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ABSTRACT A novel method for texture image recognition is proposed in this paper. The aim of the
proposed method is to represent texture by combining the Gabor wavelet transform and deep learning which
are efficient techniques for image analysis. We developed the cumulative distribution function (cdf) space
covariance model of Gabor wavelet (CSCM-GW), which can jointly model multivariate data in cdf space,
in the Gabor wavelet domain to represent texture. The images having different sizes will be transformed
by CSCM-GW into same size covariance matrices. Because CSCM-GW is based on the covariance matrix
which belongs to Riemannian space, it has the high computational cost in the recognition phase. Therefore,
we proposed a novel method of texture recognition called CSCM-GWF-CNN which uses CNN to project
the fused covariance of CSCM-GW into low-dimensional vector space for reducing the computational cost
and improving the recognition performance. The experiments on Brodatz (111) and KTH-TIPS2-b texture
databases show that the proposed method is efficient for texture representation and outperforms most of the
state-of-the-art recognition methods.

INDEX TERMS Texture recognition, covariance matrix, Gabor wavelet, multidimensional statistical model,
convolutional neural network.

I. INTRODUCTION
Texture recognition is a fundamental and promising issue
in image processing field, and it involves a lot of research
aspects such as content-based information retrieval [1] sys-
tem, computer vision [2], medical assistant diagnosis [3]
and so on. In general, feature extraction is the impor-
tant step for image classification. Existing methods of
image feature extraction include the following classes: local-
pattern-based method [4]-[6], Sparse-dictionary-learning-
based method [7], [8], deep-learning-based method [9] and
the classic wavelet-based method [10]-[12].

The basic idea of the local-pattern-based method is
the image is considered being composed of local-patterns
which can be encoded with a decimal number. The image

features are calculated by counting the number of the different
local-patterns in the image. The typical local-pattern methods
are Local Binary Pattern (LBP) [4] and its extensions such as
Local Ternary Patterns (LTP) [5] and the Local Tetra Patterns
(LTrP) [6]. Local-pattern-based method has the quite high
computational efficiency for the feature extraction because
the generation of local-patterns (features) just needs simple
comparing operation between pixels. However, the critical
disadvantage of local-pattern-based method is that it is sen-
sitive to image noise due to the local-patterns may be totally
different if the intensity of one pixel in a local neighborhood
is altered by noise.

The aim of sparse-dictionary-learning-based method is to
find a sparse representation of the image by using the atoms,
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which construct the dictionary, and the linear combination
of the atoms [13]. In order to obtain the dictionary and
the optimal linear combination, the learning process (called
dictionary-learning) is required. The learning algorithm con-
sists of two phases: Dictionary generate and sparse coding
with a pre-computed dictionary. K-SVD [14] and SGK [15]
are the two state-of-the-arts dictionary-learning algorithms.

Deep-learning-based method has attracted considerable
attention in recent years [16]. Various deep-learning-based
methods such as sparse autoencoder [17], Convolutional Neu-
ral Network [9], [18]-[20] have been designed for image
representation or object recognition.

To wavelet-based method, there are two types of features
can be extracted from the wavelets coefficients (subbands):
one is the wavelet-signature such as the norm-1 and norm-
2 energies and standard deviations calculated from the coef-
ficients of each wavelet subband [21]-[23]. The other one
is the parameters of probability distribution model which is
more efficient than wavelet-signature; the commonly-used
probability distribution model includes Generalized Gaus-
sian Model (GGM) [10] and Gaussian Mixture Model
(GMM) [24]). Probability distribution model captures the
distribution of wavelet coefficients by estimating the model
parameter. In fact, probability distribution is the preferred
model for modelling the wavelet coefficients and it has a
wide range of applications in the fields of image analysis
and pattern recognition [10], [25]. Early feature extraction
methods in wavelet domain focus on establishing a univariate
statistical model for each wavelet subband independently.
Researches [26] and [27] have demonstrated that dependence
exists in the wavelet transform domain and using the mul-
tidimensional distribution in wavelet transform domain can
effectively increase discriminative capacity of the wavelet
features. Therefore, recent methods employ multivariate dis-
tributions such as Multivariate Generalized Gaussian Model
(MGGM), Multivariate Laplace Distribution (MLD) [28] and
the copula model [29] to join the subbands of the orthogonal
wavelet transforms (e.g., the discrete wavelet transform [30]
and stationary wavelet transform [31]).

The above-mentioned methods are effective for texture
recognition, so our goal is to incorporate two or more than
two methods to improve the recognition performance. In this
paper, we use both the Gabor wavelet and deep learning
to improve the performance of texture recognition meth-
ods. Our method is a global texture describing model based
on the covariance matrix in Cumulative Distribution Func-
tion (CDF) space, called CSCM-GW (CDF Space Covariance
Model in Gabor wavelet domain). Namely, we used covari-
ance matrix to model the Gabor wavelet coefficients. Dif-
fering from other covariance-matrix-based methods, we first
project the coefficients of Gabor wavelet into CDF space
to get more robust performance. The challenge lies in that
the space of CSCM-GW is not a linear space but a Rie-
mannian manifold which is more difficult than linear space
for image analysis. To the best of our knowledge, there is
no ideal technique to transform the data from Riemannian
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manifold into the linear space. To address this issue, we use
deep Convolutional Neural Network (CNN) as a transforming
approach to project CSCM-GW in to the linear space. There
are two contributions in this work:

« We proposed CSCM-GW for texture feature extraction.
CSCM-GW can produce robust texture features, and
with CSCM-GW the images with different size will be
transformed into fixed dimensional covariance matrix.

o We use CNN to project Riemannian manifold into the
linear space. Namely, we directly use CNN on the
covariance matrix for classifying texture images.

Il. RELATED WORKS

The proposed method is built on the statistical model in
wavelet domains. Therefore, in this section we mainly
introduce the relative work of multidimensional statistical
model. Multidimensional statistical model such as Multi-
variate Gaussian Model (MGM) and its extensions, Mul-
tivariate Gaussian Mixture Model (MMGM), MGGM and
Gaussian copula, in wavelet domain has shown their excel-
lent ability for texture feature extraction. These models are
widely applied in computer vision. In [32] MMGM is used
to model over a variety of different color and texture feature
spaces, with a view to the retrieval of textured color images
from databases. In literature [28] the authors proposed texture
retrieval algorithm based on MGGM for the modeling of
wavelet subbands. In literature [33] Lasmar and Berthoumieu
use Gaussian copula to fit wavelet coefficients and they
derived a closed-form Kullback-Leibler Divergence (KLD)
as the similarity measure between Gaussian copula. When
these statistical models are applied into texture recognition,
general we are to compare the dissimilarity between two
models, e.g., two MMGMs. Closed-form KLD is a prefer
measure between distribution models because it is efficient
and is also has the lower computational cost than other mea-
sures of the multivariate model. Unfortunately there are no
closed-form expressions for the closed-form KLD for most of
these models, e.g., copula models excluding Gaussian copula.
Generally, multivariate statistical model has a more complex
calculation than linear space for texture recognition since the
KLD formulas involve the multiplication and inverse of a
matrix.

Covariance matrix is also relative to the multivariate
model, and it has gained a promising success [34]-[39].
Tuzel et al. [34] map each pixel to a 5-dimensional feature
space (the five features are image intensities, norm of first
and second order derivatives of intensities) and use a covari-
ance matrix to model these features. Both CSCM-GW and
covariance descriptor are based on the covariance matrix.
Pang et al. [35] proposed a method by utilizing Gabor-based
region covariance matrices as face descriptors. Both pixel
locations and Gabor coefficients are used to form the covari-
ance matrices. Because covariance matrix belongs to Rieman-
nian manifold, Euclidean distance cannot be used. Therefore,
Tuzel et al. [34] proposed using eigenvalue-based distance
Riemannian distance as the measure of the covariance matrix.
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FIGURE 1. The flowchart of the proposed method (CSCM-GWF-CNN) for image classification.

Given two covariance matrices Ry and R», Riemannian dis-
tance is defined as:

d
> i (R, Ry), (1)

i=1

RD (R1,Ry) =

where )»12 (R1,R2);—1.... 4 are the generalized eigenvalues of
R 1 and Rz.

The disadvantage of Riemannian distance lies in the com-
putation cost using formula (1) is quite expensive because
it is necessary to calculating the eigenvalues of the two
covariance matrices at the image matching step. Recently,
a number of researchers employ Log-Euclidean embedding
approaches [40]-[43] to transform the covariance matri-
ces into the linear space and use Euclidean distance as
the similarity measure of two covariance matrices R, R».
Log-Euclidean between R; and R» is defined as:

LD (R1, R2) = ||/log(Ry) — log(Ry) ||, @)

where log is the matrix logarithm operator and ||| g
denotes the matrix Frobenius norm. Although Log-Euclidean
has the low computation cost, much of the spatial
information of the covariance matrix is lost. Besides,
Minh et al. [38] provide a finite-dimensional approximation
of the Log-Hilbert-Schmidt (Log-HS) distance, which is the
extension of Log-Euclidean, between covariance operators to
the large number of images classification.

Multidimensional statistical models including covariance
based methods have two folds shortcomings. First, the com-
putational cost of the measures such as Riemannian distance
for covariance matrices is more expensive than the measures
such as Euclidean distance in linear space. Second, it is
difficult to resort to an efficient learning approach to improve
the performance. Recently some researchers have proposed
some methods to overcome these shortcomings. For exam-
ple, Harandi ef al. [44] proposed modeling the mapping from
the high-dimensional manifold to the low-dimensional one
with an orthonormal projection. Wang et al. [39] presented
a Discriminative Covariance oriented Representation Learn-
ing (DCRL) framework which is a learning based approach to
face recognition. Differing from these the above-mentioned
methods, in this paper we propose a novel method by using
CNN to project the covariance matrix. Our method can effi-
ciently transform the Riemannian manifold into the linear
space and meanwhile incorporates the learning ability.
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lll. THE PROPOSED METHOD FOR

TEXTURE CLASSIFICATION

In this section, we describe the framework for the proposed
method (see Fig.1). Given an image, we first decompose
it by using Gabor wavelet. After the decomposition, there
will be generated a number of subbands of Gabor wavelet.
These subbands are organized as an observation matrix and
CSCM-GW will be used to yield a fused covariance matri-
ces R. In the final step, CNN is used to transform the fused
covariance matrix into a feature vector. For simplicity, in final
step we directly use the CNN as the classifier. One can just
use CNN to transform the R in a vector and then use SVM as
the classifier to enhance the performance.

A. CSCmM-GW

Gabor wavelet is a quite useful tool of image process-
ing [45]-[47]. It is defined as the convolution on the image
with Gabor filters. If the image is decomposed by Gabor
wavelet, then there will be L x D subbands, where L indicates
the number of scales and D indicates the number of directions.
Specifically, Gabor wavelet subbands can be obtained by con-
volving the Gabor kernels with the image I(x, y) as follows:

81,d(@) =1(x,y)* Y q(x,y) 3)

where z = (x,y). !/ = 1,---,L,andd = 1,---,D. The
elements of g; 4(z) are complex number, and the magnitudes
M; 4(z) and angles A; 4(z) can be respectively computed by
using the real part Re; 4(z) and the imaginary part Im; 4(2).

M1.4(2) = \[RE} 4(@) + I} 4(2) 4)
Aj,a(2) = arctan(Re;,a(2)/Imy 4(2)) 5

Since dependence exists between the Gabor subbands,
we use a covariance matrix to describe these subbands. Fur-
thermore, in order to obtain more robust performance, we first
cast these subbands into their CDF space by using Weibull
distribution [46] and then calculate the covariance matrix
from these transformed subbands in CDF space, called CDF
Space Covariance Matrix of Gabor wavelet (CSCM-GW).
At the experiment section, we can observe that CSCM-GW
is more efficient for image representation compared to other
multivariate distribution models.

Given the 5-scale and 8-direction decomposition of Gabor
wavelet, we organize the magnitude and angle subbands into
the following observation matrices:

Zy = [Moo(x,y), Mo1(x,y), - -, Mao(x, y)] (6)
Za = [AOO(-xv y)vAol(xs )’), et 7A40(-x7 y)] (7)
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FIGURE 2. CDF Space Covariance Matrix of Gabor wavelet (CSCM-GW). Cov indicates the operation of

calculating covariance matrix.

To RGB image, the Gabor wavelet is respectively applied to
each of the RGB channels, and then the observation matrices
are defined as

Z5 = IM§(x, y), MGy (x, y), -+ Mg, »] (8)
Z5 = [Afyx. ). Afyx, ). -+ ARy, )] ©)
It can be see that the size of Z,, and Z,, is N x 40, and the size

of Z{ and Z{ is N x 120, where N is the number of pixels in
Gabor wavelet subband.

Algorithm 1 CSCM-GW Algorithm
Require: Image /(x, y)
Ensure: Fused covariance matrix R
1: Initialize M}
2: Initialize My,
3: Decomposing image /(x, y) using Gabor wavelet accord-
ing to (3)
4: Organizing observation matrix Z, and Z, according
to (6)-(7)
5: for each column m; of Z,, do
Calculating the parameter &; of Weibull distribution
from m; using ML
7: Calculate CDF F;(x|a;) according ¢; and c;
Concatenate F;(x|c;) into the ith column of Mg!
9: end for
10: Calculating R, from My’ using COV operation using (14)
11: Using the same steps (from step 5-step 9) with normal
distribution to calculate My
12: Calculating R, from M} using COV operation using (14)
13: Calculating the fused covariance matrix R by using (16)
based on R,,, and R,,.

The schematic diagram of CSCM-GW is shown in Fig.2,
and the procedure of CSCM-GW is listed in algorithm 1
(the algorithm is for gray image). In CSCM-GW, each sub-
band is vectorized as the observations of a variable x;. It is
assumed that the observations of a subband obey a cer-
tain probability distribution. Then the observations of vari-
ables x; are used to estimate the distribution Fj(x|o;) by
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maximum likelihood (ML), and then the CFD vectors can
be calculated according to the estimated parameters &; and
the observations. Because Weibull distribution can well fit the
magnitude coefficients of complex wavelets [46], we employ
it to model the magnitude subbands of Gabor wavelet. The
PDF of Weibull distribution is

a—1
fwsL(xla, B) = (%) (%) e W/B" (10)

where « is the shape parameter, and g is the scale parameter.
The CDF of Weibull distribution is:

Fwpr (x|, B) =1 — e~ /B" (11)

To the angle subbands of Gabor wavelet, for simplicity, nor-
mal distribution is used to model the distribution of the angle
subbands.

After all the CDFs corresponding to subbands are deter-
mined, these F;(x|d;) are concatenated into a matrix My (each
column of MF corresponds to a CDF vector). For simplicity,
we use F; to denote the F;(x|;), and then the detailed CDF

vector is F; = [F1 F2i, -+, Fnil. To a d-dimensional
vector with n observations, Mr has the following express:
Fin Fip - Figa
Fr1 Fp -+ Fay
MFZ[F17F29”'5F£J]= ..
Fn,l Fn,2 te Fn,d
(12)

where 0 < F;; < 1. If the marginal distribution is not given,
empirical CDF is used as the estimator of the margin based
on Kaplan-Meier algorithm [48].

Finally, based on Mg we can calculate the covariance
matrix R by using COV operation. For two distribution vec-
tors F; and Fj, COV operation is defined as

1 n
COV(Fi, F) = —= 3 (Fii— r) (Fej— ur). - (13)
k=1

where pp, = %,ZZ:le,i is the mean of Fj; ur =
122_1&] is the mean of F;; n is the number of
n =11k,
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the observations. Given F = [Fy,---,F4], covariance
matrix R of F is calculated by using COV (F)

R = COV(F) = (COV([Fy, -, Faq])
COV(F1,Fy1) COV(F1, F») - COV(F1,Fy)
COV(Fy, F1) COV(F,, F») - COV(F», Fy)
COV(Fy,F1) COV(Fy,Fp) --- COV(Fy, Fy)
(14)

Covariance is statistically expressed as the correlation
between two random variables. If variables X and Y are
independent, then their covariance is zero. Similarly, if the
variables in the random vector are dependent of each other,
then every element in the covariance matrix except the main
diagonal is equal to zero. In this case, the useful information
data are the variances in the main diagonal of the covari-
ance matrix. Thus, there only exist dependencies between
the variables, the covariance matrix can show its superior
performance. In CSCM-GW, because the covariance matrix
is built on Gabor wavelet domain and the dependence exists
between the subbands of Gabor wavelet, CSCM-GW has a
robust performance for texture recognition.

We use both the magnitude and the angle subbands of
Gabor wavelet for texture recognition. In the proposed
method, the upper triangular part of the covariance matrix of
magnitude subbands (denoted as mag-cov) is concatenated
with the lower triangular part of angle subbands (denoted as
ang-cov), expressed as:

R = triu(Ry) + tril(Rq, —1) (15)

where triu(R,,) denotes the operation of cropping the upper
triangular matrix R, including the main diagonal; and
tril(R,, —1) denotes the operation of cropping the lower tri-
angular matrix R, below the main diagonal. Alternatively,
one can fuse the upper triangular matrix of R, and the lower
triangular matrix of R,,, expressed as:

R = triu(Ry) + tril (R, —1) (16)

The scheme of fusing the covariance matrix of magnitude and
the covariance matrix of angle subbands is illustrated in Fig.3.
Finally, we obtain a fused covariance matrix for an image.

B. DESIGNING THE PROJECTING CNN FOR

TEXTURE CLASSIFICATION

In this section, we will design the CNNs to project the fused
covariance matrix produced by CSCM-GW. Two types of

Upper of
- Mag-cov

R
Lower of \\

Ang-cov

Ang-cov + Mag-cov

FIGURE 3. The fused covariance matrix. Mag-cov indicates the covariance
matrix of magnitude subbands; Ang-cov indicates the covariance matrix
of angle subbands.
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network structures are implemented: one for the small num-
ber of texture classes denoted by CNN#1 [see Fig.4 (a)], one
for the large number of texture classes denoted by CNN#2
[see Fig.4 (b)]. To CNN#I1, the CNN has 10 layers; to
CNN#2, the CNN has 14 layers. We use BatchNormalization
layer (BN) to normalize the activations of the previous layer
in each batch, and use dropout layer (drop) to help prevent
over-fitting. For CNN#1, one convolution layer and one Full
Connection (FC) layer are used; for CNN#2, two convolution
layers and two full connection layers are employed. Espe-
cially, CNN#1 is tested on KTH-TIPS2-b texture database
which is a color texture database and has 11 texture classes,
and CNN#2 is tested on Brodatz texture database which
is a gray texture database and has 111 texture classes (see
experiment section). To the color images, the size of the 2D
input matrix (the fused covariance matrix) is 120 x 120; to
a gray image, the size of 2D input matrix is 40 x 40. The
detailed description of the parameters of the two CNNs is
described as follows:

CNN#1:

data: 120 x 120 input matrix;

conv: 25 3x3, stride=1;

pool: maxpooling, 2 x 2, stride=2;

drop: dropout probability is set to 0.6;

FC: 11 nodes for the 11 texture classes.

CNN#2:

data: 40 x 40 input matrix;

conv (first): 25 3x 3, stride=1;

conv (second): 12 3x3, stride=1;

drop: dropout probability is 0.6;

FC(first): 1000 nodes;

FC(second): 111 nodes for the 111 texture classes.

IV. EXPERIMENTS

To evaluate the performance of the proposed methods,
we carried out several experiments on the two datasets:
Brodatz (111) and KTH-TIPS-2b.

Brodatz(111) dataset [8] is composed of 111 grays-scale
images representing a large variety of natural textures and it
has been widely used as a validation dataset. The challenge
for this database is that there are the relatively large number
of classes and the small number of samples per class (see the
textures in the first row of Fig.5); and there are also several
inhomogeneous textures (see the textures in the second row of
Fig.5) which are easily mis-classified. We use the consistent
approach as [8], [49], and [50] to create this dataset: Each
of the 640 x 640 texture was divided into 9 nonoverlapping
subimages (215 x 215), of which 3 subimages were used for
training and the remaining 6 for testing. The total number of
samples in this dataset is 999.

KTH-TIPS2-b dataset (KTH2(11)) has 11 material
classes [51], and each material class has 4 samples and each
sample contains 108 color images. These images were gen-
erated under the conditions of illumination changes, small
rotations, small pose changes and scale changes (see Fig.6).
The total number of samples in this dataset is 4752.
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data |=@ BN [T conv [== relu |[= pool [= drop |=/ BN |Z| FC |&Z prob |& out j>
(a)
| | BN || | BN | | BN BN | | |
data |[= conv I relu |= cony ™ relu |= e M drop = (e prob |= out #}
(b)

FIGURE 4. The structure of CNN used for projecting the fused covariance matrix. The names of layers are described
as follows: data—2D input matrix, conv—Convolution layer, BN— BatchNormalization layer, relu—Relu layer,
pool—MaxPooling layer, drop—Dropout layer, FC—Fully connected layer, prob—Softmax layer, out—Classification
output layer. (a) For the small number of texture classes CNN#1. (b) For the large number of texture classes

CNN#2.

FIGURE 5. Eight example textures from the Brodatz (111) dataset.

FIGURE 6. Two textures with different scales, illumination and sizes from
the KTH2 (11) dataset.

We followed the standard evaluation protocol [S1]: training
on three samples, testing on the remainder.

To better evaluate the proposed methods, we first describe

these methods as follows:

o CSCM-GWM. Constructing the covariance matrix on
the CDF space of magnitude subbands of Gabor wavelet.
Riemannian distance of (1) is used as the dissimilarity of
two covariance matrices for texture recognition.

o CSCM-GWA. Constructing the covariance matrix on
the CDF spaces of angle subbands of Gabor wavelet.
Riemannian distance is used as the dissimilarity of two
covariance matrices.

30698

o CSCM-GWMA. The combination of CSCM-GWM
and CSCM-GWA. The dissimilarity of two images is
the sum of Riemannian distances on CSCM-GWM and
CSCM-GWA.

e CSCM-GWM-CNN. Constructing the covariance
matrix on the CDF spaces of magnitude subbands of
Gabor wavelet. CNN is used as the classifier of texture
recognition.

e CSCM-GWA-CNN. Constructing the covariance
matrix on the CDF spaces of angle subbands of Gabor
wavelet. CNN is used as the classifier of texture
recognition.

¢« CSCM-GWF-CNN. The covariance matrices are con-
structed on the CDF spaces of magnitude and angle
subbands of Gabor wavelet. The fused covariance
matrix is used as the input of CNN for texture
recognition.

For better evaluating our method we also implemented
the covariance matrix in Gabor wavelet domain (Cov-GW)
including on the magnitude subbands of Gabor wavelet
(called Cov-GWM) (which is similar to the method in [35])
and the angle subbands of Gabor wavelet (Cov-GWA), as well
as the combination of Cov-GWM and Cov-GWA (called
Cov-GWMA) by using the same combining approach as
CSCM-GWMA.

At the beginning, we compared our models CSCM-GWs
(including CSCM-GWA, CSCM-GWM and CSCW-GWMA)
against covariance matrix models Cov-GWs (including Cov-
GWA, Cov-GWM and Cov-GWMA) on the two datasets,
and the experimental results of are shown in Table 1.
We can observe that the proposed CSCM-GWs always out-
perform Cov-GWs which directly use the covariance matrix
in Gabor domain. Especially, CSCM-GWs show an obvi-
ous improvement compared with Cov-GWs on KTH2(11).
This experiment validates that the covariance model in CDF
space is more effective than the covariance matrix in the
original Gabor wavelet domain.
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TABLE 1. The comparison of classification accuracies (%) of CSCM-GW
and Cov-GW.

Method Brodatz(111) | KTH2(11)
Cov-GWM 87.69 69.51
CSCM-GWM 89.64 74.79
Cov-GWA 89.79 71.45
CSCM-GWA 90.84 71.89
Cov-GWMA 93.09 70.60
CSCM-GWMA 93.36 74.73
Cov-GWF-CNN 94.29 79.74
CSCM-GWEF-CNN 95.35 83.70

Then we validated the performance of CSCM in Gabor
wavelet domain with CNN learning. The recognition accu-
racies of the CNN based CSCM models (including CSCM-
GWA-CNN, CSCM-GWM-CNN and CSCM-GWF-CNN)
and the CSCM in Gabor domain without CNN learn-
ing (including CSCM-GWA, CSCM-GWM and CSCM-
GWMA), are listed in Table 2. In this experiment,
the CNN#1 was applied on KTH2 (11), and the CNN#2 is
applied on Brodatz (111) since the number of classes
of KTH2 (11) is small, while the number of classes of
KTH2 (11) is relatively large. It is obvious that the perfor-
mance of CSCM and covariance model in Gabor domain
is significantly improved by using CNN. For example,
the recognition accuracy of CSCM-GWF-CNN is improved
by about 2% on Brodatz (111) and improved by about 9% on
KTH2 (11) than that of CSCM-GWMA.

TABLE 2. The comparison of classification accuracies (%) of CSCM-GW
and CSCM-GW-CNN.

Method Brodatz(111) | KTH2(11)
CSCM-GWM 89.64 74.79
CSCM-GWM-CNN 89.84 81.64
CSCM-GWA 90.84 71.89
CSCM-GWA-CNN 92.49 79.82
CSCM-GWMA 93.36 74.73
CSCM-GWEF-CNN 95.35 83.70

From Table 1 and Table 2, we observe that CSCM-GWs has
robust performance for texture recognition. CSCM-GWMA
has the best classification accuracy compared with
CSCM-GWM and CSCM-GWA. Similarly, CSCM-GWF-
CNN has the best performance among the CNN-based
CSCMs including CSCM-GWM-CNN and CSCM-GWA-
CNN. The results in Table 1 and Table 2 demonstrate that
our model CSCM has better performance than the covari-
ance matrix in Gabor wavelet domain; CNN significantly
improves the performance of the covariance model and
CSCM.

About computational performance, the computational time
of CSCM-GWF-CNN which uses the fused covariance
matrix is equal to CSCM-GWs, and higher than Cov-GWs
because CSCM-GWs need to calculate the projection from
the subband to its CDF space. However, in the recognition
step CSCM-GWF-CNN has a very high efficient. The run-
time of CSCM-GWF-CNN for recognizing a sample image
on Brodatz (111) is about 0.072ms (Core 17 6700 4GHz CPU,
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32GB RAM, Matlab 2017b) and the runtime for recognizing
a sample image on KTH2 (11) is about 0.25ms; while the
runtime of CSCM-GWMA is about 200ms and 4450ms on
the two datasets, respectively (see Table 3).

TABLE 3. The runtime for recognizing a sample image on the two
datasets.

Method Brodatz(111) | KTH2(11)
CSCM-GWM 100ms 2230
CSCM-GWA 100ms 2230
CSCM-GWMA 200ms 4450ms
CSCM-GWF-CNN 0.072ms 0.25ms

TABLE 4. The comparison of classification accuracies (%) with the
sate-of-the-art on the two datasets.

Method Brodatz(111) | KTH2(11)
MRELBP [52] 93.12 7791
ScatNet [53] 84.46 68.92
PCANet [54] 90.87 57.70
RandNet [54] 91.14 56.90
FV-AlexNet [18] 98.20 77.90
FV-SIFT [18] - 81.5
FV-VGGM [55] 98.70 79.90
CSCM-GWF-CNN (our) 95.35 83.70

We also compared CSCM-GWF-CNN against the state-of-
the-art methods. The accuracies of these methods are shown
in Table 4. Based on the fused covariance matrix combin-
ing with CNN, the proposed method (CSCM-GWF-CNN)
obtained 95.35% and 83.70% classification accuracies on the
two texture datasets, respectively. On Brodatz (111) database,
CSCM-GWF-CNN yielded a promising classification accu-
racy and slightly lower accuracy than FV-VGGM. However,
CSCM-GWEF-CNN outperforms all the other methods on
KTH2 (11). It should be pointed out that FV-VGGM is a
competitive method and is also computationally expensive
because its feature dimension is 65 535, making it unfeasi-
ble to run in low-power applications. Therefore, overall our
method has the robust and excellent recognition ability for
texture image classification. Note that we can use FC layer as
the features of image and in CNN#1 and CNN#2 the number
of FC layer nodes is less than 1000 (the node of FC layer
of CNN#1 is 11 and the node of the second FC layer of
CNN#2 is 111), so the feature dimensionality produced by
CSGM-GWF-CNN is significantly low. It can be seen that the
combination of Gabor wavelet and CNN indeed reduces the
number of network layers: In CSGM-GWF-CNN, a shadow
CNN having few layers can yield promising recognition accu-
racies; while numerous layers are used in the deep CNNSs such
as FV-VGGM and RandNet.

V. CONCLUSIONS

We use both the Gabor wavelet and deep learning to imple-
ment texture recognition. Our method is a global texture
describing the model in CDF space of Gabor wavelet domain
based on the covariance matrix, called CSCM-GW (CDF
Space Covariance Model). There are two contributions in
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this work. First, we proposed CSCM-GW for texture fea-
ture extraction. CSCM-GW can obtain robust texture feature,
and the images of different size will be transformed into
fixed-size covariance matrix. The covariance matrix in CDF
space is capable of capturing the dependence of the sub-
bands of Gabor wavelet and obtaining significant improve-
ment compared to the covariance matrix which directly
employs the subband coefficients. Second, we use CNN to
project CSCM-GW, which is based on the fused covari-
ance matrix, into the linear space (CSCM-GWF-CNN). With
CNN, the runtime is largely reduced in the recognition phase
because the output of the proposed method is a low dimen-
sional vector, and more importantly we also improved the
recognition accuracy by incorporating the learning technique.

It should be addressed that in the proposed methods,
the structures of the two CNNs are designed based on exper-
iments and maybe not the optimal structures. One can design
the more efficient CNN structures for texture recognition.
Furthermore, our methods just used the global feature of
the image, while the local features are not used. Our meth-
ods are similar to covariance descriptor which focuses on
extracting the local feature and has promising performance
for object recognition and detection [36], [56]. So we believe
the performance of our methods will further be improved
and can be used to other applications such object recognition
and detection if the local features of image are used in our
methods.
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