
Received November 22, 2018, accepted December 25, 2018, date of publication January 8, 2019, date of current version January 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2891001

Time Estimation and Resource Minimization
Scheme for Apache Spark and Hadoop
Big Data Systems With Failures
JINBAE LEE1,2, BOBAE KIM1,3, AND JONG-MOON CHUNG 1, (Senior Member, IEEE)
1School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
2Samsung Electronics, Co., Ltd., Gyeonggi-do 16677, South Korea
3Republic of Korea Army, Seoul 04383, South Korea

Corresponding author: Jong-Moon Chung (jmc@yonsei.ac.kr)

This research was supported by the grant MOIS-DP-2015-10 through the Disaster and Safety Management Institute, which is funded by
the Ministry of Interior and Safety of the Republic of Korea Government.

ABSTRACT Apache Spark and Hadoop are open source frameworks for big data processing, which have
been adopted bymany companies. In order to implement a reliable big data system that can satisfy processing
target completion times, accurate resource provisioning and job execution time estimations are needed. In this
paper, time estimation and resource minimization schemes for Spark and Hadoop systems are presented.
The proposed models use the probability of failure in the estimations to more accurately formulate the
characteristics of real big data operations. The experimental results show that the proposed Spark adaptive
failure-compensation and Hadoop adaptive failure-compensation schemes improve the accuracy of resource
provisions by considering failure events, which improves the scheduling success rate of big data processing
tasks.

INDEX TERMS Big data, failure probability, Apache Spark, resilient distributed dataset (RDD), Apache
Hadoop, MapReduce, cloud computing, job estimation, resource provisioning, performance optimization.

I. INTRODUCTION
Spark andHadoop of the Apache Software Foundation are the
most widely used open-source parallel distribution platforms
for big data processing. As big data processing is used in
various fields, studies of platforms for big data processing
are actively being carried out. Spark uses resilient distributed
datasets (RDDs) to handle distributed processing on multiple
nodes based on a directed acyclic graph (DAG), in which
RDDs are effective in overcoming failures in the process.
Spark can create various types of RDDs (e.g., HadoopRDD,
MapRDD, ReduceRDD, JsonRDD, PythonRDD, etc.)
according to each data type by loading file contents from
databases, such as, Hadoop Distributed File System (HDFS),
HBase, MySQL, and CSV. Therefore, Spark can process
data from various types of already built databases. Spark
transforms the RDD data using distributed processing cores.
All of the processes conducted in Spark are recorded in the
lineage, which is used in the recovery of the RDD in the case
of a failure. Due to the fact that Spark uses RDDs, in-memory,
and flexible multi-core processing, a RDD can be recovered
from failure more quickly compared to the recovery time
consumed inHadoop. Spark is also very efficient in streaming
and conducting iterations of jobs. Because many existing

databases are configured in HDFS, many Spark systems
have been analyzing data in HDFSs using the Yet Another
Resource Negotiator (YARN) resource management system.

Hadoop is a parallel distributed processing platform that
has been widely used in the original Google search engines.
Hadoop has been widely used due to its fault tolerance and
scalability provided by MapReduce technology, and is still
used by many companies, such as, Yahoo, Facebook, and
several cloud computing service providers. Hadoop systems
majorly consist of HDFS, MapReduce data processing func-
tions, and the resource manager YARN.

In order to implement a big data analysis system that can
satisfy performance target times, Spark and Hadoop systems
need accurate resource provisioning and job execution time
estimations. However, due to unexpected errors and failures,
making an accurate estimation is very challenging, since one
will need to consider various changes that may occur in the
dataset processing jobs and tasks, and also make accurate
time consumption predictions.

Although many studies have been carried out on Spark
and Hadoop systems, analysis of the existing prediction
models reveals that there are a couple of important yet
unsolved issues. First, prediction models are mostly based on
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environments where failures did not occur [3], [15],
[16], [17], and second, even for the models that considered
failures, a probability of failure occurrence (HP model) was
not included into the resource provisioning process [3].
Because failures do occur in real world systems, when apply-
ing existing time prediction models in resource provisioning,
target completion time violations frequently occur. In partic-
ular, large systems, such as, big data systems should consider
failure times because they are more prone to experience
failure events [8]–[14].

Therefore, in this paper, a Spark adaptive failure-
compensation (SAF) time estimation method, Hadoop adap-
tive failure-compensation (HAF) time estimation method,
and resource minimization schemes based on SAF and HAF
are proposed to effectively deal with failures that occur in
Spark and Hadoop systems.

This paper is organized as follows. The background and
related work on Hadoop and Spark are summarized in
section 2, the HAF time estimation method is presented in
section 3, the SAF time estimation method descriptions are
provided in section 4, the experimental environments and
results are presented in section 5, followed by the conclusion
in section 6.

II. BACKGROUND AND RELATED WORK
Reliability and speed enhancement of big data processes are
becoming more important due to various new real-time and
near real-time applications. Due to this reason, many models
on Spark and Hadoop performance and resource provisioning
have been proposed. In the following subsections, theHadoop
systemmodel is introduced first followed by the Spark system
model descriptions.

A. APACHE HADOOP SYSTEM MODEL
Apache Hadoop is a big data open source parallel distributed
processing platform that was initially released in 2011.
Apache Hadoop works on HDFS with multiple servers as
shown in Fig. 1. HDFS can process big data without costly

FIGURE 1. Apache Hadoop system architecture.

servers by performing parallel processing on multiple low
cost servers. Hadoop is also robust against failures because
it makes multiple copies of the data file and processes the
data copies on multiple servers.

Apache Hadoop operates on HDFS, with one NameNode
and one or more DataNodes in the Hadoop cluster. The
NameNode is a node that manages the entire cluster, and the
DataNodes are nodes that store data and process the jobs.
The JobTracker in the NameNode manages job scheduling,
and TaskTracker in the DataNodes processes distributed job
tasks. In the case of Hadoop, previous research has been
conducted to predict the execution time of a job in Hadoop.
Subbulakshmi and Manjaly [22] and Hou et al. [23] show the
performance improvement of Hadoop based on job schedul-
ing using Hadoop YARN. However, this study did not attempt
to optimize the performance using the developed mathemati-
cal model.

The process of Hadoop MapReduce follows the order of
data loading, map phase, shuffle phase, and reduce phase.
In [5], a mathematical Hadoop performance multi-step model
was proposed. In addition, in [3], the HPmodel was proposed,
which is based on a job execution time prediction method.
In the HP model, the number of reduce tasks is fixed and
the impact of the number of reduce tasks on the performance
was not considered. In addition, in the first wave of the
shuffle phase, the non-overlapping stage with the map phase
is not mathematically expressed. Verma et al. [3] explain the
impact of failure on the execution time, but the probability
of failure occurrence and resource provisioning effects were
not included. To deal with some of these issues, the improved
HP (IHP) scheme proposed in [4] divides MapReduce into
map, shuffle, and reduce phases and mathematically models
the non-overlapping stage with the map phase in the first
wave of the shuffle phase. Moreover, the IHP scheme uses
locally weighted linear regression (LWLR) and shows a 95%
accuracy under varying conditions in the number of tasks.
However, since the model does not consider the occurrence
of errors and failures, there is a difference in the performance
when compared to a real HDFS system. In reality, Hadoop
systems experience various types of failures due to user code
mistakes, processor crashes, and equipment problems, which
have different degrees of a degrading influence on the perfor-
mance depending on the situation.

In [6], models that predict the execution time with five
machine learning (ML) algorithms are proposed. However,
a mathematical model is not provided and the performance
analysis is based on the measurement of the total execution
time. Since the total time has a wider variation range com-
pared to the variations of the map task time and reduce task
times, the scheme needs to create a new ML model even
when slight changes are made. Yang et al. [7] measured the
correlation between the total execution time and the input
data size, file size, number of map and reduce tasks, and
apply principal component analysis (PCA) in an attempt
to optimize the performance by adjusting the variables that
have the greatest impact. The proposed scheme tries to find
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the factor with the biggest influence and use support vector
machine (SVM) algorithms to predict the execution time. But
the multiple waves model does not consider the overlap of the
first wave and second wave, nor the probability of failure.

B. APACHE SPARK SYSTEM MODEL
Apache Spark is a big data open source parallel distributed
processing platform that was initially released in 2014.
As shown in Fig. 2, Apache Spark distributes several vir-
tual machines (VM) in the Spark Executor. Apache Spark
can use a Spark Standalone scheduler, and also can work
with various types of databases because it loads data by
copying the necessary data in RDD format from an already
created database (e.g., HDFS or SQL). Spark will com-
monly use a YARN cluster manager in case of accessing a
HDFS. In each executor, RDDs will be used in a sequence
of ‘transformation’ operations based on the execution of an
‘action.’ RDD transformations and actions are conducted in
a distributed processing manner after being scheduled by the
DAG scheduler.

FIGURE 2. Apache Spark system architecture.

In the case of Spark, most research on Spark has been
on predicting a job’s execution time. Xia et al. [20] and
Hu et al. [21] show the Spark performance improvement
by job scheduling using Spark YARN or Spark Standalone.
However, these papers do not conduct any optimization using
the developed mathematical models.

Spark creates a RDD in the form of HadoopRDD from
HDFS, then proceeds to MapReduce in the Spark executor.
RDD is a distributed collection of data as elements. RDD
is made up of multiple partitions, with data elements in
them. Spark distributes each partition of the RDD. Spark
processes the data while transforming the RDD to another
RDD. In Hadoop’s map, shuffle, and reduce steps, Spark
performs map transformation of the HadoopRDD to generate
a MappedRDD. Subsequent work will proceed using the
ShuffledRDD and UnionRDD, which is similar to Hadoop
MapReduce [19]. This work uses a different mathemati-
cal modeling technique compared to the methods used in
Hadoop, as it is based on processing of RDDs, which is
different to Hadoop processing procedures. In [15] a math-
ematical model of Spark is proposed, where the execution

time of Spark is determined by a stage and partition unit.
Sidhanta et al. [16] and Islam et al. [17] mathematically
model the Spark execution time by proposing OptEx [16]
and dSpark [17], which are resource allocation policies that
find the lowest cost while satisfying the deadline. OptEx [16]
and dSpark [17] show an accuracy in the range of 95-97%.
However, these models do not take into account the influence
of errors and failures, which can lead to a timeout that may
result in deadline violations. Spark analysis needs to consider
failures and errors and corresponding delays, because it is
evident that servers, computers, and networking equipment
show a growing probability of failure and errors as they
age [16].

If the time prediction models in the resource scheduler
cannot properly provision failures and errors, performance
target time violations may occur when a processing fail-
ure or error occurs. In particular, in the case of a large-
scale big data system, the size of the server becomes large,
which can reach up to awarehouse-scalemachine size formed
through a large-scale cluster, and the probability of a pro-
cessing failure or error event occurring increases [8]–[14].
Barroso et al. [11] noted that the annual failure rate of
warehouse-scale machines is 4%. In [12] and [13], failures
and resulting delays in large-scale data processing systems
are discussed, and [9] shows that the annualized failure rates
of the drives rise to 8% after two years. In addition, based
on the MapReduce job failure rates reported in [8], disk drive
failure rates reported by Google in [9], and server crash and
disk drive failure rates reported in [10], it is evident that the
failure and error rates are not negligible, thus dealing with
failures is important. Therefore, the SAF and HAF schemes,
proposed in this paper, attempt to overcome the lack of accu-
racy by modeling the influence of failures into the perfor-
mance analysis of Spark and Hadoop systems, respectively.
The modeling methods applied in the SAF and HAF scheme
are presented below.

III. HADOOP ADAPTIVE FAILURE COMPENSATION
METHOD
The proposed HAF scheme models the influence of failures
into the IHP [4] model based on variables that express the
influence of failure types. In the HAF scheme, MapReduce
is divided into the map phase, shuffle phase, and reduce
phase, same as in the IHP model. The parameters used in this
paper are summarized in TABLE 1, where Nm.tf ,Nsh.2.tf , and
Nr .tf were newly defined in this paper to model the failure
probabilities that will be used to conduct optimal control in
the HAF scheme.

A. JOB EXECUTION TIME ESTIMATION WITH FAILURES
The prediction time calculation differs depending on the stage
at which the failure occurred, because the number of failed
tasks that need to be reexecuted are different based on the
operation stage. If a failure occurs during a map task in
progress, it will be reexecuted only for the map task that has
already been executed as well as the running map task in
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TABLE 1. HADOOP parameters.

the failed worker node, but this does not affect the reduce
tasks. However, when a failure occurs during a reduce task
in progress, both the map tasks and reduce task on the failed
node must be reexecuted.

1) CASE 1 : MAP TASK FAILURE (tf ≤ Tm + Tsh.1)
The estimation time of the map phase is (TmNm.1)/N slot

m .
From this, we can compute the number of map tasks com-
pleted (Nm.done) as Nm.done = b(tf N slot

m )/Tmc. If there are
W nodes, the number of failed tasks in the failed node is
calculated as Nm.fail.m = bNm.done/W c. The total execution
time of the map phase, including the increased time due to
failure, is equal to the time to execute the map tasks, which
includes the failed map tasks (Nm.fail.m) and the currently
processing map tasks (Nm.1). Thus, the total number of map
tasks can be expressed asNm.tf = Nm.1+Nm.fail.m. A failure at
the map stage does not affect the reduce tasks, and therefore,
Nr .tf = Nr .

2) CASE 2 : REDUCE TASK FAILURE
The expression of the job execution time is T totalj =

(TmNm.1)/N slot
m + (Tsh.1Nsh.1)/N slot

r + (Tsh.2Nsh.2)/N slot
r +

(TrNr )/N slot
r . From this, we can compute the number of

reduce tasks completed (Nr .done) as follow: (TmNm.1)/N slot
m +

(Tsh.1Nsh.1)/N slot
r + (Tsh.2Nsh.2)/N slot

r + (TrNr .done)/N slot
r =

tf . If there areW nodes, the number of failed tasks in the failed

node is calculated as Nr .fail = bNr .done/W c and Nm.fail.r =
bNm/W c. The total execution time of each phase, including
the increased time due to failure, is equal to the time to
execute all involved tasks, which include the failed tasks and
the initial configured tasks. Thus, the total number of tasks
are expressed as Nm.tf = Nm.1 + Nm.fail.r ,Nsh.2..tf = Nsh.2 +
Nr .fail , and Nr .tf = Nr+Nr .fail . Therefore, the total execution
time in the HAF model can be calculated as follows.

T totali = Tm

⌈
Nm.tf
N slot
m

⌉
+ Tsh.1

Nsh.1
N slot
r

+Tsh.2

⌈
Nsh.2.tf
N slot
r

⌉
+ Tr

⌈
Nr .tf
N slot
r

⌉
(1)

B. TIME ESTIMATION WITH FAILURES PROBABILITY
The probability that a failure occurs in the map and the reduce
phase is denoted by Pm and Pr , respectively. Then, the mean
of Nm.tf ,Nsh.2.tf , and Nr .tf can be obtained as follows.

E(Nm.tf ) = Nm.1(1− Pm)(1− Pr )

+ (Nm.1 + Nm.fail.m)Pm(1− Pr )

+ (Nm.1 + Nm.fail.r )(1− Pm)Pr
+ (Nm.1 + Nm.fail.m + Nm.fail.r )PmPr (2)

E(Nsh.2.tf ) = Nsh.2(1− Pr )+ (Nsh.2 + Nr .fail)Pr (3)

E(Nr .tf ) = Nr (1− Pr )+ (Nr + Nr .fail)Pr (4)

Therefore, the total execution time based on (1) becomes

T totalj = Tm

⌈
E(Nm.tf )
N slot
m

⌉
+ Tsh.1

Nsh.1
N slot
r

+Tsh.2

⌈
E(Nsh.2.tf )
N slot
r

⌉
+ Tr

⌈
E(Nr .tf )
N slot
r

⌉
. (5)

C. RESOURCE PROVISIONING
The deadline for the predicted job execution time is t , and
in order to predict the optimal amount of resources, the first
wave and the other waves (overlapped with the shuffle stage)
of the map phase, the first wave and the other waves of the
shuffle phase, and the reduce phase need to be considered in
order to consider the influence of all slots. Then, (5) can be
transformed into the following form of a/m + b/(m + r) +
c/r + d/r = t based on the transformation substitutions
of a = TmE(Nm.tf ), b = (TmNm.2) + (Tsh.1Nsh.1), c =
Tsh.2E(Nsh.2.tf ), d = TrE(Nr .tf ), m = N slot

m , r = N slot
r ,

and t = T totalj . Then the Lagrange multiplier method is used
to conduct the resource optimization. Related equations are
expressed as f (m, r) = m + r and g(m, r) = a/m + b/(m +
r)+ c/r + d/r − t . The Lagrangian function is expressed as
L(m, r, λ) = f (m, r) + λ(m, r). The solutions satisfying the
equations ∂L/∂m = 0, ∂L/∂r = 0, and ∂L/∂λ = 0 are

m =
λ

(x + 1)

√
a(x + 1)2 + y (6)

r =
λ

x(x + 1)

√
a(x + 1)2 + y (7)
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where the variables λ, x, and y are defined as λ =

1/t
√
(x + 1)a+ yda(x + 1) + bx + (c + d)(x(x + 1))e,

x =
√
a/(c+ d), and y = ab/(c+ d).

D. HAF SCHEME PROCESS
In the work process of HAF, (6) and (7) are used to find
the optimal resource allocation size. The system periodically
follows the processing of Algorithm 1.

Algorithm 1 HAF Scheme

if job request received then
while job incomplete do

if detect changes in error rate then
UPDATE recalculate Pm,Pr

end
RECEIVE job execution request from the client
CHECK job completion target time
CHECK information in the job execution
CHECK request message
SET UP parameter values
SET UP(Tm,Tsh.1,Tsh.2,Tr ,Pm,Pr )
LOAD parameters according to job type
CALCULATE resource allocation size for
CALCULATE the map phase resource m
CALCULATE using (6)
CALCULATE resource allocation size for
CALCULATE the map phase resource r
CALCULATE using (7)
ALLOCATE resources according to optimal
ALLOCATE resource values m and r
EXECUTE job

end
end

IV. SPARK ADAPTIVE FAILURES-COMPENSATION
The proposed SAF scheme models the influence of failures
into the OptEx [16] model based on variables that express
the influence of failure types. In the SAF scheme, Spark
processing is divided into the Initialization phase, Preparation
phase, Variable Sharing phase, and Computation phase as in
the OptEx model [16]. The parameters used in this paper are
summarized in TABLE 1, where the probability of failure
in the data processing within a batch Pe and the probability
of failure in data processing of the RDD process PRDD was
newly defined (i.e., presented in (9)) and applied to the opti-
mal control process of the SAF scheme.

A. SPARK JOB EXECUTION TIME ESTIMATION WITH
FAILURES
The difference between Hadoop and Spark is that Spark
rebuilds the RDD at the point where the failure occurs at
any stage, and then recalculates starting at the failed location.
Therefore, no matter which type of error occurs at any stage,
the total calculation time (TEst ) does not change, but instead,

the failure influences the time to rebuild the RDD, which
is why the variable sharing phase and the communication
phase of the computation phase are added. If the RDD error
probability of Spark is PRDD, the execution time of Spark can
be expressed as

TEst=TInit+Tprep+Tvs+Tcomp+PRDD(Tvs+Tcommn) (8)

where, Tinit and Tprep are not affected by the input data
size and iterations. In addition, other values are obtain by
Tvs = εvsT baselinevs in and Tcomp = Tcommn + Texec =
(εcommnT baselinecommn /sbaseline)s/n + (i

∑nunit
k=1 M

k
a )/n as in the

OptEx model [16], based on the parameter definitions in
TABLE 2.

TABLE 2. SPARK parameters.

B. SPARK FAILURES PROBABILITY
Since the probability of error of Spark is not divided into map
and reduce stages, but depends on the number of errors that
occur in the processing of a data batch, the Spark RDD error
probability PRDD can be expressed as (9).

PRDD = Pe + P2e + P
3
e ++P

i
e =

i∑
k=1

Pke (9)

Therefore, the execution time of Spark can be expressed
as (10).

TEst = TInit + Tprep
+ inεvsT baselinevs

+ i
1
n

nunit∑
k=1

M k
a

+ εcommnT baselinecommn
1

Sbaseline

s
n

+ inεvsT baselinevs

i∑
k=1

Pke

+ εcommnT baselinecommn
1

Sbaseline

s
n
i

i∑
k=1

Pke (10)
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C. SPARK RESOURCE PROVISIONING
The optimal amount of required resources that need to be
allocated to match Spark’s job execution time Tobject to the
performance target time is derived in this subsection. For
this purpose, using the performance target time upperbound
Tobject , (10) can be reformulated into (11), which can be
reorganized into (12),

a+ bn+
c
n
5 Tobject (11)

bn2 + (a− Tobject )n+ c 5 0 (12)

based on the transformation substitutions of a =

TInit+ TPrep,b = iεvsT baselinevs + iεvsT baselinevs
∑i

k=1 P
k
e ,

and c = i
∑nunit

k=1 M
k
a + εcommnT baselinecommn s/sbaseline +

iεcommnT baselinecommn s
∑i

k=1 P
k
e/sbaseline. Based on the variable n

in (12), the roots of the quadratic inequality are obtained as
n1 and n2 below.

n1 =
⌈ (a− Tobject )+√(a− Tobject )2 − 4bc

2bc

⌉

n2 =
⌈ (a− Tobject )−√(a− Tobject )2 − 4bc

2bc

⌉
Since n represents the number of nodes, it has to be a

positive integer. Therefore, if there is a negative number
among n1 and n2, the value is excluded. Therefore the optimal
n value (i.e., n∗) can be obtained from (13).

n∗ = {min(n1, n2)|n1 > 0, n2 > 0} (13)

D. SAF SCHEME PROCESS
In the work process of SAF, (13) is used to find the optimal
resource allocation size. The system periodically follows the
processing of Algorithm 2.

V. EXPERIMENTAL ENVIRONMENT AND RESULTS
In this section, the setup of the simulation experiments and
the performance results are provided. Considering the system
job failure rates reported in [8], large disk drive failure rates
reported by Google in [9], and server crash rates reported
in [11]–[13], the failure rate of 2%, 5%, and 8%were tested in
the simulation experiments, based on a random failure event
occurrence model.

A. HADOOP EXPERIMENTAL ENVIRONMENT
Simulation experiments were based on the Hadoop profile for
the Wordcount application in an EC2 environment with an
input data size of 50 GB, with the number of map and reduce
slots set at 20 each [4].

B. HADOOP JOB EXECUTION TIME ESTIMATION
First, the time predicted of a failure-less environment with a
failure existing environment is compared, in order to check
the effect of failures on the job execution time. In the failure-
less environment, the IHP model is applied, and the time tf at

Algorithm 2 SAF Scheme

if job request received then
while job incomplete do

if detect change in error rate then
UPDATE recalculate Pe,PRDD

end
RECEIVE job execution request from the client
CHECK job completion target time
CHECK information in the job execution
CHECK request message
SET UP parameter values
SET UP (TInit ,TPrep,Tvs,Texec,Tcommn,Pe)
LOAD parameters according to job type
CALCULATE resource allocation size range
CALCULATE [n1, n2] for the Spark resource n
CALCULATE using (12)
DETERMINE optimal n∗ using (13)
ALLOCATE resources according to optimal
ALLOCATE resource values n∗

EXECUTE job
end

end

which the failure occurred is assumed to be immediately after
the completion of the entire map and reduce tasks. In addi-
tion, in the event of a failure, it is assumed that reschedul-
ing for a failed task and replenishment of a failed worker
node occurred immediately. Fig. 3 shows the increased time
due to failures. When a failure occurs in the map phase,
the time consumed increases by 20∼30 seconds, but in the
case a failure occurs in the reduce phase, the consumed time
increased by 60∼110 seconds according to the input data
size [4]. This is because when a failure occurs in the reduce
phase, not only the failed reduce tasks but also the previously
executed map tasks on the failed worker node have to be
re-executed.

FIGURE 3. Comparison of no-failure and failure environments.
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FIGURE 4. Hadoop job execution time estimation with failures.
(a) Pm = 0.02. (b) Pm = 0.05. (c) Pm = 0.08.

C. HADOOP RESOURCE PROVISIONING
In the simulation experiments, it will be checked if the target
times can be satisfied in an environment where actual failures
occur. The probability of failure (P) to be applied to the
map and the reduce phases is 0.02, 0.05, and 0.08, and the
target times are 905, 1000, 1050, 1100, and 1195 seconds.

Resource provisioning is conducted through a prediction
model that is based on a dataset size of 50 GB, and it
is assumed that failures occur randomly, with probability
Pm and Pr at any time tf . The results in Fig. 4 show that
the target time is satisfied when resource provisioning for
each model is set. Resources were provisioned according
to the time and probability of failures, respectively, where
the graphs present the mean performance values. The HAF
model satisfied the target time in almost all cases tested.
In comparison, as the probability of failure increased, and as
the target time is reduced, the number of times the IHP model
exceeds the target time increases. Overall, the IHP scheme
achieved a 64% success rate for the high failure rate cases
of (Pm = 0.05,Pr = 0.08) and (Pm = 0.08,Pr = 0.08),
and otherwise maintained a 84% success rate for all other
cases tested. Performance degradation occurred due to not
being able to account for potential failures in the resource
provisioning procedures, which confirm that reduce failures
have a critical influence on the job complete time. In addition,
the HAF achieved a 84% success rate for the high failure rate
cases of (Pm = 0.05,Pr = 0.08) and otherwise maintained a
100% success rate for all other cases tested.

D. SPARK EXPERIMENTAL ENVIRONMENT
Simulation experiments on Spark were based on [18] where
the Spark profile for the k-mean application is based on
a 75 node cluster with iterations of 400 tasks working on
100 GB of data.

E. SPARK JOB EXECUTION TIME ESTIMATION
First, the time predicted of a no-failure environment with a
failure existing environment is compared in order to check the
effect of failures on the job execution time. In the no-failure
environment, the OptEx [16] model is applied. In addition,
in the event of a failure, it is assumed that rescheduling
for a failed task and replenishment of a failed worker node
occurred immediately. Fig. 5 shows the increased time due to
failures.When failures occurred in the job, the time consumed

FIGURE 5. Spark resource provisioning and applying in case of failure.
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FIGURE 6. Spark job execution time estimation with failures.
(a) Pe = 0.02. (b) Pe = 0.05. (c) Pe = 0.08.

increases by 58 seconds, regardless of which part the failure
had occurred in.

F. SPARK RESOURCE PROVISIONING
In the simulation experiments, it will be checked if the target
times can be satisfied in an environment where actual failures
occur. The probability of failure (Pe) to be applied to the

RDD process is 0.02, 0.05, and 0.08, and the target times
are 873, 989, 1105, and 1221 seconds [9], [11]. Resource
provisioning is conducted through a prediction model that
is based on a dataset size of 100 GB, and it is assumed
that failures occur randomly, with the probability PRDD. The
results in Fig. 6 show that the target time is met when
resource provisioning for each model is set. Resources were
provisioned according to the time and probability of failures,
respectively, where the graphs present the mean performance
values. As the probability of failure increases, the OptEx
model’s [16] job complete time exceeds the target time for
all cases tested (i.e., the success rate is 0%). In comparison,
the SAF scheme achieved a 100% success rate for all cases
of Pe tested. Overall, the results show that the OptEx scheme
will experience performance degradation due to not account-
ing for potential failures in the resource provisioning proce-
dures. However, since the proposed SAF scheme executes
jobs based on optimally provisioned resources considering
possible failures, it is able to satisfy the target times for the
range of interest.

G. CONCLUSION
In this paper, the Spark and Hadoop job execution time
estimation and resource provisioning schemes respectively
named SAF and HAF have been proposed. SAF and HAF
are based on generalized mathematical models that include
the failure variables so they can adjust their resource distri-
butions according to the phase (or progress of the failure)
to complete the task within the target time. Since the SAF
and HAF schemes compute the required optimal resource
size according to the failure probabilities considering the
cluster and network conditions, the system performance and
failure probability as well as the deadline can be accurately
predicted for RT and NRT applications, and can also be used
for synchronized large scale coordinated clustered datasets
analysis.

In future research, the influence of variating processing
issues, such as individual CPU core adaptive operational
frequency changes due to the on-demand governor, real-time
governor, and other power control governors, needs to be
investigated.
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