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ABSTRACT For a class of discrete-time Markovian jump linear systems subject to operation mode
disordering, a robust model predictive control method can be proposed to solve this issue. A bijective
mapping scheme between the original random process and a new random process is studied to cope with
the problem of operation mode disordering. At each sampling time, the original ‘‘min–max’’ optimization
problem is transformed into a convex optimization problem with linear matrix inequalities so that the
complexity of solving the optimization problem can be greatly reduced. The sufficient stability condition
of the Markovian jump linear systems can be achieved by using the Lyapunov stability theory. Moreover,
a state feedback control law is obtained, which minimizes an infinite prediction horizon performance cost.
Furthermore, the cases of uncertain and unknown transition probabilities are also considered in this paper.
The simulation results show that the proposed method can guarantee the optimal control performance and
the stability of Markovian jump linear systems.

INDEX TERMS Robust model predictive control, Markovian jump linear systems (MJLSs), operation mode
disordering, linear matrix inequalities (LMIs).

I. INTRODUCTION
Markovian jump linear systems (MJLSs) are a particu-
lar class of hybrid systems that have become increasingly
important because of their many applications and theoretical
value [1], [2]. In practice, a great number of systems whose
parameters or structures suddenly change can be described
by a Markov mode, such as electrical systems, networked
control systems [3], [4] and so on. The main characteristic
of MJLSs is that the dynamic system change is both time
trigger and event trigger. Discrete event-trigger changes are
known as the modes of the system. The mode switching
law can be described by a Markov chain [5]. In the past
decades, MJLSs have been the focus of many studies, such
as stability analysis [6]–[8], sampled-data control [9], [10],
state estimation [11], neural network control [12], H∞ filter-
ing and control [13]–[15], Fault detection [16], fault-tolerant
control [17] and sliding mode control [18]–[22].

On the other hand, model predictive control (MPC) is
a very popular and practical control strategy. MPC has
already been used in many applications, for example, in

petrochemical processes, flotation processes, pharmaceutical
processes, crystallization processes and networked con-
trol systems [23]–[27]. This method is a kind of closed-
loop optimization control strategy based on a model such
as the T-S model [28]–[30] and Hammerstein-Wiener
model [31]–[33]. The goals of MPC are to predict the
future dynamic behavior of the system, to achieve rolling
optimization, and to provide feedback correction of the
model error [34]–[42]. Moreover, for universal uncertainties
and disturbances, a large number of results based on the
robust model predictive control (RMPC) method have been
found [43]–[47]. It is known that MJLSs are also treated as
a class of uncertain systems, where the uncertainty conforms
to certain statistical probabilities. The probability informa-
tion can be reasonably included in designing a predictive
controller, which can achieve better control performance and
reduce conservativeness.

Recently, some important results from MJLSs have been
obtained based on the MPC method. In [48], the one-
step MPC scheme for uncertain discrete-time MJLSs whose
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transition probabilities were assumed to be convex sets was
proposed. For discrete-time MJLSs with polytopic uncer-
tainties, a novel multi-step mode-dependent MPC method
was proposed and the mean-square stability of three cases
was guaranteed [49]. Yang and Karimi et al. [50] studied
a novel MPC method for a class of uncertain fuzzy MJLSs
with partially unknown transition probabilities. Moreover, for
discrete-time non-homogeneous MJLSs with time-varying
transition probability matrices, a N-step off-line subopti-
mal MPC was proposed [51]. Reference [52] researched
the stochastic model predictive control (SMPC) of nonlinear
MJLSs. The terminal conditions of invariance and stability
were used to fulfill the robustness constraint and guarantee
mean-square stability. Chitraganti et al. [53] studied an one-
step receding horizon control method for discrete-time state-
dependent MJLSs subject to probabilistic state constraints
and unbounded disturbances. On the other hand, for MJLSs
subject to input/state constraints, an MPC method based
on a periodic invariant set was designed [54]. Furthermore,
a kind of discrete-time nonlinear Markovian jump system
with non-homogeneous transition probabilities was devel-
oped by designing an MPC method [55]. Reference [56],
for MJLSs with polytopic uncertainties in both system
matrices and transition probability matrices, studied a robust
distributed model predictive control (DMPC) strategy. At the
same time, the stable receding-horizon scenario predic-
tive control of constrained discrete-time MJLSs was also
studied [57]. For the Markovian jump linear systems with
bounded disturbance, Lu et al. [58] studied the con-
strained model predictive control method to achieve the
disturbance rejection. For a class of constrained discrete-
time Markovian nonlinear stochastic switching systems,
Dombrovskii et al. [59] proposed an MPC method, which
studied the dynamic investment portfolio selection prob-
lem in the presence of market frictions. Zhang et al. [60]
researched that for saturating systems with packet dropouts,
a distributed model predictive control strategy has been
proposed.

We note that the MPC method is dependent on the oper-
ation modes of the system in all of the above studies. It is
assumed that the system modes and operation modes of the
controllers are synchronous and in the right sequence. How-
ever, in practice, operation mode disordering is universal.
For example, in networked control systems, the data packets
can choose multiple paths when being transmitted and can
thus experience different time delays along these different
paths. This can result in packets that were launched earlier
reaching the target point later than packets that were sent
later. In other words, the data packets arrive in the incorrect
order. If the control signals of the MJLSs are transmitted by
unreliable networks, disordered operation modes can easily
occur. Moreover, this can also lead to instability of the con-
trol system and poor control performance. Therefore, it is
very important to deal with the problem of MJLSs that have
operation mode disordering [61]. Until now, to the best of
our knowledge, discrete-time MJLSs with operation mode

disordering have not been sufficiently studied, which moti-
vates the study in this paper.

In this paper, the main contributions can be highlighted
as follows: (1). For a class of discrete-time MJLSs sub-
ject to operation mode disordering, a novel RMPC method
can be proposed to guarantee the stability and the optimal
performance of system. (2). To better solve the issue of
operation mode disordering in MJLSs, transition probability
with uncertainty and incomplete information have also been
researched, respectively. In this study, the discussed problems
are more general than most of those in existing literatures.
(3). From the perspective’ technology, due to consider the
transition probability with uncertainty and incomplete infor-
mation, the complexity of the optimization problem can be
greatly increased, which are also the challenge and innovation
of this study.

The rest of the paper is arranged as follows. The problem
description is given in section 2. Section 3 proposes the
RMPC method for MJLSs with operation mode disorder-
ing. Section 4 contains the main results. Section 5 provides
numerical examples. Section 6 gives a conclusion and our
future works.
Notations: Rn represents n-dimensional Euclidean space.

x(k|k) denotes the measured state at sampling time k .
AT denotes the transpose of matrix A. u(k+ i|k) and x(k+ i|k)
represent the control input and predicted state at step k ,
respectively. ‖x(k)‖2 represents the Euclidean norm of state
vector x(k). � refers to the sample space, F refers to the
σ -algebras of the subsets of the sample space, and P refers to
the probability measure on F . E refers to the mathematical
expectation. The symbol ‘‘∗′′ denotes the symmetric parts of
symmetric matrices. I represents the identity matrix of known
compatible dimensions, and (G)? = G+ GT.

II. PROBLEM FORMULATION
Consider a class of discrete-time MJLSs defined on a com-
plete probability space (�,F ,P)

x(k + 1) = Aθ1(k)x(k)+ Bθ1(k)u(k) (1)

where x(k) ∈ Rnx represents the system state, u(k) ∈ Rnu

represents the control input, and θ1(k) represents the oper-
ation modes of the system. Aθ1(k) and Bθ1(k) represent the
system matrices of known compatible dimensions. The orig-
inal operation mode {θ1(k), k ∈ Z} is a Markov chain that
takes values in the discrete finite set M1 = {1, 2, . . . ,N1}.
Therefore, the mode-dependent state feedback controller can
be written as

u(k) = Kθ1(k)x(k) (2)

However, θ1(k) is transmitted through multiple channels in
networked control system, which may suffer from operation
mode disordering. Then, the corresponding controller can be
described as follows

u(k) = Kθ2(k)x(k) (3)
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where {θ2(k), k ∈ Z} is another Markov chain that takes
values in a discrete finite set M2 = {1, 2, . . . ,N2}.
To deal with operation mode disordering, the new operation
modes, θ (k), of the system need to be obtained from the
augmented vector {θ1(k), θ2(k)}. Thus we introduce a bijec-
tive mapping between θ (k) and {θ1(k), θ2(k)}. The bijective
mapping is described as

9 :M1 ×M2→M (4)

where η = 9(η1, η2) with η ∈ M, η1 ∈ M1 and η2 ∈ M2,
and

9−1 :M→M1 ×M2 (5)

where (η1, η2) = 9−1(η) with η1 = 9−11 (η) ∈ M1 and
η2 = 9−12 (η) ∈ M2. It is assumed that {θ (k), k ∈ Z}
is a stationary ergodic Markov chain that takes values in
M = M1 ×M2, where M ∈ {1, 2, . . . ,N } and the element
number N = N1 × N2. Therefore, it can be shown that

x(k + 1) = Aθ (k)x(k)+ Bθ (k)u(k) (6)

Furthermore, for the operation mode disordering, the non-
fragile state feedback controller can be designed

u(k) = (Kθ (k) +1Kθ (k))x(k) (7)

satisfying

1KT
θ (k)1Kθ (k) ≤ Wθ (k) (8)

where

1Kθ (k) = Kθ1(k) − Kθ (k) (9)

and 1Kθ (k) is the control gain fluctuation.Wθ (k) is a positive
matrix, and we define Aη = Aη1 , Bη = Bη1 and Kη = Kη2
for any θ (k) = η ∈ M. The transition probability matrix of
operation modes θ (k) is defined as

∏
, (πηµ) ∈ RN×N

Pr{θ (k + 1) = µ|θ (k) = η} = πηµ (10)

where 0 < πηµ < 1 and
∑N
µ=1 πηµ = 1 for any η, µ ∈M.

Remark 1: It is worth mentioning that it is different in
form from the traditional asynchronous controller. The tradi-
tional model uses two independent probability distributions,
which do not directly deal with the operation mode disorder-
ing [62]. However, in this paper, the non-fragile method is
used to cope with the asynchronous mode signals, and the
way of the augmented Markov modes are also taken advan-
tage of dealing with the asynchronous phenomenon, which
can sufficiently consider the impact of mode disordering.

III. DESIGN OF RMPC FOR MJLS WITH OPERATION
MODE DISORDERING
At each sampling time k , the aim of the RMPC scheme is
to derive a state feedback control law such that the infi-
nite horizon cost function (11) for MJLSs subject to opera-
tion mode disordering is minimized. Consider the following
‘‘min-max’’ performance index

min
u(k+τ |k),τ≥0

max J∞(k) (11)

where

J∞(k) = E {
∞∑
τ=0

[xT(k + τ |k)Qθ (k+τ )x(k + τ |k)

+ uT(k + τ |k)Rθ (k+τ )u(k + τ |k)]}

and Qθ (k+τ ) and Rθ (k+τ ) are positive symmetric weighting
matrices of the states and inputs, respectively, and are of
known appropriate dimension. Obviously, the closed-loop
system is described as follows

x(k + τ + 1|k)

= [Aθ (k+τ ) + Bθ (k+τ )(Kθ (k+τ ) +1Kθ (k+τ ))]x(k + τ |k)

(12)

Definition 1: For any initial condition (x0, θ0), the closed-
loop system (12) is stochastically stable if

E {
∞∑
k=0

xT(k)x(k)|x0, θ0} <∞

Lemma 1: [43]: Assume that positive symmetrical matri-
ces Q(x), R(x) and S(x) are affine functions of x. The follow-
ing linear matrix inequality holds:[

Q(x) S(x)
ST(x) R(x)

]
> 0 (13)

It is equivalent to

R(x) > 0,Q(x)− S(x)R−1(x)ST(x) > 0 (14)

or

Q(x) > 0,R(x)− ST(x)Q−1(x)S(x) > 0 (15)

Lemma 2: [63]:Consider any positive definite symmetric
matrix P ∈ Rn and given any vectors X ,Y ∈ Rn, the follow-
ing inequality holds:

2XTPY ≤ εXTPX + ε−1Y TPY , ∀ε > 0 (16)

Remark 2: The idea behind RMPC is to design the non-
fragile state feedback controller (7) and substitute it into the
optimization problem (11). At each sampling period, the state
feedback control gain matrix is obtained by solving the opti-
mization problem (11). The first control input of the obtained
control sequence is then applied to the closed-loop system.
At the next sampling period, the ‘‘min-max’’ optimization
problem (11) can be again solved with the updated state
information to obtain a new control input.
Remark 3: It is well known that one of the characteristics

of MPC is a prediction model. In other words, the future
behavior of the system can be predicted based on the pre-
diction model at each sampling time. Then, at the time
step k + τ , the transition probability matrix of operation
modes θ (k) is assumed to be

Pr{θ (k + τ + 1) = l|θ (k + τ ) = h} = πhl (17)
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where 0 < πhl < 1 and
∑N

l=1 πhl = 1 for any h, l ∈ M.
In this paper, we write the following variables in a con-
cise form: Aθ (k+τ ) = Ah, Bθ (k+τ ) = Bh, Kθ (k+τ ) = Kh,
Kθ1(k+τ ) = Kh1, Qθ (k+τ ) = Qh, Rθ (k+τ ) = Rh, and
Wθ (k+τ ) = Wh.
However, at each sampling time, it is difficult to solve the

optimization problem (11) directly. Therefore, we need to
derive an upper bound of the performance index. Correspond-
ing to the closed-loop system (12), the following Lyapunov
function is considered

V (x(k|k), θ(k), k) = xT(k|k)Pθ (k)x(k|k) (18)

where Pθ (k) = PTθ (k) > 0. At each sampling time k , the fol-
lowing robust stability condition should be satisfied

E [V (x(k + τ + 1|k))]− V (x(k + τ |k))

≤ −E [xT(k + τ |k)Qθ (k+τ )x(k + τ |k)

+ uT(k + τ |k)Rθ (k+τ )u(k + τ |k)] (19)

Taking the expectation of both sides of (19) and summing
from τ = 0 to τ = ∞, one obtains

∞∑
τ=0

E [V (x(k + τ + 1|k))− V (x(k + τ |k))]

≤ −

∞∑
τ=0

E [xT(k + τ |k)Qθ (k+τ )x(k + τ |k)

+ uT(k + τ |k)Rθ (k+τ )u(k + τ |k)] (20)

It is assumed that the closed-loop system is asymptoti-
cally stable. Since x(∞|k) = 0, it can be concluded that
V (x(∞|k)) = 0. Then,

E {
∞∑
τ=0

[V (x(k + τ + 1|k))− V (x(k + τ |k))]} ≤ −J∞(k)

(21)

The upper bound of the performance index can be derived as
follows

J∞(k) ≤ E {V [x(k|k)]} ≤ γ1 (22)

where γ1 is a given positive scalar. The main results are
presented in the following theorems.

IV. MAIN RESULT
Theorem 1: Consider the system (1), and let x(k|k) =

x(k) be the measured system state at each sampling time k .
For given symmetric matrices Qh > 0 and Rh > 0 and
scalars γ1 > 0, γ2 > 0 and γ3 > 0, there exists a non-
fragile state feedback controller (7) such that the performance
index is minimized. Then, the closed-loop system (12) can
be stochastically stable if there exist matrices Xh > 0,
G > 0,Yh > 0,Yh1 > 0 and Wh > 0 satisfying

min
Xh,G,Yh,Yh1,Wh

γ1 (23)

subject to

−(G)? + Xh
√
2(γ2 + γ3)GT GT

√
2Y T

h

∗ −W h 0 0

∗ ∗ −Qh 0

∗ ∗ ∗ −Rh
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

√
2πh1ĀTh · · ·

√
2πhN ĀTh

0 · · · 0

0 · · · 0

0 · · · 0

−X1 · · · 0

∗
. . .

...

∗ · · · −XN


≤ 0 (24)


−γ2I

√
πh1BTh · · ·

√
πhNBTh

∗ −X1 · · · 0

∗ ∗
. . . 0

∗ ∗ · · · −XN

 ≤ 0 (25)

[
−(G)? +W h (Yh1 − Yh)T

∗ −I

]
≤ 0 (26)

[
−γ1I xT(k|k)

∗ −Xη

]
≤ 0 (27)

and

Rh ≤ γ3I (28)

where

Āh = AhG+ BhYh, W
−1
h = W h, Q

−1
h = Qh, R

−1
h = Rh.

Then, the gain Kh1 of controller (2) and the gain Kh of
controller (7) can be obtained as

Kh1 = Yh1G−1

and

Kh = YhG−1

Proof: For (22), applying to the Schur complement,
(27) can be obtained. According to (19), it can be equal to
the following inequality

[Ah + Bh(Kh +1Kh)]T
N∑
l=1

πhlPl[Ah + Bh(Kh +1Kh)]

−Ph + Qh + (Kh +1Kh)TRh(Kh +1Kh) ≤ 0 (29)
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Furthermore, it can also be derived that

(Ah + BhKh)T
N∑
l=1

πhlPl(Ah + BhKh)

+ 2(Ah + BhKh)T
N∑
l=1

πhlPlBh1Kh

+ (Bh1Kh)T
N∑
l=1

πhlPlBh1Kh − Ph + Qh + KT
h RhKh

+ 2KT
h Rh1Kh +1K

T
h Rh1Kh ≤ 0 (30)

Moreover, it is concluded that

2(Ah + BhKh)T
N∑
l=1

πhlPlBh1Kh

≤ (Ah + BhKh)T
N∑
l=1

πhlPl(Ah + BhKh)

+ (Bh1Kh)T
N∑
l=1

πhlPlBh1Kh (31)

and

2KT
h Rh1Kh ≤ 1K

T
h Rh1Kh + K

T
h RhKh (32)

By applying conditions (31) and (32) to inequality (30), (30)
can be rewritten as

2(Ah + BhKh)T
N∑
l=1

πhlPl(Ah + BhKh)

+ 2(Bh1Kh)T
N∑
l=1

πhlPlBh1Kh

−Ph + Qh + 2KT
h RhKh + 21KT

h Rh1Kh ≤ 0 (33)

We can see that

BTh

N∑
l=1

πhlPlBh ≤ γ2I (34)

Rh ≤ γ3I (35)

and

1KT
h 1Kh ≤ Wh (36)

Therefore, (33) can be reformulated as

2(Ah + BhKh)T
N∑
l=1

πhlPl(Ah + BhKh)+ 2(γ2 + γ3)Wh

−Ph + Qh + 2KT
h RhKh ≤ 0 (37)

Multiplying the right and left sides by G > 0 and its trans-
pose, respectively, and definition P−1h = Xh, Yh = KhG and
Yh1 = Kh1G. Then, (37) is also equivalent to

2(AhG+ BhYh)T
N∑
l=1

πhlPl(AhG+ BhYh)

+ 2(γ2 + γ3)GTWhG

−GTPhG+ GTQhG+ 2Y T
h RhYh ≤ 0 (38)

By applying the Schur complement lemma, (38) can be trans-
formed into the inequality as follows

−GTPhG
√
2(γ2 + γ3)GT GT

√
2Y T

h

∗ −W−1h 0 0

∗ ∗ −Q−1h 0

∗ ∗ ∗ −R−1h
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

√
2πh1ĀTh · · ·

√
2πhN ĀTh

0 · · · 0

0 · · · 0

0 · · · 0

−X1 · · · 0

∗
. . .

...

∗ · · · −XN


≤ 0 (39)

As for the nonlinear term −GTPhG, it can be shown that

−GTPhG ≤ −(G)? + Xh (40)

Therefore, (24) can be directly obtained. Similarly, taking
into account (34), (25) can also be guaranteed. On the other
hand, by substituting (9) into (36) and multiplying the right
and left sides by G and its transpose, respectively, we have

−GTWhG+ (Yh1 − Yh)T(Yh1 − Yh) ≤ 0 (41)

As for the nonlinear term −GTWhG, we use the fact that

−GTWhG ≤ −(G)? +W
−1
h (42)

Finally, it is easy to deduce the inequality (26). Therefore,
from (19), when τ = 0, one can get

1V (x(k), θ(k), k)

= E [V (x(k + 1))]− V (x(k))

= xT(k)3x(k) ≤ −λmin(−3)xT(k)x(k) ≤ −ρxT(k)x(k)

(43)

where

3 = [Aη + Bη(Kη +1Kη)]T
N∑
µ=1

πηµPµ

× [Aη + Bη(Kη +1Kη)]− Pη

and λmin(−3) denotes the minimal eigenvalue of (−3) and
ρ = inf{λmin(−3)}, for any η, µ ∈ M. Taking the expecta-
tion of both sides of (43) and summing from k = 0 to k = ∞,

E {
∞∑
k=0

1V (x(k), θ(k), k)} = E [V (x(∞))]− V (x(0))

≤ −ρE {
∞∑
k=0

xT(k)x(k)} (44)
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then the following inequality holds

E {
∞∑
k=0

xT(k)x(k)} ≤
1
ρ
{V (x(0))− E [V (x(∞))]}

≤
1
ρ
V (x(0)) (45)

which implies

E {
∞∑
k=0

xT(k)x(k)|x0, θ0} ≤
1
ρ
V (x(0)) <∞ (46)

From Definition 1, it can be got that the system is stochasti-
cally stable. This completes the proof.

From the above results, we can see that πhl plays an impor-
tant role in designing the RMPC, guaranteeing the robust
stability and the optimal control performance of the closed-
loop system. However, in practice, πhl cannot be exactly
obtained. Therefore, it is essential that the RMPC takes into
account cases in which the transition probabilities cannot be
determined with certainty. It follows that

πhl = π̃hl +1π̃hl, π̃hl ∈ [0, 1] (47)

where π̃hl denotes the estimation of πhl in accordance
with (10). 1π̃hl ∈ [−ξhl, ξhl], where ξhl ∈ [0, 1] denotes
the admissible uncertainty. Therefore, the following theorem
can be obtained.
Theorem 2: Consider the system (1), and let x(k|k) = x(k)

be the measured system state at each sampling time k . For
given symmetric matrices Qh > 0 and Rh > 0 and scalars
γ1 > 0, γ2 > 0, γ3 > 0, γ4 > 0 and ξhl > 0, there
exists a non-fragile state feedback controller (7) such that
the performance index is minimized. Then the closed-loop
system (12) is stochastically stable if there exist matrices
Xh > 0,G > 0,Yh > 0,Yh1 > 0,Mh > 0 and Wh > 0
satisfying



2
√
2(γ3 − γ2)GT GT

√
2Y T

h

√
2π̃h1ĀTh

∗ −W h 0 0 0

∗ ∗ −Qh 0 0

∗ ∗ ∗ −Rh 0

∗ ∗ ∗ ∗ −X1
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

· · ·
√
2π̃hN ĀTh

√
2ξh1ĀTh · · ·

√
2ξhN ĀTh

· · · 0 0 · · · 0
· · · 0 0 · · · 0
· · · 0 0 · · · 0
· · · 0 0 · · · 0
. . . 0 0 · · · 0
∗ −XN 0 · · · 0
∗ ∗ −Mh · · · 0

∗ ∗ ∗
. . . 0

∗ ∗ ∗ ∗ −Mh


≤ 0

(48)

−γ3I + Rh
√
π̃h1BTh · · ·

√
π̃hNBTh

∗ −X1 · · · 0

∗ ∗
. . . 0

∗ ∗ ∗ −XN
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
√
ξh1BTh · · ·

√
ξhNBTh

0 · · · 0
0 · · · 0
0 · · · 0

−Mh · · · 0

∗
. . . 0

∗ ∗ −Mh


≤ 0 (49)


−γ2I

√
ξh1BTh · · ·

√
ξhNBTh

∗ −X1 · · · 0

∗ ∗
. . . 0

∗ ∗ · · · −XN

 ≤ 0 (50)


−γ4I

√
ξh1ĀTh · · ·

√
ξhN ĀTh

∗ −X1 · · · 0

∗ ∗
. . . 0

∗ ∗ · · · −XN

 ≤ 0 (51)

and [
−(I )? +Mh IT

∗ −Xl

]
< 0 (52)

where

Āh = AhG+ BhYh, W h = W−1h , Mh = M−1h

2 = −(G)? + Xh − 2γ4I , Q−1h = Qh, R
−1
h = Rh.

Proof: Taking into account the proof of Theorem 1,
it is obvious that condition (29) should be affected by the
uncertainty (47) such that

[Ah+Bh(Kh+1Kh)]T
N∑
l=1

(π̃hl+1π̃hl)Pl[Ah+Bh(Kh+1Kh)]

−Ph + Qh + (Kh +1Kh)TRh(Kh +1Kh) ≤ 0 (53)
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To address the uncertainty, (53) can be changed such that

[Ah + Bh(Kh +1Kh)]T

×[
N∑
l=1

(π̃hl +1π̃hl)Pl +
N∑
l=1

ξhlPl −
N∑
l=1

ξhlPl

−

N∑
l=1

(1π̃hl + ξhl)Mh +

N∑
l=1

ξhlMh][Ah + Bh(Kh +1Kh)]

−Ph + Qh + (Kh +1Kh)TRh(Kh +1Kh) ≤ 0 (54)

Furthermore, it can be concluded that

[Ah + Bh(Kh +1Kh)]T[
N∑
l=1

(π̃hl − ξhl)Pl +
N∑
l=1

(1π̃hl + ξhl)

× (Pl −Mh)+
N∑
l=1

ξhlMh][Ah+Bh(Kh+1Kh)]− Ph + Qh

+ (Kh +1Kh)TRh(Kh +1Kh) ≤ 0 (55)

It can also be guaranteed that

[Ah + Bh(Kh +1Kh)]T[
N∑
l=1

(π̃hl − ξhl)Pl +
N∑
l=1

ξhlMh]

[Ah + Bh(Kh +1Kh)]− Ph + Qh
+ (Kh +1Kh)TRh(Kh +1Kh) ≤ 0 (56)

and
N∑
l=1

(1π̃hl + ξhl)(Pl −Mh) < 0 (57)

As for (56), it is equivalent to

[(Ah+BhKh)+Bh1Kh]T(
N∑
l=1

π̃hlPl−
N∑
l=1

ξhlPl +
N∑
l=1

ξhlMh)

[(Ah + BhKh)+ Bh1Kh]− Ph + Qh
+ (Kh +1Kh)TRh(Kh +1Kh) ≤ 0 (58)

It can also be shown that

(Ah+BhKh)T(
N∑
l=1

π̃hlPl−
N∑
l=1

ξhlPl+
N∑
l=1

ξhlMh)(Ah + BhKh)

+ 2(Ah+BhKh)T(
N∑
l=1

π̃hlPl−
N∑
l=1

ξhlPl+
N∑
l=1

ξhlMh)Bh1Kh

+ (Bh1Kh)T(
N∑
l=1

π̃hlPl −
N∑
l=1

ξhlPl +
N∑
l=1

ξhlMh)Bh1Kh

−Ph + Qh + KT
h RhKh + 2KT

h Rh1Kh +1K
T
h Rh1Kh ≤ 0

(59)

Similar to the (31) and (32), the following inequality can
be obtained that

2(Ah + BhKh)T
N∑
l=1

π̃hlPl(Ah + BhKh)

+ 2(Ah + BhKh)T
N∑
l=1

ξhlMh(Ah + BhKh)

− 2(Ah + BhKh)T
N∑
l=1

ξhlPl(Ah + BhKh)

− 21KT
h B

T
h

N∑
l=1

ξhlPlBh1Kh

+ 21KT
h (Rh + B

T
h

N∑
l=1

π̃hlPlBh + BTh

N∑
l=1

ξhlMhBh)1Kh

−Ph + Qh + 2KT
h RhKh ≤ 0 (60)

where

BTh

N∑
l=1

ξhlPlBh ≤ γ2I (61)

and

Rh + BTh

N∑
l=1

π̃hlPlBh + BTh

N∑
l=1

ξhlMhBh ≤ γ3I (62)

Applying the Schur complement, (50) and (49) can be derived
from (61) and (62), respectively. Moreover, (60) can be
expressed as follows

2(Ah + BhKh)T
N∑
l=1

π̃hlPl(Ah + BhKh)

+ 2(Ah + BhKh)T
N∑
l=1

ξhlMh(Ah + BhKh)

− 2(Ah + BhKh)T
N∑
l=1

ξhlPl(Ah + BhKh)

+ 2(γ3 − γ2)Wh − Ph + Qh + 2KT
h RhKh ≤ 0 (63)

Multiplying the right and left sides by G and its transpose,
respectively, (63) is equivalent to

2(AhG+ BhYh)T
N∑
l=1

π̃hlPl(AhG+ BhYh)

+ 2(AhG+ BhYh)T
N∑
l=1

ξhlMh(AhG+ BhYh)

− 2(AhG+ BhYh)T
N∑
l=1

ξhlPl(AhG+ BhYh)

+ 2(γ3 − γ2)GTWhG− GTPhG

+GTQhG+ 2Y T
h RhYh ≤ 0 (64)

where

(AhG+ BhYh)T
N∑
l=1

ξhlPl(AhG+ BhYh) ≤ γ4I (65)
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Similarly, (51) can be derived very obvious. Then, (64) can
also be rewritten as

2(AhG+ BhYh)T
N∑
l=1

π̃hlPl(AhG+ BhYh)

+ 2(AhG+ BhYh)T
N∑
l=1

ξhlMh(AhG+ BhYh)

− 2γ4I + 2(γ3 − γ2)GTWhG− GTPhG+ GTQhG

+ 2Y T
h RhYh ≤ 0 (66)

By using the Schur complement, inequality (66) can be con-
verted to the inequality (48). As for (57), it holds if and only
if the following inequality is satisfied

Pl −Mh < 0 (67)

Similarly, (67) can be written as follows[
−Mh IT

∗ −Xl

]
< 0 (68)

where the following inequality should also be considered

−ITMhI < −(I )? +Mh (69)

Then, (52) can be obtained, and the proof is complete.
In addition, it is necessary that another general case be

considered, that in which the transition probability matrix is
partially unknown. In other words, the transition probability
matrix must be divided into unknown and known parts. For
example, for the closed-loop system in (12) with four opera-
tion modes, the transition probability matrix can be described
as

∏
=


? π12 ? π14
π21 π22 ? π24
π31 π32 ? ?
? ? π43 π44

 (70)

where ‘‘?’’ denotes the unknown elements. For any h ∈ M
and l ∈M, we define

Mh
=Mh

k

⋃
Mh

k (71)

where

Mh
k = {l : πhl is known, l ∈M},

Mh
k = {l : πhl is unknown, l ∈M} (72)

Furthermore,Mh
k = {πh1, · · · , πhm}, where {πhi, i ∈ 1, · · · ,

m,∀ 1 ≤ m ≤ N } refers to the known element in
row h and column i. Mh

k = {πh1, · · · , πh(N−m)}, where
{πhj, j ∈ 1, · · · ,N − m} refers to the unknown element
in row h and column j. Similar to the proof of Theorem 2,
the following theorem can also be obtained.
Theorem 3: Consider the system (1), and let x(k|k) =

x(k) be the measured system state at each sampling time k .
For given symmetric matrices Qh > 0 and Rh > 0 and
scalars γ1 > 0, γ2 > 0, γ3 > 0 and γ4 > 0, there
exists a non-fragile state feedback controller (7) such that

the performance index is minimized. Then, the closed-loop
system (12) is stochastically stable if there exist matrices
Xh > 0,G > 0,Yh > 0,Yh1 > 0,Wh > 0 and Vh > 0
satisfying

−(G)? + Xh − 2γ4I
√
2(γ3 − γ2)GT GT

√
2Y T

h
∗ −W h 0 0
∗ ∗ −Qh 0
∗ ∗ ∗ −Rh
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
√
2πh1ĀTh · · ·

√
2πhmĀTh

√
2ĀTh

0 · · · 0 0
0 · · · 0 0
0 · · · 0 0
−X1 · · · 0 0

∗
. . . 0 0

∗ ∗ −Xm 0
∗ ∗ ∗ −V h


≤ 0 (73)


−γ3I + Rh

√
πh1BTh · · ·

√
πhmBTh BTh

∗ −X1 · · · 0 0

∗ ∗
. . . 0 0

∗ ∗ ∗ −Xm 0
∗ ∗ ∗ ∗ −V h

 ≤ 0

(74)
−γ2I

√
πh1BTh · · ·

√
πhmBTh

∗ −V h · · · 0

∗ ∗
. . . 0

∗ ∗ ∗ −V h

 ≤ 0 (75)


−γ4I

√
πh1ĀTh · · ·

√
πhmĀTh

∗ −V h · · · 0

∗ ∗
. . . 0

∗ ∗ ∗ −V h

 ≤ 0 (76)

and [
−(I )? + V h IT

∗ −Xl

]
< 0 (77)

where

Āh = AhG+ BhYh, V h = V−1h , W h = W−1h

Q−1h = Qh, R−1h = Rh.

Proof:Taking into account the proof of Theorem 1, it can
be seen that the following term in condition (29) will be
affected in the case of partially unknown transition probabil-
ities

[Ah + Bh(Kh +1Kh)]T
∑
l∈Mh

πhlPl[Ah + Bh(Kh +1Kh)]

−Ph + Qh + (Kh +1Kh)TRh(Kh +1Kh) ≤ 0 (78)
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According to (71), one obtains

[Ah + Bh(Kh +1Kh)]T(
∑
l∈Mh

k

πhlPl +
∑
l∈Mh

k

πhlPl)

× [Ah + Bh(Kh +1Kh)]− Ph + Qh
+ (Kh +1Kh)TRh(Kh +1Kh) ≤ 0 (79)

which is also equivalent to

[Ah + Bh(Kh +1Kh)]T[
∑
l∈Mh

k

πhlPl +
∑
l∈Mh

k

πhl(Pl − Vh)

+ ᾱhVh][Ah + Bh(Kh +1Kh)]− Ph + Qh
+ (Kh +1Kh)TRh(Kh +1Kh) ≤ 0 (80)

where

ᾱh =
∑
l∈Mh

k

πhl = 1−
∑
l∈Mh

k

πhl

If inequality (80) is to be satisfied, we need to have

[Ah + Bh(Kh +1Kh)]T[
∑
l∈Mh

k

πhlPl + ᾱhVh]

× [Ah + Bh(Kh +1Kh)]− Ph + Qh
+ (Kh +1Kh)TRh(Kh +1Kh) ≤ 0 (81)

and ∑
l∈Mh

k

πhl(Pl − Vh) < 0 (82)

As for (81), it can be shown to be equivalent to

[(Ah + BhKh)+ Bh1Kh]T[
∑
l∈Mh

k

πhlPl + Vh

−

∑
l∈Mh

k

πhlVh][(Ah + BhKh)+ Bh1Kh]− Ph + Qh

+ (Kh +1Kh)TRh(Kh +1Kh) ≤ 0 (83)

Furthermore, (83) can be obtained as

(Ah + BhKh)T(
∑
l∈Mh

k

πhlPl + Vh −
∑
l∈Mh

k

πhlVh)(Ah + BhKh)

+ 2(Ah + BhKh)T(
∑
l∈Mh

k

πhlPl + Vh −
∑
l∈Mh

k

πhlVh)Bh1Kh

+ (Bh1Kh)T(
∑
l∈Mh

k

πhlPl + Vh −
∑
l∈Mh

k

πhlVh)Bh1Kh

−Ph + Qh + KT
h RhKh + 2KT

h Rh1Kh +1K
T
h Rh1Kh ≤ 0

(84)

Similar to (31) and (32), it can be rewritten as follows:

2(Ah + BhKh)T
∑
l∈Mh

k

πhlPl(Ah + BhKh)

− 2(Ah + BhKh)T
∑
l∈Mh

k

πhlVh(Ah + BhKh)

+ 2(Ah + BhKh)TVh(Ah + BhKh)

+ 21KT
h (Rh + B

T
h

∑
l∈Mh

k

πhlPlBh + BThVhBh)1Kh

− 21KT
h B

T
h

∑
l∈Mh

k

πhlVhBh1Kh

−Ph + Qh + 2KT
h RhKh ≤ 0 (85)

To satisfy the inequality, the following conditions should
be guaranteed

BTh
∑
l∈Mh

k

πhlVhBh ≤ γ2I (86)

and

Rh + BTh
∑
l∈Mh

k

πhlPlBh + BThVhBh ≤ γ3I (87)

Applying to the Schur complement lemma, (74) and (75) can
be obtained. Then, (85) can be written as

2(Ah + BhKh)T
∑
l∈Mh

k

πhlPl(Ah + BhKh)

+ 2(Ah + BhKh)TVh(Ah + BhKh)

− 2(Ah + BhKh)T
∑
l∈Mh

k

πhlVh(Ah + BhKh)

+ 2(γ3 − γ2)Wh − Ph + Qh + 2KT
h RhKh ≤ 0 (88)

Multiplying the right and left sides by G and its transpose,
respectively, we have

2(AhG+ BhYh)T
∑
l∈Mh

k

πhlPl(AhG+ BhYh)

+ 2(AhG+ BhYh)TVh(AhG+ BhYh)

− 2(AhG+ BhYh)T
∑
l∈Mh

k

πhlVh(AhG+ BhYh)

+ 2(γ3 − γ2)GTWhG− GTPhG

+GTQhG+ 2Y T
h RhYh ≤ 0 (89)

where

(AhG+ BhYh)T
∑
l∈Mh

k

πhlVh(AhG+ BhYh) ≤ γ4I (90)

Inequality (90) can be converted to (76). Finally,

2(AhG+ BhYh)T
∑
l∈Mh

k

πhlPl(AhG+ BhYh)

+ 2(AhG+ BhYh)TVh(AhG+ BhYh)

− 2γ4I + 2(γ3 − γ2)GTWhG− GTPhG+ GTQhG

+ 2Y T
h RhYh ≤ 0 (91)

Moreover, (73) can be obtained from (91). As for (82), it holds
if and only if the following inequality is satisfied

Pl − Vh < 0 (92)
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This is equivalent to[
−Vh IT

∗ −Xl

]
< 0 (93)

Furthermore, it should also be guaranteed that

−ITVhI < −(I )? + V h (94)

Similarly, (77) can also be derived, and the proof is
complete.
Lemma 3: The feasible solutions of optimization problem

at time k are also feasible solutions for all time instants
t > k . Therefore, at time k , if the optimization prob-
lem is feasible, for all time instants t > k , it is also
feasible.

Proof: Assume that the optimization problem has feasi-
ble solution at time k . Note that (27) is the mere constraint
dependent on the states of the system, then, for all future
system states x(k + τ ), τ ≥ 1, it only needs to guarantee
that (27) is feasible. At time k , when the optimization problem
is feasible, xT(k + 1|k)X−1η x(k + 1|k) < γ1 holds. More-
over, at time k + 1, for the measured state x(k + 1|k +
1) = x(k + 1), it can be obtained very easy that xT(k +
1|k + 1)X−1η x(k + 1|k + 1) < γ1 holds. In other words,
the feasibility can be guaranteed based on the above analysis.
Similarly, this argument can be continued for time k + 2,
k + 3, · · · .
Theorem 4: Consider a class of discrete-time MJLSs sub-

ject to operation mode disordering. According to the proof of
lemma 1, the closed-loop system (12) is asymptotically stable
with the state feedback gain matrix as Kh1 = Yh1G−1 and
Kh = YhG−1.

Proof: Based on the proof of feasibility, at time k + 1,
we can construct the same feasible solution as that at time k .
At time k , assume that the optimal solution is expressed as⋃
∗

k = {Xh,G,Yh,Yh1,Wh, γ
∗

1 (k)}. Then, at time k + 1,
the feasible solution

⋃
k+1 = {Xh,G,Yh,Yh1,Wh, γ1(k+1)}

can be constructed, which is the optimal solution at the time k .
Moreover, it is easy to see that

⋃
k+1 can satisfy the optimiza-

tion problem. Therefore, based on the optimal theory, we can
get γ ∗1 (k + 1) ≤ γ1(k + 1) = γ ∗1 (k).
On the other hand, the following Lyapunov function

V (x(k|k), θ(k), k) = xT(k|k)Pθ (k)x(k|k) need to be estab-
lished, where Pθ (k) is the optimal solution of optimization
problem at time k . Furthermore, based on the proof of fea-
sibility, one has xT(k + 1|k + 1)Pθ (k+1)x(k + 1|k + 1) ≤
xT(k + 1|k + 1)Pθ (k)x(k + 1|k + 1). This is because Pθ (k+1)
is optimal, but Pθ (k) is only feasible at time k + 1. According
to (19), when τ = 0, one can get xT(k + 1|k)Pθ (k)x(k +
1|k) ≤ xT(k|k)Pθ (k)x(k|k). Meanwhile, it has xT(k + 1|k +
1)Pθ (k)x(k + 1|k + 1) ≤ xT(k + 1|k)Pθ (k)x(k + 1|k).
So, the following inequality can be obtained xT(k + 1|k +
1)Pθ (k+1)x(k+1|k+1) ≤ xT(k|k)Pθ (k)x(k|k). The Lyapunov
function is strictly decreasing for the closed-loop system.
Therefore, the closed-loop system is asymptotically stable.
The proof is completed.

TABLE 1. The bijective mapping relations between (η1, η2) and η.

V. NUMERICAL EXAMPLE
The following numerical example can be used to illustrate
the effectiveness of the proposed control method. Consider a
discrete-time MJLS with two modes.
Mode 1:

A1 =
[
−0.2 0.25
−0.1 −0.16

]
, B1 =

[
0.1
0.2

]
Mode 2:

A2 =
[

0.1 0.15
−0.2 −0.1

]
, B2 =

[
0.17
−0.1

]
Without loss of generality, the transition probability matrix of
the Markov chain is given by

Pr =
[
0.2 0.8
0.4 0.6

]
The weighting matrices are chosen as Qh = diag{0.5, 0.5},
Rh = 6, and h ∈ {1, 2, 3, 4}. The initial values are x0 =[
0.2 0.13

]T, γ1 = 2, γ2 = 1 and γ3 = 0.2. In this
example, for the sake of proving the effectiveness of proposed
method, [43] can be considered. The following three cases
should be shown: Considering mode disordering and apply-
ing the conventional RMPC method in [43], the simulation
results are as follows

In this example, the operation modes of θ1(k) take values
in M1 = [1, 2]. When θ1(k) is subject to mode disor-
dering, the process is described as another Markov process
{θ2(k),M2 = [1, 2]}. Therefore, according to the proposed
method, a bijective mapping is defined as 9(η) = η1 +

2(η2 − 1). The system corresponding to the operation modes
after bijective mapping is shown in Table 1.

The following transition probability matrix can be obtained

Pr =


0.1 0.2 0.3 0.4
0.3 0.1 0.1 0.5
0.1 0.4 0.2 0.3
0.2 0.3 0.2 0.3

.
The simulation figures are shown in Figures 1-4. From
Figure 2, we can see that the closed-loop system with oper-
ation mode disordering cannot guarantee better control per-
formance using the conventional RMPC method in [43].
Although the asymptotic stability of the closed-loop system
can also be achieved by the conventional RMPC method,
the system needs a long time to achieve it. Furthermore, from
Figure 4, it is obvious that the asymptotic stability of the
closed-loop system with operation mode disordering based
on the proposed control method is achieved approximately
four-times faster than with the conventional RMPC method.
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FIGURE 1. The original operation modes, θ1, and disordered operation
modes, θ2, of the system.

FIGURE 2. The state response of closed-loop system with mode
disordering using the [43] method.

FIGURE 3. The operation modes, θ(k), of the system after bijective
mapping.

In other words, it is very important that the case of opera-
tion mode disordering is considered in designing the control
system, which can greatly reduce the impact of the operation
mode disordering.

Considering the case of uncertainty in the transition prob-
ability matrix and applying the proposed control method
in Theorem 2, we obtain the weighting matrices: Qh =
diag{0.5, 0.5}, Rh = 6, h ∈ {1, 2, 3, 4}. The initial values
are x0 =

[
0.2 0.6

]T, γ1 = 2, γ2 = 1, γ3 = 10 and
γ4 = 1. Additionally, ξhl = 0.6, where h, l ∈ {1, 2, 3, 4}.
The simulation results are shown in Figure 5.

Considering the case of unknown transition probabil-
ity matrix and applying the proposed control method in
Theorem 3 of this paper. The weighting matrices are chosen
as: Qh = diag{0.5, 0.5}, Rh = 6, h ∈ {1, 2, 3, 4}. The initial

FIGURE 4. The state response of closed-loop system with mode
disordering using the proposed method.

FIGURE 5. The state response of closed-loop system with mode
disordering and the case of uncertainty in the transition probability
matrix using the proposed method.

FIGURE 6. The state response of closed-loop system with mode
disordering and the case of unknown transition probability using the
proposed method.

values are x0 =
[
0.4 0.2

]T, γ1 = 2, γ2 = 1, γ3 = 10 and
γ4 = 1. The simulation results are shown in Figure 6.

According to the simulation results shown in Figure 5 and
Figure 6, when the transition probability matrix of the sys-
tem with operation mode disordering is subjected to uncer-
tainty or incomplete information, the closed-loop system
can still achieve asymptotic stability very fast by using the
proposed control method. It is worth mentioning that due
to considering uncertainty and unknown cases, the con-
servativeness can be greatly reduced. All in all, the pro-
posed control method can achieve better control performance,
which can also guarantee the feasibility and strong robust
stability.
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VI. CONCLUSION
In this paper, for a class of discrete-time MJLSs subject
to operation mode disordering, a RMPC method has been
studied. To deal with operation mode disordering, a bijective
mapping scheme between the original random process and
a new random process has been introduced. At each sam-
pling time, the complex ‘‘min-max’’ optimization problem is
transformed into a convex optimization problem with LMIs,
greatly reducing the complexity of solving the optimization
problem. Furthermore, the conservativeness of the system
has been reduced because probability information has been
included in designing the predictive controller. Moreover,
the cases of uncertain and unknown transition probabilities
have also been considered. In all of these cases, the stochas-
tic stability of the closed-loop system has been guaranteed.
The simulation results illustrate that the proposed method
is both feasible and very effective. The future work is that
when Markovian jump linear systems subject to actuator and
sensor faults, the robustness and stability of system will be
researched.
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