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ABSTRACT This paper aims to examine how the trajectory dimension influences sensorimotor control
during arm tracking. We designed three trajectories with different dimensions in a three-dimensional (3D)
immersive virtual reality environment and instructed the subjects to control a virtual hand to follow a
cubic target that moved along the designed trajectories. The position of the virtual hand was determined
by the position of the actual hand captured with a high-resolution 3D motion capture system in real time.
Five kinematic measures were calculated: the root mean square error (RMSE), the standard deviation of
the speed (speedgq), the magnitude of the jerk (Jerky), the integral of the speed power spectrum (IVPS),
and the 3D fuzzy approximate entropy (fApEn3p). All the kinematic measures increased significantly
with increasing trajectory dimensions, except for the IVPS between the 1D and 2D conditions and the
fApEn3p between the 2D and 3D conditions. The increase in time-domain parameters (i.e., RMSE, speedgq,
and Jerk,) showed degradation in accuracy, energy efficiency, and multijoint coordination, respectively,
in the higher dimensions. An increase in the frequency-domain measure (i.e., IVPS) in higher dimensional
condition reflected an increase of visual feedback-related intermittency in manual control when increasing
the trajectory dimension. The larger nonlinear fApEn3p values in the 2D and 3D conditions might have been
due to the higher level neuromotor noise and increased sensory inputs. The selected parameters could provide
a comprehensive method for evaluating motor performance from different perspectives. The findings in this
paper shed light on the underlying sensorimotor control that is caused by the trajectory dimension in arm

tracking tasks.

INDEX TERMS Neural engineering, kinematics, virtual reality, entropy, motion analysis.

I. INTRODUCTION

The sensorimotor control system of the human central ner-
vous system (CNS) plays an important role in performing
visually guided arm tracking, which is a widely used task
for assessing the motor function of patients with neural-
motor impairment [12], [32]. Previous experimental psy-
chologists have proposed a three-stage model to account

for the discrete response that the human CNS executes to
a stimulus, and the three stages were: a continuous sensory
analysis stage, a discrete response planning stage and a con-
tinuous response execution stage [22]. Based on the three-
stage model, Neilson et al. [22] simulated tracking responses
and illuminated that the closed-loop feedback control could
adaptively stabilize the sensorimotor transform even if the
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internal model was inaccurate, which pioneered the research
on tracking responses to unveil the underlying sensorimotor
mechanism. Instead of simulation, Miall ef al. [20] measured
the tracking responses, calculated the speed power spectra
and proposed that the intermittency could be represented with
a power element in the spectra and that the error-correction
responses in tracking movements might be limited by a posi-
tional error deadzone. However, a more recent study based
on arm tracking, instead of manual joystick tracking, showed
that both speed and direction errors were involved in regulat-
ing the submovements, each of which corresponded to error-
corrective response planning [27]. Moreover, Ao et al. [1]
suggested that an integration of feedforward and feedback
control contributed to arm tracking performance, and a shift
from feedback to feedforward control was found in faster
tracking movements. Patients after stroke tracked the tar-
get with less accuracy, which may be due to the increased
neuromotor noise in the sensorimotor system [1]. There-
fore, the external tracking performance should be capable of
reflecting the internal regulation of sensorimotor control by
the human CNS.

Many factors, such as target size [13], target speed [1],
movement direction [11] and delayed visual feedback infor-
mation [17], are all related to the underlying sensorimotor
control during arm tracking. Huysmans et al. [13] manipu-
lated the target size to change the precision level in a two-
dimensional (2D) tracking task that was performed with a
pen, and the results showed that increased precision demands
were accommodated by both the different organization of
submovements and increased muscle activity. Ao et al. [1]
detected the effects of the target speed at 6 levels on
feedforward-feedback control during elbow tracking tasks
using sinusoidal trajectories, which indicated a shift from
feedback to feedforward control as the target speed increased.
Huang et al. [11] compared the tracking behaviors along four
different directions during multijoint upper limb movements,
and parametric differences in all four directions reflected
notable influences on the movement direction in sensorimotor
control. Limanowski et al. [17] changed the visual feedback
delays of hand movements at eight lengths during sinusoidal
tracking tasks at 0.5 Hz in three-dimensional (3D) space
and tracked the accuracy and brain activity using functional
magnetic resonance imaging (fMRI), which showed that a
distributed network of brain regions was used to process
visual information at different stages to accurately guide
one’s actions online.

The trajectory dimension, which is the minimum number
of independent variables (or degrees of freedom (DOF)) that
determines a curve [23], [24], can also influence sensorimotor
control in arm tracking. For example, lines in a plane possess
only one DOF, and the trajectory dimension of the straight
lines should be 1, regardless of their angle in the plane.
Circles or other trajectories in a plane with uncorrelated
projection movements in a Cartesian coordinate frame should
be 2D trajectories. Similarly, if the deviations in the x-, y-
and z-coordinates (where x is the horizontal axis from left
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to right, y is the horizontal axis from posterior to anterior,
and z is the vertical axis perpendicular to the horizontal
plane) are not related to one another, then the trajectory
dimension is considered to be 3. Watson and Jones [31]
designed a 2D random-tracking trajectory as two orthogonal
one-dimensional (1D) equivalents (i.e., x only and y only) and
found a deterioration in tracking performance on 2D tasks
compared with that on 1D tasks according to the error scores.
The same observation was made by Oytam et al. [24], who
suggested that horizontal performance was superior to 2D (or
two simultaneous one-DOF movements) performance.

Kinematic outcome measures exhibit sensitivity and reli-
ability in assessing sensorimotor control. Error signals have
been used to investigate tracking performance when changing
from a 1D to a 2D tracking task [24], [31]. Speed fluctu-
ation, speedgg, is a measure that quantifies the variations
in instantaneous speed around the mean speed and often
serves as an estimation of energy cost and movement effi-
ciency [2]. Parameters relevant to jerk have been widely used
to quantify the smoothness of the movement path and to
reflect abnormal muscle tone [34]. Apart from these temporal
characteristics, sensorimotor control can also be evaluated
in terms of frequency characteristics. The power spectrum
is a frequency parameter that is calculated from the speed
signals, and the values of the power spectrum in the frequency
band that range from 0.5 to 1.8 Hz during visual tracking
are larger than those of nonvisual tracking movements [20].
A previous study suggested that the integral of the power
spectrum of normalized speed values could reflect the shift
between feedback and feedforward control [1]. The human
motor system has the potential to adjust its behavior under the
influence of organismic, task and environmental constraints,
and these adaptability characteristics could be better mea-
sured by nonlinear entropy measurements. ApEn has been
selected to estimate the effects of postural balance based on
simulated random time-series data [14], [25]. fApEn is a
generalized version of ApEn, showing better monotonicity,
better relative consistency, and more robustness to noise when
characterizing signals with different complexities. fApEn
analysis has been employed to investigate stroke-induced
changes in sensorimotor control [34] and steady-state visual
evoked potentials-based preictal alert to migraine patients [4].
Moreover, fApEn could provide insight into discriminating
the aging-related changes in the coordination of agonist and
antagonist muscles [29]. fApEn is most likely capable of
providing insight into the variability of sensory inputs [3] and
neuromotor noise [19], [34].

Although many researchers have focused on the effect of
the trajectory dimension, whether higher dimensions in track-
ing tasks are more demanding on the CNS remains unclear.
Most previous researchers have used only error scores to
investigate the influence of trajectory dimension on sensori-
motor control. A kinematic analysis of dimension-dependent
sensorimotor control using multiple measures is important
but has not yet been performed. We designed three trajectories
with different DOFs, and a head-mounted display (HMD) was
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FIGURE 1. Experimental setup and tracking trajectories. (a) A schematic drawing of the experimental setup. (b) A picture of the real virtual reality
system. (c) The virtual scenes of the tracking tasks: the target (a semitransparent cube with a cross in the center) moved along one of the three
preset trajectories, including a horizontal line (one dimension, 1D), a circle (two dimension, 2D) and a cylindrical helix (three dimension, 3D). The
subjects controlled the virtual hand (the pink palm with a cross in the center) to move in the same way as the target, which means that the two
crosses in the target cube and the virtual hand should overlap with each other as well as possible. The blue circle on the table is the home
position, i.e., the starting point of the movement for each trial, and the whole preset trajectory could be seen from the very beginning of the trial.
The target was not tracked in (b) and (c), so the crosses in the virtual hand and the target cube could both be shown for the sake of clarity.

used to provide 3D visual feedback. Five kinematic measures
characterized the time-domain (RMSE, speedgq and Jerky,)
and frequency-domain properties (IVPS); in addition, linear
(RMSE, speedsq, Jerky, and IVPS) and nonlinear dynamical
features (fApEn3p) were selected to provide comprehensive
perspectives on the sensorimotor control of arm tracking
movements.

Il. MATERIAL AND METHODS

A. SUBJECTS

A total of 21 healthy right-handed adults (9 males and
12 females, mean age: 21.67 £ 1.91 years) were recruited for
this study. The criteria for inclusion were (1) good visual acu-
ity and mental capacity, such that wearing a HMD would not
cause psychological or physical discomfort; (2) good under-
standing and tracking ability; and (3) capability of providing
informed consent. Before the experiment, all the subjects
were informed of the procedure and gave written informed
consent for this study. Ethical approval was provided by the
Medical Ethical Committee of the First Affiliated Hospital of
Sun Yat-sen University.

B. APPARATUS

As shown in Fig. la, the subjects were seated on a com-
fortable chair with a HMD (Oculus version DK2, California,
USA). Restraining seat belts were used to prevent trunk
flexion during tracking. The experiment was conducted in a
quiet room with the light off to avoid noise and interference.
During the arm tracking tasks, kinematic data of the hand
were captured using a marker-based motion capture system
(OptiTrack, NaturalPoint, USA) at 100 frames per second;
the marker was firmly fixed to the second metacarpals. The
movement of a virtual hand in the HMD was driven by the
recording of the actual hand’s displacement in real time,
and the 3D cubic target could move in its trajectory at a
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constant speed (tangential speed: 2.25 cm/s). According
to [27], 2.25 cm/s is a slow target speed, which can provide
subjects enough time to integrate the sensory information and
minimize the influence of the transmission delay on generat-
ing motor commands to modulate their real time feedback
control performance. As shown in Fig. lc, there were three
types of trajectories in the experiment: 1) a horizontal line,
2) a horizontal circle and 3) a vertical cylindrical helix. For
these trajectories, the independent variables that determined
the curve were 1, 2 and 3, respectively, and the trajectory’s
different coordinate projections were uncorrelated with one
another. Therefore, the dimensions of these trajectories were
1, 2 and 3, respectively. The length of the horizontal line
was 24 cm in the 1D condition. The radius of the horizontal
circle was 12 c¢m in the 2D condition. In the 3D condition,
the radius of the horizontal circle projected by the cylindrical
helix was also 12 cm, and the height of the helical pitch was
6 cm. Therefore, the times required to finish single tracking
loops for the 1D, 2D and 3D conditions were21.3 s, 33.5 s and
33.6 s, respectively. In the 3D condition, the overall vertical
displacement was 18 cm. To generate a more realistic 3D
view, the designed trajectory was visible to the subjects at the
beginning of and during the whole tracking, but the actual
trajectory drawn by the participants was not presented. The
visibility of the trajectory might help the subjects with their
predictive forward control in arm tracking, hence minimizing
the time delay during tracking. The target was a semitranspar-
ent cube that was 3 x 3 x 3 cm in size, and the virtual hand
was a scaled solid pink palm (reduced by approximately 70%
in size compared to the general size of human hands, which
was chosen during the pre-experiments based on subjects’
satisfaction). In addition, black crosses were drawn in the
center of the target and the virtual hand. When the two crosses
overlapped with each other, the error was minimized. The
blue solid circle (1-cm radius) on the virtual desk represented
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FIGURE 2. (a) The target (black) trajectories and a sample of the actual tracking trajectories performed in
the 1D, 2D and 3D conditions. Here, x stands for the horizontal axis from left to right, y represents the
horizontal axis from posterior to anterior, and z is the vertical axis perpendicular to the horizontal plan.
The real tracking trajectories were segmented into the first loop (blue), second loop (green) and third
loop (red) for the sake of clarity. (b) The data we selected for use in calculating the kinematic measures
were obtained from the raw signals. To calculate all the kinematic measures, the data length was chosen
as 800 for the 1D condition, corresponding to about the central 18 cm of the actual trajectory. To calculate
all the kinematic measures except the IVPS, the second loop was selected for the 2D and 3D conditions.
For comparison with the IVPS for the 1D condition, 4 consecutive 800-point segments were extracted
from the second loop in the 2D and 3D conditions. (c) The speed pulses calculated from the 800-point
extracted data in the 1D, 2D and 3D conditions. The horizontal dashed line repr: ts the mean d

L d

the home position of the movement. The subjects could put
their hands on this circle when they had rest periods during the
experiments, which occurred between each pair of successive
trials. The virtual environment (VE) was generated using
OpenGL in C+4+, and the virtual hand was modeled through
3ds Max. The field angles (FOV) of the HMD were set
according to the vision range of the human eye (horizontal
field angle: 120°; vertical field angle: 60°), providing an
immersive virtual reality experience for the subjects.

C. EXPERIMENTAL PROCEDURES

1) TRIAL

A trial began with the participant’s hand at the home position
(blue circle) on the virtual desk. Once the hand was lifted to
a height of approximately 8 cm above the table and paused
for 2 s, a virtual target appeared in the HMD and began to
move. In the 1D condition, the target started moving from the
center to the left and then to the right and back to the center.
While tracking the target along the horizontal line, the hand
followed the target back and forth three times continuously.
In the 2D and 3D conditions, the subjects were required to
track the target along the circle three times and along the
cylindrical helix once as a trial in the clockwise direction,
and the movement started at the point closest to the body.
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During tracking, the subjects were required to follow the
moving target as closely as possible. An exact overlap of the
two crosses represented perfect tracking accuracy. There was
a 2-min rest between each pair of successive trials.

2) TRAINING BLOCK

The participants who were recruited in this study had never
performed this task before. A training block was conducted to
familiarize the subjects with the tracking speed and the cross
overlap and to make them comfortable in the working space.
In this training block, each of the subjects was allowed to
perform 3 arbitrary trials.

3) TESTING BLOCK

During the experiment, each subject conducted a total of 9 tri-
als with each trajectory-dimension condition repeated 3 times
(Fig. 2a). The trajectory-dimension conditions were arranged
randomly, except that they avoided two successive 3D track-
ing trials to prevent fatigue.

D. DATA ANALYSIS
1) DATA SELECTION

All data analyses were performed off-line using custom writ-
ten programs in MATLAB (version R2014a). For the 1D
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condition, the kinematic data of the central 800 points of the
horizontal line were extracted from the raw data to avoid
the turning points, and three such segments were selected
from each trial. Two of the segments were in the moving
direction from left to right, whereas the other was from right
to left. For the 2D and 3D conditions, the second loop of the
circular and the cylindrical helical tracking trajectories were
selected from the raw data of one trial (Fig. 2b). Therefore,
a total of 9 horizontal liner segments, 3 circular loops and
3 cylindrical helical loops from the tracking trajectories in the
1D, 2D and 3D conditions, respectively, were extracted for
a single subject since each condition was repeated 3 times.
Each measure calculated for each subject was obtained by
averaging the results across the 9 segments for the 1D con-
dition, the 3 circular loops for the 2D condition and the
3 cylindrical helical loops for the 3D condition.

2) DATA FILTERING

To calculate RMSE, speedsq and IVPS, the selected data were
filtered using a Parks-McClellan lowpass filter with a cut-off
frequency of 10 Hz [3]. Since higher order time derivatives
were used to calculate Jerky,, a Parks-McClellan bandpass
filter between 3 and 11 Hz was used to filter the selected
data [28].

3) CALCULATION OF RMSE
The RMSE was calculated as

[(Kaer (D) = Xtar (D)% + Oaer (D) — Vear (i)
N

RMSE =

N

i=1

ey

\/ - Gaer () — 2ar ()]
X
N

where X,¢r, Yaer and z4¢; represent the 3D spatial coordinates
of the actual hand; x4/, y1qr and zy, are the coordinates of
the target; i denotes the i-th sample; N is the total number of
filtered segmental data points.

4) CALCULATION OF SPEEDy

Speedyq is the standard deviation of the magnitude of the
speed signals around the mean speed and has been used to
describe the speed fluctuations in human movements [2].
It was calculated as follows

speed (i)
 V@aer 4+ 1) = Xaer ()2 +
N At
e G4 = Yaer 1) + Gaer i+ 1) — 20t ()]
x At
(2
Speedmean
1 N
=5 ; speed (i) 3)
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speed,,;

N

1 : 2

= |y =1 Z (speed(z) — speedmean) 4)
i=1

whereAt is the time interval of the two consecutive points,

and speed(i) denotes the i-th speed sample of the actual hand.

5) CALCULATION OF JERKm,

Jerkp, is an index used to measure the ‘smoothness’ of a signal
based on the time derivative of the acceleration, i.e., the third-
order derivative of the position [28]. Here, Jerky, was used to
reflect the kinematical organization of the 3D submovements.
In the 3D spatial version, the square root of the magnitude of
the jerk was calculated as

Isiart

Tend dSXact 2 dSYaCI 2 dSZact 2
[( d13 ) + ( d[3 ) + ( d13 ) dt
Jerk,, =

. Q)
duration

where fyq: and f.,4 indicate the starting and ending time

points, respectively; and duration is the interval time between

Istart and fepg .

6) CALCULATION OF IVPS

To ensure the comparability among different conditions, we
selected the segmental length of each speed signal when cal-
culating the speed power spectrum over 800 points (Fig. 2b).
In the 2D and 3D conditions, the speed signals extracted from
the second loop were divided into 4 consecutive segments,
each with 800 points. To calculate the IVPS, the selected
speed signal was demeaned, and the speed power spectrum
was obtained using a fast Fourier transform (800 points
padded with zeros to 1024). The resulting 3 speed power
spectra for each trial under the 1D condition and 4 speed
power spectra for each trial under the 2D and 3D conditions
were then averaged separately. Then, we calculated the IVPS
in the frequency band of 0.5-1.8 Hz of the averaged speed
power spectrum according to Miall et al. [20], as follows

18
IVPS = Z i (6)
i=5

where p; refers to the i-th discrete power density spectrum
value. Here, the region of the power spectrum between
0.5 and 1.8 Hz was calculated by summing the power
density spectrum values from the 5th to the 18th point
since the frequency bin width of the power spectrum was
100/1024 ~ 0.1 Hz.

7) CALCULATION OF fApEnsp

fApEn3p is a 3D version of fApEn, which is an improved
approximate entropy (ApEn). fApEn has been used to char-
acterize the nonlinear complexity of short 1D physiological
signals [5]. In this paper, we generalized fApEn to its 3D
version as follows:
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Step 1: Given an N-sample time series with each sample
having 3 coordinates {xuc;(0); Yacr(D); zZact(D) : 1 < i < N},
we separately constructed three vector sequences {X/", i =
L...,N-m+ 1}, {Y",i=1,...,N-m+ 1} and {Z", i =
1,..., N-m+1} in the m-dimensional space, and all the vector
elements in the sequences were subtracted with the averages
as

1 m—1
Kaer(i+m— 1} = = Y Xaer(i +j)
m i

"= {Xace (D), ...

. 1=
s Yact (i+m-— 1)} - Z.Vact (@ +])
m
=0
1 m—1
Zaer (i m =D} = — 3 zaer (i +))
j=0

"= ac (), ..

"= {zaer @), - ..,
@)

Step 2: The matrix sequences {[X]", Y, Z"]} were
formed by integrating the three vector sequences X", Y/"
and Z}". The distance between two adjacent constructed time-
series matrices was calculated by the infinite norm

_ m m m m m m
= vz =[x 27|

=[G =x) o (=) + (2= 27)

®

where i # j.
Step 3: The fuzzy similarity degree Dl'.}’ was calculated
using a fuzzy function, i.e., an exponential function, as

dm\"
Dyi(n, r) = exp(— (—’) ) ©)
r

where n and r are the gradient and the width of the boundary
of the exponential function. Large n and r values lead to a
large gradient and width of the boundary. Moreover, a value
of d' closer to unity, results in a higher similarity degree D:;

Step 4: The probability function ¢ averaged all the simi-
larities from any matrices in the time series to another and is
expressed as

1

m —
R
N—m+1 N—m+1
Z In —+1 Z Dyl 0
J=Lj#

Step 5: Similarly, we obtained the m + 1-dimensional
constructed matrix sequences {[Xi"”'l, Yim+l,Zl.’"+1]} and

the probability function ¢”*!. Then, the 3D fuzzy entropy
measure fApEn3p (m, N, n, r) could be estimated as a devia-
tion of the probability function from ¢™ to ¢™*!

fApEns, (m, N, n, r)=¢™ (N, n,r)—¢" ' (N, n,r)  (11)

where fApEn3p is used to assess the incremental comparisons
between the m-and the m + 1-dimensional space.
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The 4 parameters m, n, r, and N should be defined
before each calculation of fApEn3p. Typically [3], [5], [10],
the length of the sequence m was typically set to 2 or 3
because a larger m allowed a more detailed reconstruction
of the dynamic process, but a too large m value was hard
to achieve for a physical dataset or required a very broad
boundary, which would lead to information loss [S]. Here, m
was selected as 2. Additionally, n and r determined the fuzzy
similarity boundary. If the boundary are too narrow, then
the fApEnsp would be heavily affected by noise, whereas
a too wide boundary might lead to information loss. The
fApEn3p had the property of consistency when N > 300 and
r ranged from 0.02 to 1 using physiological signals [3], [29].
Considering the selected data points for the 1D, 2D and 3D
conditions in this study, n, r and N were consequently set to
2, 0.1 and 400, respectively, in this study.

E. STATISTICAL ANALYSIS

All of the parameters are described using the mean =+ standard
deviation (SD). A one-way repeated-measures analysis of
variance (ANOVA) with Bonferroni post hoc comparisons
was used to analyze the influence of the trajectory dimension
on the 5 calculated measures. In addition, a Pearson product-
moment coefficient of correlation was utilized to statisti-
cally analyze the relationship between each pair of kinematic
parameters across the 1D, 2D and 3D conditions. All of the
statistical analyses used p = 0.05 as the minimal significance
level and were conducted using SPSS 19 (SPSS Inc., Chicago,
Illinois, USA).

Ill. RESULT

A. THE ROOT MEAN SQUARE ERROR (RMSE)

The RMSE (Fig. 3a) quantified the tracking accuracy
between the actual and target positions. Tests of one-way
repeated-measures ANOVA showed that RMSE was sig-
nificantly influenced by trajectory dimension, and RMSE
increased monotonically from 1D to 3D (1D vs. 2D:
p <0.01;2D vs. 3D: p < 0.01; 1D vs. 3D: p < 0.01).

B. THE STANDARD DEVIATION OF SPEED (SPEED)

Fig. 2b shows a sample of the 800-point extracted speed
signals for the 1D, 2D and 3D conditions, and the mean
speeds of these samples are also shown. The mean speeds for
different trajectory-dimension conditions were near the target
speed (2.25 cm/s), and there were no significant differences
between different conditions (1D vs. 2D:p = 0.725; 1D vs.
3D: p =0.36; 2D vs. 3D: p = 0.635).

The speed signals consisted of speed pulses around their
mean values (Fig. 2c). The speed pulses were considered to
be related to the submovements of arm tracking, which were
segmented small movements due to intermittency. The mag-
nitude of the submovement could be quantified by speedsq to
some extent, and speedyq (Fig. 3b) was significantly affected
by the trajectory dimension (p < 0.01). Post hoc comparisons
indicated that speedgy significantly increased as trajectory
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FIGURE 4. The average speed power spectra (solid lines) of the 21 subjects while tracking (a) the straight line (red), (b) the circle
(blue) and (c) the cylindrical helix (green) with full visual feedback through an HMD. The shaded regions represent +1 SD of the
mean values. The black vertical dotted lines represent 0.5 Hz and 1.8 Hz.

dimension increased (1D vs. 2D: p < 0.05; 1D vs. 3D:
p < 0.01; 2D vs. 3D: p < 0.01).

C. THE MAGNITUDE OF THE JERK (Jerkm)

Fig.3c reveals that the average Jerky, in the three tracking
trajectory dimensions was in the following order: 1D < 2D
< 3D (p < 0.01). A corresponding Bonferroni post hoc test
suggested that Jerky, in each of these conditions was different
from the others (1D vs. 2D:p < 0.05; 1D vs. 3D: p < 0.01;
2D vs. 3D: p < 0.01).

D. THE INTEGRAL OF THE SPEED POWER SPECTRUM
(IVPS)

Fig. 4 shows the average speed power spectra shaded with
41 SDs from all 21 subjects under 3 trajectory-dimension
tracking conditions with full visual feedback through an
HMD.

We calculated the IVPS under different trajectory-
dimension conditions within 0.5-1.8 Hz, and the results are
shown in Fig. 5. One-way ANOVA with repeated measures
showed that the trajectory dimension played a significant
role in IVPS (p < 0.01). The results of the Bonferroni
post hoc test showed that a significant difference was found
between the 1D and 3D conditions and between the 2D and
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FIGURE 5. The integral of the speed power spectral (IVPS) values in the
frequency band of 0.5-1.8 Hz for the 3 different trajectory-dimensional
conditions. Asterisks denote p < 0.05, and double asterisks denote

p <0.01.

3D conditions, but there was no significant difference
between the 1D and 2D tasks (1D vs. 3D: p < 0.01; 2D vs.
3D: p < 0.01).

E. THE 3D FUZZY APPROXIMATE ENTROPY (fApEnsp)
Fig.6 illustrates a notable increase in the mean fApEn3p
value of the output trajectories as the trajectory dimension
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TABLE 1. The correlations between each pair of kinematic parameters in the 1D, 2D and 3D conditions.

1D

2D 3D

RMSE speedy; Jerk, IVPS fApEn;,

RMSE speedy

Jerk,, IVPS fApEn;p RMSE speedy; Jerk, IVPS fApEn;,

RMSE  1.000 1.000
speed; 0.532* 1.000 0.049 1.000
Jerk,, 0270 0.684** 1.000 0.205 -0.324
IVPS  -0.442* -0.515* -0.321 1.000 0.063 0415
fApEny, 0308 0340 0.115 -0.208 1.000 0.228 -0.106

1.000

-0.063  1.000
1.000 0.109 -0.195 1.000
-0.127  1.000 0.101  0.103 -0.505* 1.000

0.494* -0.263  1.000 -0.093 0.188 0.012 0.129  1.000

* Correlation was significant at the 0.05 level (2-tailed).
** Correlation was significant at the 0.01 level (2-tailed).

0.0104 *%x
T * % 1
0.008 ‘
2 0.006 {
[sg}
o0 T
2_ 0.004- j
= 0.002-
0.000 . . :
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Dimension

FIGURE 6. The three-dimensional fuzzy approximate entropy (fApEnzp)
of the actual trajectories. Asterisks denote p < 0.05, and double asterisks
denote p < 0.01.

increased. We used post hoc comparisons to examine the
dimensionality effect among these three tracking dimensions.
The results showed that there was no significant difference
between the 2D and 3D conditions (p > 0.05), while the
differences between the 1D and 2D tasks and between the 1D
and 3D conditions were significant (1D vs. 2D:p < 0.01; 1D
vs. 3D: p < 0.01).

F. CORRELATIONAL ANALYSIS

Correlations between each pair of kinematic parameters
under different trajectory dimensions are shown in Table 1.
For the 1D condition, significant correlations were found
between RMSE and speedsg (p < 0.05), RMSE and IVPS
(p < 0.05), speedgg and Jerky, (p < 0.01) and speedsgand
IVPS (p < 0.05) in the 1D condition, while the only signifi-
cant correlation was between Jerky,, and fApEn3p (p < 0.05)
in the 2D condition and Jerky, and IVPS (p < 0.05) in the 3D
condition.

IV. DISCUSSION

In this study, we built a 3D immersive VE that allowed
subjects to follow a moving target with their hands, and
we studied the trajectory dimension’s effect on sensorimotor
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control using five kinematic parameters: RMSE, speedgq,
Jerky,, IVPS and fApEn3p.

A. EFFECT OF THE TRAJECTORY DIMENSION ON
SENSORIMOTOR CONTROL

The RMSE is a parameter that measures the tracking accu-
racy and precision of movement. The significantly increased
RMSE values in the higher trajectory dimensions in our
experiment (Fig. 3a)showed a significant performance deteri-
oration in accuracy in the 2D and 3D conditions. This result is
in agreement with that of Watson and Jones [31] and not with
Oytam et al. [24]. The discrepancies might be accounted for
by differences in the experimental design. First, the 1D track-
ing responses in Oytam et al.’s study (2005) were generated
by a joystick controlled with the right hand, while the 2D
responses were driven by two joysticks controlled bimanu-
ally. However, we designed an arm tracking task requiring the
distal part of the arm to follow a target cube moving in the 3D
VE. As the trajectory dimension increased, the range of joint
motion also increased, which led to different collaborative
flexions of the elbow and shoulder. The second notable differ-
ence was the tracking trajectories. Previous studies [24], [31]
examined the trajectory dimension’s effect using single and
dual-axis tracking tasks, but a curved path was considered
to provide more details to reveal the sensorimotor control
mechanism [18]. We designed curvilinear tracking trajecto-
ries in the 2D condition, beyond which we added a third
dimension to the curvilinear trajectory in the 3D condition.
3D visually guided arm tracking is difficult to implement
without 3D virtual reality, and the HMD we used in this
experiment provided us an effective tool to investigate the
trajectory dimension’s effect on sensorimotor control. Our
results suggest that the deteriorated tracking accuracy in the
higher-dimensional conditions might have been due to the
much larger range of arm movement.

The speedyq significantly increased as the trajectory
dimension increased (Fig. 3b) while the speedmyean Was not
affected by the dimension. Since the multipeaked speed
profiles were manifestations of the discrete submovements
during arm tracking tasks, the increase in the speedgq value
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in the higher trajectory dimension suggests an increase in
the amplitude of the submovement. The submovements were
considered to correspond to the intermittent error-correction
sensorimotor feedback control processes [20] and were not
fixed in time or space but instead showed a high correlation
with the specific direction and speed error signals [27]. To
correct the directional error, the sensorimotor control system
aligned the direction of an upcoming submovement at a spe-
cific target direction, and a ‘slow down - change direction -
speed up’ movement pattern in the error-corrective process
was present but has an energy cost [3]. The larger speedgq in
the 2D and 3D conditions might have been due to more move-
ment directions predetermined by the target trajectory, and a
larger speed fluctuation and a relatively larger amplitude of
the error-corrected submovements suggests an increase in the
energy cost.

The time-domain jerk parameter (Jerky,) has been widely
used to measure the smoothness of the movement trajec-
tory [28] and the coordination of multijoint human move-
ment [10]. In this study, significantly higher Jerky, values
were found in the higher trajectory dimensions (Fig. 3c),
which demonstrates that movements made by subjects
became less smooth, and the multiple joints were less coordi-
nated. Recent studies have revealed that increasing both the
target distance [34] and movement direction [11] influences
the coordinated movement response. Other studies have illus-
trated that to achieve necessary positions, the sensorimotor
system should regulate sequential muscle control for the
subsequent coordination [6], [15]. Compared with the 1D
task, subjects coordinated their shoulder and elbow joints to
make the distal part of the arm follow the target in a larger
space with more movement directions. Therefore, tracking a
trajectory with a higher dimension increased the demand for
the coordination of multijoint human movements.

In this experiment, the higher IVPS value in the 3D condi-
tion compared with the lower-dimensional conditions (Fig. 5)
implied that increasing the trajectory dimension led to a
significant increase in the signal power of tracking responses
between 0.5 and 1.8 Hz. According to Miall et al. [20],
the power in the frequency band of 0.5-1.8 Hz during tracking
with visual feedback is larger than that without visual feed-
back, which reflected the intermittency in tracking behav-
iors when subjects used visual information as tracking-error
feedback. The higher IVPS values in the higher-trajectory-
dimension conditions in our experiment might have been due
to the larger magnitude of the error-corrective submovements
during the visuomotor feedback control loop. Furthermore,
motor behaviors reflect a combination of feedforward and
feedback control by the human CNS [1], [35]. Feedforward
control is driven by the internal model [32], while feedback
control refers to a modification of movement due to sensory
information that involves error detection and error correc-
tion [7], [35]. The responding trajectory in the 1D condi-
tion might have been a result of the short-term prediction
of target motion according to the internal model since the
subject was relatively more familiar with the linear tracking
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tasks [19], [22], [23]. Our results suggest the visual infor-
mation dependency of arm tracking and a shift to heavier
feedback control as trajectory dimension increases.

Entropy has been used as a measure of complexity and
regularity in nonlinear systems [25]. An advantage of the
entropy-based approach is that it encompasses the capability
of adjusting movement behaviors customized for the tasks
and environmental contexts [10]. As a nonlinear measure,
fApEn3p might capture the nonlinear nature of the sen-
sory and motor systems [9], [33], e.g., multiple inputs and
unknown error deadzones [26]. As a measure of complexity,
fApEnsp reflected the level of neuromotor noise during sen-
sorimotor control [7], [19]. In our experiment, the increase
of fApEn3p in the higher dimensional conditions might have
been due to a greater amount of sensory input informa-
tion, i.e., more moving directions in the 2D and 3D condi-
tions [3], [30]. In addition, the signal-dependent neuromotor
noise in the motor system would increase in the 2D and 3D
conditions with a larger movement space [8], [19]. We specu-
lated that the higher neuromotor noise level might be related
to the higher fApEn3p values in the 2D and 3D conditions.

B. CORRELATIONS BETWEEN EACH PAIR OF

KINEMATIC PARAMETERS

This study used multiple kinematic parameters to inves-
tigate the dimension-induced trajectory changes in senso-
rimotor control during arm tracking tasks. Correlational
analysis between each pair of kinematic parameters in the
order trajectory-dimension condition is shown in Table 1.
In the 1D condition, 4 significant correlations (RMSE and
speedsq, RMSE and IVPS, speedsq and Jerky,, speedsq and
IVPS) were found, which is consistent with the results of
Miall et al. [20]. High correlations indicate the consistency
of RMSE, speedgq, Jerky, and IVPS parameters and revealed
their worth in the kinematic evaluation of the 1D condition.
However, moderate correlations with almost all the kinematic
parameters were demonstrated in the 2D and 3D conditions.
This result might be because the kinematic parameters had
higher responsiveness and were more sensitive to move-
ment directions [27]. We speculate that in the 1D condi-
tion, the manner in which subjects performed the horizontal
straight linear tracking task with a fixed direction was less
influenced by direction, while subjects needed to regulate not
only movement speed but also movement direction in real
time in the 2D and 3D conditions.

In general, relatively high correlations were found in the
1D condition, and moderate correlations were found in the
2D and 3D conditions. We suspect that the kinematic param-
eters selected in this study made different contributions to
investigating the trajectory dimension-induced changes in
sensorimotor control. The only error signals [31] might be
limited for complex human movements, so it was necessary to
use multiple kinematic parameters (i.e., time- and frequency-
domain measures, linear and nonlinear measures) to create
an effective and comprehensive set of outcome measures of
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trajectory dimension-induced changes in sensorimotor con-
trol during arm tracking tasks.

C. FUTURE WORK AND POTENTIAL APPLICATIONS

The limitation of this work is as follows: first, diseases might
influence different stages of the sensorimotor control, but we
recruited only healthy youths; second, in this study, we only
recorded kinematic data. In the future, we could recruit
patients with CNS disease which related to motor prob-
lems. In addition, other physiological signals such as elec-
tromyography (EMG), functional near-infrared spectroscopy
(fNIRS), or electroencephalography (EEG) could be recorded
combined with kinematic data during 3D arm tracking to
investigate the sensorimotor control mechanisms from other
aspects.

The experimental paradigms can be used as a tool in the
clinical evaluation of disabled persons. These free upper limb
tracking tasks performed in 3D space closely resemble daily
activities and can be applied to purposeful interventions in
physical rehabilitation to maximize and maintain the effec-
tiveness of rehabilitation. Additionally, the multijoint arm
movement proposed in this study can serve as a guideline
to determine other external factors, such as the range of
joint motion, target speeds and target sizes, within which the
examination setup can be well controlled since virtual reality
has the ability to provide a standardized, reproducible and
controllable environment.

V. CONCLUSION

This study built a 3D immersive VE that allowed subjects
to follow a moving target with their hands, and we stud-
ied the trajectory-dimension effect on sensorimotor control.
We used multiple kinematic parameters, including time-
domain (RMSE, speedsq and Jerky,) and frequency-domain
properties (IVPS), as well as linear (RMSE, speedyq, Jerkny,
and IVPS) and nonlinear measures (fApEnsp). Correlations
between each pair of kinematic parameters showed that the
multiple kinematic measures could provide a comprehen-
sive perspective of sensorimotor control during arm tracking
tasks, especially in the higher trajectory dimensional condi-
tions.

ACKNOWLEDGMENT

The authors would like to thank all the participants and
Haizhen Luo and Yongkeng Fan for doing parts of the exper-
iments and data collection.

REFERENCES

[1] D. Ao, R. Song, and K.-Y. Tong, ““Sensorimotor control of tracking move-
ments at various speeds for stroke patients as well as age-matched and
young healthy subjects,” PLoS ONE, vol. 10, no. 6, p. ¢0128328, Jun. 2015.

[2] T. M. Barbosa, K. L. Keskinen, R. Fernandes, P. Colago, A. B. Lima, and
J. P. Vilas-Boas, “Energy cost and intracyclic variation of the velocity
of the centre of mass in butterfly stroke,” Eur. J. Appl. Physiol., vol. 93,
nos. 5-6, pp. 519-523, Mar. 2005.

[3] T. M. Barbosa, W. X. Goh, J. E. Morais, M. J. Costa, and D. Pendergast,
“Comparison of classical kinematics, entropy, and fractal properties as
measures of complexity of the motor system in swimming,” Frontiers
Psychol., vol. 7, p. 1566, Sep. 2016.

VOLUME 7, 2019

[4]

[51

[6

—

[7

—

[8]
[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]
(21]

[22]

(23]

(24]

(25]

[26]

Z. Cao et al. (Sep. 2018). “Extraction of SSVEPs-based inherent fuzzy
entropy using a wearable headband EEG in migraine patients.” [Online].
Available: https://arxiv.org/abs/1809.06673

W. Chen, Z. Wang, H. Xie, and W. Yu, “Characterization of surface EMG
signal based on fuzzy entropy,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 15, no. 2, pp. 266-272, Jun. 2007.

A. Choi, S. B. Joo, E. Oh, and J. H. Mun, ‘“Kinematic evaluation of
movement smoothness in golf: Relationship between the normalized jerk
cost of body joints and the clubhead,” Biomed. Eng. OnLine, vol. 13,
no. 20, p. 20, Feb. 2014.

D. W. Franklin and D. M. Wolpert, ‘“‘Computational mechanisms of senso-
rimotor control,” Neuron, vol. 72, no. 3, pp. 425-442, Nov. 2011.

C. M. Harris and D. M. Wolpert, “Signal-dependent noise determines
motor planning,” Nature, vol. 394, no. 6695, pp. 780784, Aug. 1998.

N. Hogan and D. Sternad, “Sensitivity of smoothness measures to move-
ment duration, amplitude, and arrests,” J. Motor Behav., vol. 41, no. 6,
pp. 529-534, Nov. 2009.

S. Lee Hong and K. M. Newell, “Entropy compensation in human
motor adaptation,” Chaos, Interdiscipl. J. Nonlinear Sci., vol. 18, no. 1,
pp. 1299-1313, Apr. 2008.

Y. Huang, Q. Yang, Y. Chen, and R. Song, “Assessment of motor
control during three-dimensional movements tracking with position-
varying gravity compensation,” Frontiers Neurosci., vol. 11, p. 253,
May 2017.

A. M. Hughes, C. T. Freeman, J. H. Burridge, P. H. Chappell, P. L. Lewin,
and E. Rogers, “Shoulder and elbow muscle activity during fully supported
trajectory tracking in people who have had a stroke,” J. Electromyogr.
Kinesiol., vol. 20, no. 3, pp. 465-476, Jun. 2010.

M. A. Huysmans, M. J. M. Hoozemans, A. J. van der Beek,
M. P. de Looze, and J. H. van Dieén, “Submovement organization, pen
pressure, and muscle activity are modulated to precision demands in 2D
tracking,” J. Motor Behav., vol. 44, no. 5, pp. 379-388, Sep. 2012.

Y. H. Kee, N. N. L. D. Chatzisarantis, P. W. Kong, J. Y. Chow, and
L. H. Chen, “Mindfulness, movement control, and attentional focus strate-
gies: Effects of mindfulness on a postural balance task,” J. Sport Exercise
Psychol., vol. 34, no. 5, pp. 561-579, May 2012.

J. Laczko, R. A. Scheidt, L. S. Simo, and D. Piovesan, ‘‘Inter-joint coordi-
nation deficits revealed in the decomposition of endpoint jerk during goal-
directed arm movement after stroke,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 25, no. 7, pp. 798-810, Jul. 2017.

L. Liang, Z. Yang, M. Zhang, and Y. Pan, “‘Revealing the radial effect on
orientation discrimination by manual reaction time,” Frontiers Neurosci.,
vol. 11, p. 638, Nov. 2017.

J. Limanowski, E. Kirilina, and F. Blankenburg, “Neuronal correlates of
continuous manual tracking under varying visual movement feedback in a
virtual reality environment,” Neuroimage, vol. 146, pp. 81-89, Feb. 2017.
L. Liu and R. Van Liere, “Modeling object pursuit for desktop virtual
reality,” IEEE Trans. Vis. Comput. Graphics, vol. 18,no. 7, pp. 1017-1026,
Jul. 2012.

P. H. McCrea and J. J. Eng, ““Consequences of increased neuromotor noise
for reaching movements in persons with stroke,”” Exp. Brain Res., vol. 162,
no. 1, pp. 70-77, Mar. 2005.

R. C. Miall, D. J. Weir, and J. F. Stein, “Intermittency in human manual
tracking task,” J. Motor Behav., vol. 25, no. 1, pp. 53-63, Apr. 1993.

L. A. Mrotek, C. C. A. M. Gielen, and M. Flanders, ‘“Manual tracking in
three dimensions,” Exp. Brain Res., vol. 171, no. 1, pp. 99-115, 2006.

P. D. Neilson, M. D. Neilson, and N. J. O’Dwyer, “Internal models
and intermittency: A theoretical account of human tracking behavior,”
Biological, vol. 58, no. 2, pp. 101-112, Feb. 1988.

P. D. Neilson and M. D. Neilson, “An overview of adaptive model theory:
Solving the problems of redundancy, resources, and nonlinear interactions
in human movement control,” J. Neural Eng., vol. 2, no. 3, pp. S279-S312,
Jul. 2005.

Y. Oytam, P. D. Neilson, and N. J. O’'Dwyer, “Degrees of freedom and
motor planning in purposive movement,” Hum. Movement Sci., vol. 24,
nos. 5-6, pp. 710-730, 2005.

S. Pincus, “Approximate entropy (ApEn) as a complexity measure,”
Chaos, Interdiscipl. J. Nonlinear Sci., vol. 5, no. 1, pp. 110-117,
1995.

J. H. Pérez-Cruz, J. D. J. Rubio, E. Ruiz-Velazquez, and G. Solis-
Perales, “Tracking control based on recurrent neural networks for nonlin-
ear systems with multiple inputs and unknown deadzone,” Abstract Appl.
Anal., vol. 2012, pp. 1-18, 2012, Art. no. 471281. [Online]. Available:
https://www.hindawi.com/journals/aaa/2012/471281/

8899



IEEE Access

M. Fan et al.: Kinematic Analysis of Trajectory Dimension-Dependent Sensorimotor Control in Arm Tracking

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

8900

A. V.Roitman, S. G. Massaquoi, K. Takahashi, and T. J. Ebner, “Kinematic
analysis of manual tracking in monkeys: Characterization of movement
intermittencies during a circular tracking task,” J. Neurophysiol., vol. 91,
no. 2, pp. 901-911, 2004.

K. Schneider and R. F. Zernicke, ““Jerk-cost modulations during the prac-
tice of rapid arm movements,” Biological, vol. 60, no. 3, pp. 221-230,
1989.

W. Sun, J. Liang, Y. Yang, Y. Wu, T. Yan, and R. Song, “Investigating
aging-related changes in the coordination of agonist and antagonist mus-
cles using fuzzy entropy and mutual information,” Entropy, vol. 18, no. 6,
p- 229, Jun. 2016.

N. Thibbotuwawa, R. S. Goonetilleke, and E. R. Hoffmann, “Constrained
path tracking at varying angles in a mouse tracking task,” Hum. Factors,
J. Hum. Factors Ergonom. Soc., vol. 54, no. 1, pp. 138-150, Feb. 2012.
R. W. Watson and R. D. Jones, ““A comparison of two-dimensional and one-
dimensional tracking performance in normal subjects,” J. Motor Behav.,
vol. 30, no. 4, pp. 359-366, Dec. 1998.

D. M. Wolpert and M. Kawato, “Multiple paired forward and inverse
models for motor control,” in Proc. Conf. Adv. Neural Inf. Process. Syst.,
vol. 11, 1999, pp. 31-37.

C. Yang, A. Kerr, V. Stankovic, L. Stankovic, P. Rowe, and S. Cheng,
“Human upper limb motion analysis for post-stroke impairment assess-
ment using video analytics,” IEEE Access, vol. 4, pp. 650-659, 2016.

Q. Yang, Y. Yang, J. Luo, L. Li, T. Yan, and R. Song, “‘Kinematic outcome
measures using target-reaching arm movement in stroke,” Ann. Biomed.
Eng., vol. 45, no. 12, pp. 2794-2803, Dec. 2017.

S.-H. Yeo, D. W. Franklin, and D. M. Wolpert, “When optimal feedback
control is not enough: Feedforward strategies are required for optimal con-
trol with active sensing,” PLoS Comput. Biol., vol. 12, no. 2, p. e1005190,
Feb. 2016.

MENGYING FAN was born in Huzhou,
Zhejiang, China, in 1993. She is currently pursuing
the master’s degree with Sun Yat-sen University,
Guangzhou, China.

JIE LUO received the B.S., M.S., and Ph.D.
degrees in biomedical engineering from the
Huazhong University of Science and Technology,
Wauhan, in 2004, 2007, and 2012, respectively.

Since 2013, she has been a Lecturer with the
School of Biomedical Engineering, Sun Yat-sen
University. Her current research interest includes
the effects of diseases on neuromotor control.

LE LI received the Ph.D. degree from the Depart-
ment of Health Technology and Informatics, The
Hong Kong Polytechnic University, in 2007.
He completed the Postdoctoral training at The
Hong Kong Polytechnic University, in 2010. From
2014 to 2016, he was a Visiting Scientist with the
TIRR Memorial Hermann Research Center and the
Department of Physical Medicine and Rehabili-
tation, UTHealth, Houston, TX, USA. He is cur-
i rently an Associate Professor with the Department
of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen Uni-
versity, Guangzhou, China. His current research interests include biosignal
processing (electromyography), neuromusculoskeletal modeling of normal
and spastic subjects, and musculoskeletal ultrasound application.

DONG FENG HUANG was a Visiting Professor
with the Rusk Institute of Rehabilitation Medicine,
NYU Langone Health, from 2010 to 2011. He
is currently a Professor and the Head of the
Faculty of Rehabilitation Sciences, Sun Yat-sen
University. He is also the Head of the WHO
Collaborating Center for Rehabilitation, The
First Affiliated Hospital, Sun Yat-sen University,
Guangzhou. His current research interests include
rehabilitation medicine, neurorehabilitation, and
rehabilitation engineering.

YINWEI ZHAN was born in Changchun, Jilin,
China, in 1966. He received the B.S. degree in
mathematics and the M.S. degree in computational
mathematics from Jilin University, in 1986 and
1988, respectively, and the Ph.D. degree in com-
putational mathematics from Dalian University,
in 1992. He held a Postdoctoral position with
Beijing Normal University, until 1994. From
1994 to 2001, he was an Associate Professor
in mathematics with Shantou University. From
2001 to 2004, he held a Postdoctoral position with CWI, Amsterdam, and
Groningen University. Since 2005, he has been a Full Professor with the
School of Computer, Guangdong University of Technology, where he is
leading the Interactive and Visual Informatics Team.

RONG SONG received the B.S. degree in electri-
cal engineering from Tsinghua University, Beijing,
China, in 1999, the M.S. degree in electronic engi-
neering from Shantou University, Shantou, China,
in 2002, and the Ph.D. degree in biomedical engi-
neering from The Hong Kong Polytechnic Uni-
versity, Hong Kong, in 2006. He is currently a
Professor with the School of Biomedical Engineer-
ing, Sun Yat-sen University, China. His current
research interests include musculoskeletal model-
ing, biomedical signal processing, human motion analysis, and robot-assisted
stroke rehabilitation.

VOLUME 7, 2019



	INTRODUCTION
	MATERIAL AND METHODS
	SUBJECTS
	APPARATUS
	EXPERIMENTAL PROCEDURES
	TRIAL
	TRAINING BLOCK
	TESTING BLOCK

	DATA ANALYSIS
	DATA SELECTION
	DATA FILTERING
	CALCULATION OF RMSE
	CALCULATION OF SPEEDsd
	CALCULATION OF JERKm
	CALCULATION OF IVPS
	CALCULATION OF fApEn3D

	STATISTICAL ANALYSIS

	RESULT
	THE ROOT MEAN SQUARE ERROR (RMSE)
	THE STANDARD DEVIATION OF SPEED (SPEEDsd)
	THE MAGNITUDE OF THE JERK (Jerkm)
	THE INTEGRAL OF THE SPEED POWER SPECTRUM (IVPS)
	THE 3D FUZZY APPROXIMATE ENTROPY (fApEn3D)
	CORRELATIONAL ANALYSIS

	DISCUSSION
	EFFECT OF THE TRAJECTORY DIMENSION ON SENSORIMOTOR CONTROL
	CORRELATIONS BETWEEN EACH PAIR OF KINEMATIC PARAMETERS
	FUTURE WORK AND POTENTIAL APPLICATIONS

	CONCLUSION
	REFERENCES
	Biographies
	MENGYING FAN
	JIE LUO
	LE LI
	DONG FENG HUANG
	YINWEI ZHAN
	RONG SONG


