performed by chunks of 128-bit,
256-bit or 512-bit. It reduces the number of iterations in
the for-loops and consequently it reduces the number of
branches. On the other hand, for a vector of sixty four
32-bit floating-point numbers, 64 iterations are needed in the
scalar mode, while only 16, 8 or 4 iterations are required
in the vectorized modes using respectively SSE (or NEON),
AVX or KNCI ISAs.

B. ADAPTING THE ALGORITHMS TO IMPROVE
DATA-LEVEL PARALLELISM
SSE, NEON, AVX and KNCI ISAs handle SIMD opera-
tions [22]. KNCI and AVX use 512-bit and 256-bit registers,
while SSE and NEON use 128-bit registers. For instance,
an AVX operation can process eight 32-bit floating-point
numbers simultaneously. The AVX instructions also provide
high-performance loads and stores to the cache memory
due to data vectorization. Flattening matrices to vectors is
a prerequisite to enable AVX contiguous accesses to the
memory. Vectorized instructions such as AVX are accessi-
ble in C++ through intrinsic functions. An intrinsic is a
function that directly maps to an assembly instructions (for
some rare exceptions it can be more than one instruction).
Nowadays, AVX units use sixteen 256-bit YMM registers
and a 32-bit MXCSR control register to handle vectors of
eight 32-bit or four 64-bit floating-point numbers. The AVX
ISA allows to perform SSE instructions using the lower
128-bit lane of the YMM registers. For MPA, the SIMD
instructions are used to 1) compute the complex norm ||.||

in (5) and (6), 2) calculate the exponentials in (7), 3) perform
users to resources messaging and final guesses at each user.

1) SIMD COMPUTATION OF COMPLEX NORMS
Equations (5) and (6) use a complex norm function ||.||,
it can be optimized by using SIMD instructions. There
are two ways to perform this computation: Fig. 2a depicts
how to implement the norm function using an Array of
Structures (AoS) for complex numbers. In this method,
the complex numbers are represented as two consecutive
floating-point numbers. The implementation with AoS uses

FIGURE 2. Complex norm AVX algorithm using a) Array of Structures
(AoS), b) Structure of Arrays (SoA).

10406 VOLUME 7, 2019

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

six intrinsic functions: one load (_mm256_loadu_ps),
one store (_mm256_storeu_ps), one multiplication
(_mm256_mul_ps), one permutation of the lanes
(_mm256_permute2f128_ps), one horizontal addition
(_mm256_hadd_ps) and one extraction of the highest
lane of the AVX register (_mm256_extractf128_ps).
Fig. 2b sketches the computation of the complex norm
using a Structure of Array (SoA) data layout. This imple-
mentation also uses six intrinsic functions: two loads
(_mm256_loadu_ps), one store (_mm256_storeu_ps),
two standard multiplications (_mm256_mul_ps), one addi-
tion (_mm256_add_ps).
Our experiments demonstrated that these two methods

have similar performances, however we used the Structure of
Arrays (SoA) since it is 1) easier to port for the ISAs that lack
from shuffle instructions and 2) trivial to extend for different
register lengths.

2) SIMD COMPUTATION OF EXPONENTIAL
To speedup the computational time of the exponentials used
in (7), the MIPP wrapper [23] has been used. MIPP proposes
a vectorized implementation of the exponential based on
a series expansion. Many intrinsic functions are encapsu-
lated to compute the exponential. MIPP also allows to write
portable intrinsic codes. A single SIMD code is written for
multiple ISAs such as SSE,NEON,AVX,AVX512 andKNCI
thanks to the meta-programming techniques.

The flattened complex and normalized numbers are cal-
culated as shown in Fig. 2a and Fig. 2b to produce the
preliminary values used to compute the probabilities. Fig. 3a
illustrates the full process on a vector of eight floating-point
numbers. First the values are loaded into the YMM registers,
then they are multiplied by −1/2σ 2 and finally the exponen-
tial function is performed according to (7).

3) SIMD MESSAGE PASSING
Some remaining parts of the MPA can be vectorized too.
Especially, the guess swaps and the computation of the final
guesses at each user node can be vectorized using SSE
instructions. Fig. 3b shows the computation of final guesses
for user 4. There are four messages from a resource to a
user containing the probabilities of four different codewords,
which are the elements of the SSE vectors. According to
Fig. 3b these vectors of probabilities are loaded into SSE,
NEON or the lowest lane of the AVX registers.

C. ESTIMATED-MPA (E-MPA)
Computation of the exponentials in (7) is one of the most
important bottlenecks of the MPA algorithm. It is possible
to further accelerate the computation by using proper esti-
mations. The exact exponential computation is not essential
to produce a satisfying estimation in the MPA algorithms.
Considering that (7) represents a Gaussian PDF, it can be
replaced by sub-optimal bell-shaped polynomial distributions
to model the noise. It will be shown in Section IV-B that using
a polynomial estimation can increase the throughput while

FIGURE 3. a) Vectorized Exponentials (N0 = 2σ2), b) Vectorized
calculation of final guess at user 4.

leading to marginal bit error rate degradation after the MPA
decoding. However, these estimated probabilities cause small
degradations of the block error rate (BLER) performance
after the channel decoding (cf. Section V). The proposed PDF
must satisfy two conditions to be valid: 1) it must be positive
and lower bounded at zero, 2) its integral over (−∞,∞) must
be equal to 1. The following function is suggested to estimate
the exponentials:

9 ′dRESβ =
2/π

2σ 2 + 4d4RESβ
. (18)

The computation of 9 ′ is faster than the original 9 [24].
The probabilities produced using (7) and (18) are normalized
according to (9). Furthermore, the numerator 2/π does not
play an important role in MPA and can be uniformly elimi-
nated from all calculations to reduce the computational effort.
Thus,

9 ′dRESβ ≈
1

2σ 2 + 4d4RESβ
, (19)

can be used as a systematic replacement to the vectorized
exponential MIPP function used in Fig. 3a. It reduces the
overall number of instructions to three intrinsic functions:

VOLUME 7, 2019 10407

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

two multiplications (_mm256_mul_ps) and one addition
(_mm256_add_ps).

D. ACCURACY OF FLOATING-POINT COMPUTATIONS
The finite precision of floating-point calculations induces
losses in the results. Thus, technical standards such as IEEE
754 define rounding rules, precision of calculations, excep-
tion handling and underflow behavior. However, the MPA
delivers approaching bit error rate results with less precise
floating-point models. For instance, in the GNU compiler,
-Ofast is a high-level compiler option which includes
fast math libraries to handle floating-point calculations
(-ffast-math). The compiler uses various mathematical
simplifications as explained in [25] and uses approximated
libraries for the division and the square root functions. The
compiler also forces the value to zero in the case of an
underflow. Using -Ofast can improve the throughput of the
MPA algorithm as will be shown in Section IV.

In this work, other well-known optimization techniques,
such as loops unrolling, using references instead of pointers,
avoiding type conversions, preferring prefixed operators, and
functions inlining have been used to enhance the throughput
of the various message passing algorithms.

IV. PERFORMANCE ANALYSIS
In this section, the effects of the various optimizations consid-
ered in Section III are investigated. A key concern is to ensure
that the decoding error performance is not affected by the
execution time improvements, particularly when approxima-
tions are involved. Energy efficiency and power consumption,
throughput, memory access efficiency, hardware complexity
analysis are all important aspects that must be considered.

A. EVALUATION OF ERROR PERFORMANCE
Fig. 4a shows the performance comparison of a maximum
likelihood (ML) decoder, an MPA decoder performing 5 iter-
ations and an estimated-MPA (E-MPA) decoder as explained
in Section III also performing 5 iterations. There are very
small differences in the bit error rate performance of the three
decoders (less than 0.10 dB). Although bothMPA andE-MPA
show their optimum behavior with 5 iterations, the conver-
gence behavior of the two methods are different as illustrated
in Fig. 4b. E-MPA has a slower convergence rate for less than
three iterations. This phenomenon is expected as the probabil-
ity functions produced by bell-shaped polynomial PDF do not
have the quality of probabilities produced by exponentials.
However, the convergence behavior is almost identical for
more than 4 iterations. The other optimizations like loops
unrolling, fast math libraries and vectorizationwere not found
to degrade the BER performance or the convergence rates.

B. CHARACTERIZING THROUGHPUT GAINS, ENERGY
EFFICIENCY AND POWER CONSUMPTION
Energy efficiency is of interest in the design of C-RAN
servers. It is determined by the rate of computation that
can be delivered by a processor. Joint optimization of the

FIGURE 4. Performance of MPA compared with E-MPA. (a) BER
performance comparison of ML, MPA and E-MPA for 5 iterations.
(b) Convergence behavior of E-MPA and MPA.

throughput and energy consumption is a main goal of sys-
tem designers. Energy optimization can reduce the cost of
cloud services significantlywhile it can contribute to decrease
the emission of greenhouse gases. Power utilization is also
important because improved performance per Watt is useful
to limit power demands. This section explores the power,
energy efficiency and throughput of the various message
passing algorithms suggested in this work. Tests have been
conducted on three platforms running the Ubuntu Linux oper-
ating system. The three systems are : 1) an IntelTM Core-i7
6700HQ processor with AVX instructions (256-bit SIMD)
and four physical cores using 2-way Simultaneous Multi-
Threading (SMT or Intel Hyper-ThreadingTM technology)
running at nominal frequency of 2.6 GHz, 2) an ARMTM

Cortex-A57 with NEON instructions (128-bit SIMD) and
four cores (no SMT) running at 2.0 GHz and 3) an IntelTM

Xeon-Phi Knight-Corner 7120P with KNCI instructions
(512-bit SIMD) and 61 cores using 4-way SMT and running
at 1.2 GHz.

Table 1 shows the comparison of throughput, latency,
power consumption and energy of different decoding algo-
rithms that are executed on the three platforms to decode
768 Million bits. The average power and energy consump-
tion measured on the Core-i7 processor were obtained
with the turbostat software [26] which exploits the Intel

10408 VOLUME 7, 2019

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

TABLE 1. Throughput, latency, power and energy characteristics.

performance counters in Machine Specific Registers (MSRs)
to monitor CPU and RAM utilizations. However, in the
case of ARM and Xeon Phi platforms, external cur-
rent sensors were used to measure the energy and power
consumptions.

1) INTELTM CORE-i7 6700HQ
The baseline implementation of MPA with level 3 (-O3)
optimization of the GNU compiler reaches 3.51 Mbps uti-
lizing all four physical cores of the processor (SMT on).
Log-MPA improves the performance to 6.37 Mbps bene-
fiting from elimination of the exponential calculations, still
in -O3. However, using the fast math libraries (-Ofast)
and the loop optimizations from Section III-D increases the
throughput to 14.85 Mbps for MPA and to 10.31 Mbps
for log-MPA. It is important to observe that MPA outper-
forms the log-MPA with the fast math libraries and more
aggressive optimizations, without compromising on the bit
error rate performance. This is because log-MPA induces
inefficient data accesses due to the messages passed from
resources to users. This phenomenon will be investigated
further in Section IV. Using the AVX and SSE SIMD ISAs
reduces the branch mispredictions and the cache misses
(cf. Section III-A). Consequently, the throughput is increased
to 67.83 Mbps in MPA and to 75.46 Mbps for the E-MPA
where the9 ′ estimated exponentials from (19) are performed.
These results confirm significant throughput gains for the
proposed implementations, while the energy consumption is
reduced. Utilizing AVX increases the average power con-
sumption of MPA and log-MPA from 35 to 40 Watts but

throughput and latency are improved by much larger factors.
It means that the overall energy consumption have been
decreased with AVX.

2) ARMTM CORTEX-A57
On this platform [27], the throughput difference caused by
the fast math libraries of the GNU compiler is still visible for
MPA and log-MPA algorithms. With level three optimization
(-O3), MPA and log-MPA run at 1.60 Mbps and 3.01 Mbps
respectively. When using fast math libraries (-Ofast) the
throughputs increased to 4.07 and 4.70 Mbps. It should be
noted that the four physical cores of the ARM platform were
utilized for those tests. Power consumption and energy used
per decoded bit is lower on the ARM platform than on the
Intel processors. The low power consumption of the ARM
platform notably comes at the cost of less powerful floating-
point arithmetic units (cf. MPA+NEON and E-MPA+NEON
in Table 1). Eliminating the exponential computations almost
doubled the performance in E-MPA (15.30 Mbps) as com-
pared toMPA+NEON (8.40Mbps), which shows the limits of
low power processors when calculating many exponentials.
Nevertheless, by using E-MPA, the ARM low power proces-
sors can be a good candidate for implementation of SCMA
decoders on C-RAN servers as it allows significant energy
savings.

3) INTELTM XEON-PHI 7120P
The Xeon-Phi Knights Corner [28] benefits from the ability
to execute four hardware threads per core, while having
61 cores and 512-bit SIMD registers. In this case, 244 threads
can be run to handle the MPA decoding task. Despite these
benefits, the Xeon-Phi Knight Corners suffers from two
main disadvantages: 1) the KNC instructions diversity is
reduced compared to AVX or AVX-512 ISAs and 2) the
cores frequency is relatively low in order to keep reasonable
power consumption and limits the heat dissipation. As an
example of missing instruction, the KNCI ISA does not
offer coalesced division (_mm512_div_ps) for floating-
point numbers. Beside those limitations, the E-MPA+KNCI
exhibits the highest throughput among the three mentioned
platforms (up to 114.60 Mbps). However, it consumes almost
three times more energy per bit compared to the ARM-based
implementations. The MPA decoding algorithm exhibits its
best performance on this platformwhen cross compiled using
-O2 -mmic flags by an Intel icpc compiler. Using fast
math options such as -no-prec-div -no-prec-sqrt
-fp-speculation=fast -fp-model-fast=2 do
not change the results significantly with the Intel compiler.

Fig. 5 focuses on the energy consumed per decoded bit
(also mentioned in Table 1). In summary, the SIMD algo-
rithms have a higher energy efficiency per decoded bit. The
processor resources are well stressed and the power does not
increase too much. Among the obtained results, the Xeon-Phi
obtains the best throughput while the Cortex-A57 has the
lowest energy consumption. In the case where the number
of users in the cloud is increased, the results presented in

VOLUME 7, 2019 10409

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

FIGURE 5. Graphical comparison of the energy consumed per decoded
bit for three different platforms.

this section are scalable up to the number of processing units
dedicated to them.

C. MEMORY (CACHE) ACCESS EFFICIENCY
Apart from SIMD operations and parallelization, cache
access efficiency plays an important role in the high-
performance implementation of algorithms on GPP. Table 2
shows the performance characterization of different MPA
algorithms on the Core-i7 6700HQ processor for decoding
768 Million bits. As reported in Table 2, contiguous accesses
to the memory using AVX instructions reduces the total
number of branches and references to the cache. Reducing
the number of branches and references to the cache increases
the throughput of the algorithm.

TABLE 2. Cache performance characterization.

According to Table 2, MPA+AVX shows almost ten
times fewer branches (12845 Million) versus MPA -Ofast
(126578 Million) and consequently it offers better perfor-
mance. For MPA+AVX, 401 Million branches have been
mispredicted by the processors, compared to 7093 Millions
for MPA. For cache misses MPA+AVX produced two
Millions fewer cache misses when compared to MPA and
the total number of cache references are also significantly
(122Millions) less than withMPA. The total number of cache
misses for various algorithms in Table 2 are between 70 to
79 Millions, while the total number of branch mispredictions
varies between 422 Millions to 6454 Millions. This high

dynamic range of branch mispredictions shows that reducing
the total number of branches and branch mispredictions have
more impact on increasing throughput of the MPA algorithm
in comparison to reducing cache misses. This phenomenon
also shows that using optimization methods such as log-MPA
which produces large number of branches due to the max(.)
function is not ideal for multi-processor servers in C-RAN.
These reported significant improvements have been brought
by SIMD instructions. Improving data locality, contiguous
access to memory and parallelizing loops are the main rea-
sons that made SIMD algorithms exhibit better performance
when it comes to cache interface.

Table 2 also reports the number of Instructions per
Cycle (IPC) of each implementation. It is obvious that the
number of IPCwas reduced inMPA -O3 and log-MPA due to
poorer memory access efficiency. This reduces the through-
put of those algorithms. On the other hand, without using
contiguous access tomemory, the processor spendsmore time
for scalar load and stores. This can cause a bottleneck in
interfacing memory while other resources of the processor
are waiting to receive data and consequently it decreases the
IPC. By contrast, in the case of contiguous access to memory
(or cache) the processor can fetch sufficient data all at once
to support sustained processing thus reducing the memory
bottleneck and improving internal processing as reflected by
better IPC indices.

D. PROFILING AND HARDWARE COMPLEXITY
Previous sections explored how processor parallel resources,
efficient and contiguous memory access, and compiler opti-
mizations play an important role in getting efficient imple-
mentation of the SCMA algorithms. In [6], [7], [13], and [15],
computational complexity, measured as operation counts,
was used to represent the complexity of the MPA. Opera-
tion counts can be misleading metrics when characterizing
algorithmic complexity of algorithms executing on general
purpose processors. Indeed, it misses significant factors such
as cache misses, memory efficiency and precision of floating-
point calculations. In this section, the time complexity of the
various forms of SCMA decoders are investigated using the
Intel Vtune StudioTM profiler [22].

Fig. 6 reports profiling results obtained with different
SCMA decoders variations when applied to the decoding
of 768 Million bits. Results were organized to show the exis-
tence of five bottlenecks i.e. logarithms in (11), exponentials
in (7), complex norm and complex subtraction in (5) and
messages passed from resources to users in (8).

Observing MPA and MPA (-Ofast) reveals the overhead
of exponentials and complex norms in the algorithm. For
example, the decoder spent more than 62 percent of its time
(32.35 seconds) to calculate exponentials and norms in MPA
(-Ofast). This led us to explore SIMD calculation of these
two steps. Comparing E-MPA+SIMD and MPA+SIMD
implementations to others such as MPA (-O3 or -Ofast)
shows a clear gain in throughput for calculation of the expo-
nentials and norms. In more details, E-MPA+SIMD spends

10410 VOLUME 7, 2019

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

FIGURE 6. Profiling results of different MPA algorithms using Intel Vtune
ProfilerTM on Core-i7 6700HQ platform for decoding 768 Million bits.

1.68 seconds computing exponentials and norms which is
more than 19 times faster than the initial computation of
norms and exponentials in MPA (-Ofast). On the other
hand, exponentials and norms computations are performing
as fast as complex subtract. This profiling results show the
efficiency of the proposed SIMD implementation methods.
By contrast, log-MPA has not shown good performance using
fast math library when compared toMPA. Inefficient memory
access, cache misses and high number of branches are among
the reasons that made log-MPA exhibits lower throughput
than expected. Those phenomena are induced by comparison
operations embedded in the max(.) function in (13). Never-
theless, without using fast math libraries, log-MPA still offers
performance gains over MPA.

V. CHANNEL CODING
A. COMPLETE SIMULATION CHAIN
In the previous sections of this article, algorithmic improve-
ments and implementation techniques have been proposed.
These optimizations lead to drastic reductions of the pro-
cessing time and to an increase of the processing power
efficiency. This is done with approximately no degradation of
the BER performance after SCMA decoding. Nevertheless,
in a full communication chain, multiple access algorithms
are closely linked to the Forward Error Correction (FEC)
modules. Indeed, the input of the FEC decoder consists in
the outputs of the SCMA decoder.

In order to claim that the proposed improvements do not
degrade the overall error performance, it is necessary to

embed the SCMA encoder and decoder in a full communica-
tion chain. To this purpose, we used the AFF3CT1 software
which is an ideal tool that provides the necessary simulation
models and allows performing the desired verifications.

AFF3CT is Open-source and specifically designed to
offer an efficient environment to the communication systems
designers. Monte-Carlo simulations can be run to mea-
sure various metrics such as the BER and BLER perfor-
mance, or the throughputs and latencies of each module,
e.g. FEC encoders and decoders, modulation and demodu-
lation blocks, or different channel models.

FIGURE 7. BLER evaluation of SCMA MPA and E-MPA decoders combined
with LDPC, polar and turbo codes. (a) Code rate R = 1 = 3. (b) Code rate
R = 1 = 2.

According to the latest 3GPP report [29], in the 5G stan-
dard, the two selected code families are the LDPC and polar
codes. Being implemented in the AFF3CT software, it is
possible to test our SCMA decoders in a complete commu-
nication chain, in conjunction with state-of-the art LDPC,
polar and even turbo decoders that were used in the LTE
standard [30]. Fig. 7 shows the BLER performances of MPA
and E-MPA decoders when combined with different channel
codes. For a matter of reproducibility, the full parameters of
the FEC used are reported in the next section. This research

1AFF3CT is an Open-source software (MIT license) for fast forward error
correction simulations, see http://aff3ct.github.io

VOLUME 7, 2019 10411

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

does not claim any novelty in channel coding, however,
we found crucial to validate our proposed SCMA optimiza-
tions in a sufficiently complete communication chain.

B. CHANNEL CODING CONFIGURATIONS
1) TURBO CODES
In a first validation, the turbo code from the LTE stan-
dard is used. In the decoder, 6 iterations are done. The two
sub-decoders implement the max-log Maximum A Posteri-
ori algorithm (max-log-MAP) [31] with a 0.75 scaling fac-
tor [32]. In Fig. 7a, the rate is R ≈ 1/3, no puncturing is
performed, the number of information bits K is 1024 and
the codeword length N is 3084. In Fig. 7b, R ≈ 1/2 with
the puncturing of half of the parity bits, K = 2048, and
N = 4108.

2) LDPC CODES
In a second set of validations, the LDPC codes used in this
paper are based on MacKay matrices that have been taken
from [33]. In Fig. 7a, the matrix used is (K = 272,N = 816),
and in Fig. 7b the matrix is (K = 2000, N = 4000). In both
figures, the decoder used is a Belief Propagation (BP) decoder
with an Horizontal Layered scheduling [34]. For the update
rules, the Sum-Product Algorithm (SPA) has been used [35].
The number of iterations is 100.

3) POLAR CODES
In the final validation, polar codes are built by suitably
selecting the frozen bits. We used the Gaussian Approxima-
tion (GA) technique of [36]. The input SNR for the code
construction with the GA is 1 dB, which apparently is very
low considering that the SNR are 4 to 5 dB in the convergence
zone. This is motivated by the fact that the GA algorithm is
designed to work with the BPSK modulation. Using SCMA
completely modifies the histogram of the LLR values for a
given SNR. Therefore, a shift on the input SNR of the GA
algorithm must be applied in order to efficiently select the
frozen bits. If this shift is not applied, the decoding perfor-
mances of the polar code degrades drastically. The number
of information bits and the codeword length are (K = 682,
N = 2048) in Fig. 7a and (K = 2048, N = 4096) in Fig. 7b.
The decoder is a Successive Cancellation List (SCL) decoder
with L = 32 and a 32-bit GZIP CRC that was proposed
in [37].

C. EFFECTS OF E-MPA ON ERROR CORRECTION
In Fig. 7, the number of iterations of the SCMA demodulator
is 5. The objective of simulating multiple channel codes is
not to compare them with each other. A fair comparison of
the different channel codes would indeed impose using the
same code lengths and more importantly their computational
complexity should be compared, which is not the case here.
Our goal here is to study the impact of using E-MPA on
the BER and FER performances when the channel codes are
included in the communication chain. For each channel code,

two curves are plotted: one for the E-MPA and the other for
the MPA. Only 0.2 to 0.4 dB separate the two versions of the
algorithm for all the considered channel codes. These results
show the extent to which uncertainty of estimations affects
channel coding. The decoding speed improvement brought
by the E-MPA algorithm has a cost in terms of decoding
performance. This trade-off should be considered in order to
meet the system constraints.

VI. CONCLUSIONS
In this paper, in consideration of the potential of Cloud-RAN
that would support 5G communication, we focused on
improving the efficiency of 5G SCMA receivers on the type
of multiprocessors that can be found in such servers. We pro-
vided test results using different platforms such as ARM
Cortex, Xeon-Phi and Core-i7. The benefits of using SIMD
and various algorithmic simplifications have been studied and
test results were presented. Among the platforms, the ARM
Cortex-A57 was shown to offer the lowest energy consump-
tion per decoded bit, while many-core platforms such as
Xeon-Phi Knight’s Corner 7120P had the best throughput.
In addition, an estimation of conditional probabilities using
polynomial distributions instead of Gaussian distribution was
proposed to increase throughput. This estimation has shown
to offer throughput improvements of 15 to 90 percent depend-
ing on the platform used, while it causes a very small degrada-
tion of BLER after channel decoding. To support this claim,
the error performance of telecommunication chains combin-
ing MPA and E-MPA with channel coding with LDPC, polar
codes and turbo codes with code rates R = 1/3 and R = 1/2
were tested.

REFERENCES
[1] S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, ‘‘Power-domain

non-orthogonal multiple access (NOMA) in 5G systems: Potentials and
challenges,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–742,
2nd Quart., 2017.

[2] H. Nikopour and H. Baligh, ‘‘Sparse code multiple access,’’ in Proc. IEEE
Int. Symp. Pers. Indoor Mobile Radio Commun., London, U.K., Sep. 2013,
pp. 332–336.

[3] 5G Algorithm Innovation Competition. (2015). Altera Innovate Asia
FPGA Design Contest. [Online]. Available: http://www.innovateasia.com/
5g/en/gp2.html

[4] NGMNAlliance, ‘‘5Gwhite paper,’’ Next Gener. Mobile Netw., Frankfurt,
Germany, White Paper, 2015, pp. 1–125.

[5] L. Lei, C. Yan, G. Wenting, Y. Huilian, W. Yiqun, and X. Shuangshuang,
‘‘Prototype for 5G new air interface technology SCMA and performance
evaluation,’’ China Commun., vol. 12, no. 9, pp. 38–48, Sep. 2015.

[6] S. Zhang, X. Xu, L. Lu, Y. Wu, G. He, and Y. Chen, ‘‘Sparse code multiple
access: An energy efficient uplink approach for 5G wireless systems,’’ in
Proc. IEEE Global Commun. Conf., Dec. 2014, pp. 4782–4787.

[7] J. Liu, G. Wu, S. Li, and O. Tirkkonen, ‘‘On fixed-point implementation of
Log-MPA for SCMA signals,’’ IEEEWireless Commun. Lett., vol. 5, no. 3,
pp. 324–327, Jun. 2016.

[8] A. Bayesteh, H. Nikopour, M. Taherzadeh, H. Baligh, and J. Ma, ‘‘Low
complexity techniques for SCMA detection,’’ in Proc. IEEE Globecom
Workshops, San Diego, CA, USA, Dec. 2015, pp. 1–6.

[9] Y. Du, B. Dong, Z. Chen, J. Fang, P. Gao, and Z. Liu, ‘‘Low-complexity
detector in sparse code multiple access systems,’’ IEEE Commun. Lett.,
vol. 20, no. 9, pp. 1812–1815, Sep. 2016.

[10] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, ‘‘SCMA code-
book design,’’ in Proc. IEEE Veh. Technol. Conf., Las Vegas, NV, USA,
Sep. 2014, pp. 1–5.

10412 VOLUME 7, 2019

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

[11] J. Peng, W. Chen, B. Bai, X. Guo, and C. Sun, ‘‘Joint optimization of
constellation with mapping matrix for SCMA codebook design,’’ IEEE
Signal Process. Lett., vol. 24, no. 3, pp. 264–268, Mar. 2017.

[12] C. Yan, G. Kang, and N. Zhang, ‘‘A dimension distance-based SCMA
codebook design,’’ IEEE Access, vol. 5, pp. 5471–5479, 2017.

[13] M. Jia, L. Wang, Q. Guo, X. Gu, and W. Xiang, ‘‘A low complexity
detection algorithm for fixed up-link SCMA system in mission critical
scenario,’’ IEEE Internet Things J., vol. 5, no. 5, pp. 3289–3297, Oct. 2018.

[14] L. Yang, Y. Liu, and Y. Siu, ‘‘Low complexity message passing algo-
rithm for SCMA system,’’ IEEE Commun. Lett., vol. 20, no. 12,
pp. 2466–2469, Dec. 2016.

[15] Y. Du, B. H. Dong, Z. Chen, J. Fang, and L. Yang, ‘‘Shuffled multiuser
detection schemes for uplink sparse code multiple access systems,’’ IEEE
Commun. Lett., vol. 20, no. 6, pp. 1231–1234, Jun. 2016.

[16] J. Chen, Z. Zhang, S. He, J. Hu, andG. E. Sobelman, ‘‘Sparse codemultiple
access decoding based on a Monte Carlo Markov chain method,’’ IEEE
Signal Process. Lett., vol. 23, no. 5, pp. 639–643, May 2016.

[17] L. Yang, X. Ma, and Y. Siu, ‘‘Low complexity MPA detector based
on sphere decoding for SCMA,’’ IEEE Commun. Lett., vol. 21, no. 8,
pp. 1855–1858, Aug. 2017.

[18] F. Wei and W. Chen, ‘‘Low complexity iterative receiver design for
sparse code multiple access,’’ IEEE Trans. Commun., vol. 65, no. 2,
pp. 621–634, Feb. 2017.

[19] C. Berrou, A. Glavieux, and P. Thitimajshima, ‘‘Near Shannon limit error-
correcting coding and decoding: Turbo-codes. 1,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), vol. 2, Geneva, Switzerland, May 1993, pp. 1064–1070.

[20] E. Arıkan, ‘‘Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,’’ IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[21] R. G. Gallager, ‘‘Low-density parity-check codes,’’ IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[22] Intel. (2018). Intel C++ Compiler 18.0 Developer Guide and Refer-
ence. [Online]. Available: https://software.intel.com/en-us/cpp-compiler-
18.0-developer-guide-and-reference-fxsave64

[23] A. Cassagne, O. Aumage, D. Barthou, C. Leroux, and C. Jégo, ‘‘MIPP:
A portable C++ SIMD wrapper and its use for error correction coding in
5G standard,’’ in Proc. Workshop Program. Models SIMD/Vector Process.
(WPMVP), Vösendorf, Austria, Feb. 2018, pp. 1–8.

[24] A.Ghaffari,M. Léonardon, Y. Savaria, C. Jégo, andC. Leroux, ‘‘Improving
performance of SCMA MPA decoders using estimation of conditional
probabilities,’’ inProc. 15th IEEE Int. NewCircuits Syst. Conf. (NEWCAS),
Jun. 2017, pp. 21–24.

[25] GCC. (2018). Semantics of Floating Point Math in GCC. [Online]. Avail-
able: https://gcc.gnu.org/wiki/FloatingPointMath

[26] L. Torvalds. (2018). Turbostat. [Online]. Available: https://github.com/
torvalds/linux/tree/master/tools/power/x86/turbostat

[27] NVIDIA. (2018). Jetson TX1. [Online]. Available: https://www.nvidia.
com/fr-fr/autonomous-machines/embedded-systems-dev-kits-modules/

[28] G. Chrysos, ‘‘Intel Xeon Phi coprocessor (codename Knights Corner),’’ in
Proc. IEEE Hot Chips 24 Symp. (HCS), Cupertino, CA, USA, Sep. 2012,
pp. 1–31.

[29] Multiplexing and Channel Coding (Release 15), document TS 38.212,
3GPP, Sep. 2017.

[30] Multiplexing and Channel Coding (Release 11), document TS 136.212,
3GPP, Feb. 2013.

[31] P. Robertson, E. Villebrun, and P. Hoeher, ‘‘A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), vol. 2, Jun. 1995, pp. 1009–1013.

[32] J. Vogt and A. Finger, ‘‘Improving the max-log-MAP turbo decoder,’’
Electron. Lett., vol. 36, no. 23, pp. 1937–1939, Nov. 2000.

[33] D. J. MacKay. (2018). Encyclopedia of Sparse Graph Codes. [Online].
Available: http://www.inference.org.uk/mackay/codes/data.html

[34] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, ‘‘High
throughput low-density parity-check decoder architectures,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), vol. 5, Nov. 2001,
pp. 3019–3024.

[35] D. J. C. MacKay, ‘‘Good error-correcting codes based on very sparse
matrices,’’ IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[36] P. Trifonov, ‘‘Efficient design and decoding of polar codes,’’ IEEE Trans.
Commun., vol. 60, no. 11, pp. 3221–3227, Nov. 2012.

[37] M. Léonardon, A. Cassagne, C. Leroux, C. Jégo, L. Hamelin, and
Y. Savaria, ‘‘Fast and flexible software polar list decoders,’’ CoRR,
vol. abs/1710.08314, pp. 1–11, Oct. 2017. [Online]. Available:
http://arxiv.org/abs/1710.08314

ALIREZA GHAFFARI received the B.Sc. degree
from the Amirkabir University of Technology
(Tehran Polytechnic), Iran, and the M.Sc. degree
from Laval University Canada. He has wide
range of industrial and research experience in
firmware design, FPGA, hardware acceleration,
and the IoT. Recently, he is more focused on
hardware/software acceleration in heterogeneous
platforms and clouds. He is currently an Enthusiast
in electrical engineering and a Research Asso-

ciate with the Electrical Engineering Department, École Polytechnique
de Montréal.

MATHIEU LÉONARDON received the degree
in engineering from Bordeaux INP, Bordeaux,
France, in 2015. He is currently pursuing the
Ph.D. degree with the École Polytechnique de
Montréal and the University of Bordeaux under
a co-directorship between both institutions. His
research interests include the design of efficient
and flexible implementations, both hardware and
software, for decoding error-correcting codes,
in particular polar codes.

ADRIEN CASSAGNE received the M.Sc. degree
in computer science from the University of
Bordeaux, France, in 2013, where he is currently
pursuing the Ph.D. degree. His research inter-
ests include the design of efficient and flexible
software implementations for modern decoding
error-correcting codes such as LDPC, turbo, and
polar codes. More precisely, he looks at different
aspects of parallelism such as multi-node, multi-
threading, or vectorization.

CAMILLE LEROUX received the M.Sc. degree
in electronics engineering from the University
of South Brittany, Lorient, France, in 2005, and
the Ph.D. degree in electronics engineering from
TELECOM Bretagne, Brest, France, in 2008.
He was a Visiting Student with the Electrical and
Computer Engineering Department, Aalborg Uni-
versity, Denmark, in 2004, and also with the Uni-
versity of Alberta, AB, Canada, in 2005. From
2008 to 2011, he was a Postdoctoral Research

Associate with the Electrical andComputer EngineeringDepartment,McGill
University, Montreal, QC, Canada. He has been an Associate Professor
with Bordeaux INP, since 2011. His research interests include encompass
algorithmic and architectural aspects of channel decoder implementation.
More generally, he is interested in the hardware and software implementation
of computationally intensive algorithms in a real-time environment.

VOLUME 7, 2019 10413

A. Ghaffari et al.: Toward High-Performance Implementation of 5G SCMA Algorithms

YVON SAVARIA (S’77–M’86–F’08) received
the B.Ing. and M.Sc.A. degrees from the École
Polytechnique Montreal, in 1980 and 1982,
respectively, and the Ph.D. degree from McGill
University, in 1985, all in electrical engineering.
Since 1985, he has been with the École Polytech-
nique de Montréal, where he is currently a Profes-
sor with the Department of Electrical Engineering.

He has carried work in several areas related to
microelectronic circuits andmicrosystems, such as

testing, verification, validation, clocking methods, defect and fault toler-
ance, the effects of radiation on electronics, high-speed interconnects and
circuit design techniques, CAD methods, reconfigurable computing and the
applications of microelectronics to telecommunications, aerospace, image
processing, video processing, radar signal processing, and digital signal pro-
cessing acceleration. He is currently involved in several projects that relate
to aircraft embedded systems, radiation effects on electronics, asynchronous
circuits design and test, green IT, wireless sensor networks, virtual networks,

machine learning, computational efficiency, and application specific archi-
tecture design. He holds 16 patents. He has published 140 journal papers and
440 conference papers. He was the thesis advisor of 160 graduate students
who completed their studies.

He has been a Consultant or was sponsored for carrying research by
Bombardier, Inc., CNRC, Design Workshop, DREO, Ericsson, Genesis,
Gennum, Huawei, Hyperchip, ISR, Kaloom, LTRIM, Miranda, MiroTech,
Nortel, Octasic, PMC-Sierra, Technocap, Thales, Tundra, and VXP. He is
a Fellow of IEEE. He has been a member of CMC Microsystems Board,
since 1999. He is a member of the Regroupement Stratégique en Microélec-
tronique du Québec and of the Ordre des Ingénieurs du Québec. He was a
Tier 1Canada Research Chair on design and architectures of advancedmicro-
electronic systems, from 2001 to 2015. He received the Synergy Award of
the Natural Sciences and Engineering Research Council of Canada, in 2006.
He was a Program Co-Chairman of ASAP’2006 and NEWCAS’2018, and
the General Co-Chair of ASAP’2007. Hewas a Chairman of CMCMicrosys-
tems Board, from 2008 to 2010.

10414 VOLUME 7, 2019

	INTRODUCTION
	BACKGROUND
	OVERVIEW OF THE SCMA SYSTEM MODEL
	SCMA DETECTION SCHEMES
	MAXIMUM LIKELIHOOD
	MESSAGE PASSING ALGORITHM (MPA)
	LOG-MAP

	PROPOSED IMPROVEMENTS
	FLATTENING MATRICES TO REDUCE CACHE MISSES AND BRANCH MISSES
	ADAPTING THE ALGORITHMS TO IMPROVE DATA-LEVEL PARALLELISM
	SIMD COMPUTATION OF COMPLEX NORMS
	SIMD COMPUTATION OF EXPONENTIAL
	SIMD MESSAGE PASSING

	ESTIMATED-MPA (E-MPA)
	ACCURACY OF FLOATING-POINT COMPUTATIONS

	PERFORMANCE ANALYSIS
	EVALUATION OF ERROR PERFORMANCE
	CHARACTERIZING THROUGHPUT GAINS, ENERGY EFFICIENCY AND POWER CONSUMPTION
	INTELTM CORE-i7 6700HQ
	ARMTM CORTEX-A57
	INTELTM XEON-PHI 7120P

	MEMORY (CACHE) ACCESS EFFICIENCY
	PROFILING AND HARDWARE COMPLEXITY

	CHANNEL CODING
	COMPLETE SIMULATION CHAIN
	CHANNEL CODING CONFIGURATIONS
	TURBO CODES
	LDPC CODES
	POLAR CODES

	EFFECTS OF E-MPA ON ERROR CORRECTION

	CONCLUSIONS
	REFERENCES
	Biographies
	ALIREZA GHAFFARI
	MATHIEU LÉONARDON
	ADRIEN CASSAGNE
	CAMILLE LEROUX
	YVON SAVARIA
	machine

