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ABSTRACT Traditional steganography methods often hide secret data by establishing a mapping relation-
ship between secret data and a cover image or directly in a noisy area, but has a low embedding capacity.
Based on the thought of deep learning, in this paper, we propose a new image steganography scheme based
on a U-Net structure. First, in the form of paired training, the trained deep neural network includes a hiding
network and an extraction network; then, the sender uses the hiding network to embed the secret image
into another full-size image without any modification and sends it to the receiver. Finally, the receiver uses
the extraction network to reconstruct the secret image and original cover image correctly. The experimental
results show that the proposed scheme compresses and distributes the information of the embedded secret
image into all available bits in the cover image, which not only solves the obvious visual cues problem, but
also increases the embedding capacity.

INDEX TERMS Information security, reversible image steganography, deep learning, U-Net structure.

I. INTRODUCTION
In today’s increasingly globalized era, cloud computing
pro-vides individuals and organizations with enough online
space to store multimedia data (e.g., documents, videos, and
images) and to provide people a convenient way with access
and data sharing over the network [1]. Since these multimedia
data may contain private, valuable or even confidential infor-
mation, preventing such important information from being
dis-closed is an important and urgent issue for individuals and
organizations. There are usually two common methods: data
hiding and encryption to protect image content from leaks.
Data hiding technology embeds information into carriers
such as images, audios or videos, which not only protects
the contents of secret files, but also hides the communication
process itself, so as to be as free from attacks as possible [2].

Information hiding is to hide secret information in a host
signal in an invisible way, and extract secret information
when needed to achieve covert communication and copyright
protection [3], [4]. It is mainly used for secret communication
between specific parties, especially in fast-growing social
networks, with rich images and videos as carriers, which pro-
vides more opportunities and challenges for information hid-
ing. Carpentieri et al. [4] proposed a reversible information

hiding and compression scheme for hyperspectral images.
Carpentieri said that the proposed scheme represents the
first one-pass frame designed specifically for hyper-spectral
images. It can perform lossless data hiding and lossless com-
pression of marker streams by leveraging the capabilities of
the predictive paradigm. In terms of application scenarios,
this work will play an important role in military applications
and forensic science. However, the challenge of informa-
tion hiding arises mainly because embedded secret messages
can change the look and under-lying statistics of the cover
image. The amount of change depends on two factors: first,
the amount of information to be hidden. A common use
is to hide text messages in images. The amount of hidden
information is measured in units of bits per pixel (bpp).
Usually, the amount of information is set to 0.4 bpp or less.
The longer the message, the larger the bpp, so the cover
image changes more [5], [6]. Second, the amount of change
depends on the cover image itself. Hiding information in
noisy, high-frequency filled image areas produces less human
detectable perturbations than hiding in flat areas. In [7],
it can be found in [7] how much information can be hidden
by the cover image. Currently, common used image infor-
mation hiding methods mainly include information hiding
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methods of spatial domain and transform domain. The spa-
tial domain hiding method is the least significant bit (LSB)
hiding method and the adaptive LSB hiding method [8], [9].
Such a method can embed the same payload as the LSB
matching, but less modification for the cover image. Later,
a spatial-universal wavelet relative distortion (S-UNIWARD)
method [10] improves the LSB method and chooses to
embed more information in the noisy or complex texture
region of the cover image. Pevny et al. [11] proposed the
highly undetectable steganography (HUGO) method, which
is a new embedding algorithm for spatial domain digital
images. The main design principle is to minimize the dis-
tortion function, which is defined based on the weighted
sum of the difference between the feature vector extracted
from the cover image and the stego image in the feature
space of the subtracted pixel adjacency matrix (SPAM) [12].
Subsequently, Holub et al. proposed the wavelet obtained
weights (WOW) method [13], which embeds the payload
into the cover image while obeying the more complex rules
of the image region texture, the more pixel values that will
be modified in the region. The above methods all embed
the secret information directly into the image pixel values.
However, the spatial domain-based algorithm has little effect
on the quality of the cover image and has a large embedding
capacity. But, it usually has poor robustness. To improve
robustness, the researchers proposed to embed secret infor-
mation in the transform domain. Transform domain methods
such as discrete Fourier transform (DFT) hiding method [14],
discrete cosine transform (DCT) hiding method [15], discrete
wavelet transform (DWT) hiding method [16] and so on.
The traditional information hiding method is to embed the
secret information by modifying the cover image. The stego
image always leaves traces of modification, which makes it
difficult for the cover image containing a secret information
to fundamentally resist the detection of the statistical-based
information hiding analysis algorithm.

Recently, reversible image steganography has attracted
great attention from researchers because it can reconstruct
the original version of the main image without loss after
image steganography [1]–[4], [17]. In [17], a new reversible
image steganography based on rhombus prediction and local
complexity has been proposed by Nguyen et al. Nguyen
said that the proposed scheme is divided into two steps: the
first step is to evaluate the local complexity of each pixel to
ensure the quality of stego image and achieve high-precision
tamper detection. The second step calculates the prediction
error by embedding the authentication code using rhombus
prediction. Nguyen’s proposed scheme is superior to previ-
ous scheme in terms of tamper detection and image quality.
In view of the recent excellent results obtained by combining
deep neural networks with steganalysis [18]–[21], there are
relatively few attempts to incorporate neural networks into
the hidden process itself [22]–[25]. Some of these researchers
used deep neural networks (DNN) to use the binary rep-
resentation of text messages in the image to select which
LSBswere replaced. Some researchers useDNN to determine

which bits are extracted in the steganographic cover image.
In contrast, in our work, we used neural networks to implicitly
simulate the distribution of natural images and embed larger
information (full-size images) into the cover image compared
to previous studies. By using a cover image of N×N×RGB
pixels to completely hide the secret image of N×N×RGB
pixels, instead of simply modifying the bits, and having
the smallest distortion rate for the cover image (each color
channel is 8 bits). The DNN determines where the secret
information is placed and how it is effectively encoded, and
the hidden messages are scattered among the bits in the cover
image. Different from the deep steganography scheme [26],
our method eliminates the cover image preprocessing pro-
cess, the encoder network is directly used to encode the secret
image into the cover image, and the simultaneously trained
decoder network is used to extract the secret images present
in the stego image. The network is only trained once during
this process. To summarize, the major contributions of our
work as below:

– Unlike [26], we only use two networks to achieve a
hidden effect, a hiding network and an extraction network.
For hiding networks, a U-Net structured convolutional neural
network is used to achieve this goal. The cover image and the
secret image are concatenated into a 6-channels tensor as an
input to the hiding network.

– For the extraction network, there are 6 convolutional
layers with a convolution kernel size of 3×3, except that the
last layer uses the Sigmoid activation function, followed by a
Batch Normalization (BN) layer and a ReLU activation layer.
A stego image generated by a hiding network is used directly
as an input to the extraction network.

– The hiding network and the extraction network are a
full convolutional neural network. The input and output are
images, and there is no fully connected layer. The shallower
high resolution layer is used to solve the problem of pixel
positioning for determining the image position of the cover
image; the deeper layer is used to solve the problem of pixel
classification, and is used to determine the position at which
the secret image pixel can be encoded into the cover image.
And extract the secret image and the cover image in the
extraction network.

– The transmitted stego image is a real and meaningful
image. Unlike texture or noise, it does not provide visual
cues to the attacker, which greatly reduces the possibil-
ity of being attacked. However, given the large amount
of hidden information, we prefer to find an acceptable
compromise in the cover image hiding capacity and the
secret image: the embedding rate is increased while reduc-
ing the distortion rate of the cover image and the secret
image.

The rest of this paper is organized as follows: Section II
presents the related work on image steganography and
encoder and decoder in GAN and U-Net. Section III
describes the proposed method. Section IV presents the
experimental results and analysis. Conclusions are presented
in Section V.
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II. RELATED WORKS
A. IMAGE STEGANOGRAPHY BASED
ON DEEP NEURAL NETWORK
Image steganography based on deep neural networks [26],
which creatively uses neural networks to determine where to
embed secret information in an image, rather than artificially
modifying the LSB accordingly. This deep model contains
three subnetworks: Pre-Network, HidingNetwork andReveal
Network. Among them, Pre-Network preprocesses the secret
image. There are two main functions: first, since the size
of the secret image may be smaller than the cover image,
Pre-Network will distribute the bits of the original M×M
secret image to N×N (cover image size) pixels. The second is
to convert the color-based pixel points of the original image
into more valuable features that facilitate encoding the image,
such as edge information in the image. The Hiding Network
is the main structure of the method. The role of the network
is to take the output of the Pre-Network and the cover image
as input. Then, the output of the network is a container
image (described as a stego image). The input size of the
network is N×N, and the depth is the number of transformed
feature channels of the RGB 3-channels plus the previously
extracted secret image. Finally, the Reveal Network is used
by the receiver of the image, it acts as a decoder, inputting
the stego image by the Hiding Network, and outputting
the recovered secret image. The network structure is shown
in Fig. 1.

FIGURE 1. Image steganography frame based on deep neural network.

The goal of [26] is to hide an N×N×RGB size secret
image into the same size of the carrier, and the distur-
bance to the carrier is as small as possible. In this way,
the restriction that the previous secret information must
be reconstructed with-out loss is relaxed, and there is a
compromise between acceptable stego image quality and
restored secret image quality. The existing steganography
analysis method can detect stego image with a steganog-
raphy rate as low as 0.1 bpp. The steganography rate in
this paper is ten times or even 40 times higher than the
previous method. Although visually difficult to detect, due
to the large amount of hidden information, the probability of
detecting stego image generated by this method is certainly
not small. However, with the advantage of deep network,
this network uses the convolutional neural network to hide
the secret image directly into the carrier for the first time,
which proposes a new way for the development of image
steganography.

B. ENCODER AND DECODER IN GAN
GAN is a generation model proposed by
Goodfellow et al. [27] in 2014. The idea comes from the
two-person zero-sum game in game theory. GAN is mainly
composed of a generator and a discriminator. Any differen-
tiable function can be used to represent the GAN genera-
tor (G) and the discriminator (D) [28]. BEGAN [29] made
further improvements to GAN. Based on the U-Net [30]
model, a new generator and discriminator network was
designed. The network uses the decoder as the generator G
and the encoder as the discriminator D. In addition, the net-
work uses the advantages of the residual network to initialize
the network with the missing residuals, and for successively
the same size layers, the layer inputs are combined with
their outputs. Skip connection [31] were also introduced to
aid gradient propagation [32]. After each upsampling step,
the output is cascaded up to the same dimension as h0. This
creates a layer of skip connection between the hidden state
and each successive upsampling layer of the decoder, making
network transmissions smoother. The overall idea is similar
to U-Net [30]. In addition, a new way to evaluate the quality
of the generator is proposed, so that even if the GAN uses
a very simple network, without some training skills, it can
achieve good training effects without worrying about model
collapse and the problem of unbalanced training.

BEGAN’s main work has the following aspects: First,
a new simple and powerful GAN network structure is pro-
posed, which can be quickly and stably converged using stan-
dard training methods without training techniques. Second,
a balanced concept is proposed for the balance of G and D
capabilities in GAN. The third is to provide a hyperparameter
that balances the diversity of images and the quality of the
generation. Finally, an estimate of the degree of convergence
is proposed. This mechanism has only appeared in WGAN.
The network structure is shown in Fig. 2.

C. APPLICATION AND DEVELOPMENT OF U-NET
U-Net [30], as its name suggests, which is named after its
network structure is similar to the u-type. The early stages
of development are mainly used for tasks such as medical
image segmentation and semantic segmentation. It mainly
uses the encode and decode methods to make the underlying
information and high-level information merge. The network
structure is shown in Fig. 3.

The blue arrows represent the convolution and activation
functions, the grey arrows represent the copy, the red arrows
represent the downsampling, the green arrows represent the
upsampling and then the convolution, and conv 1×1 rep-
resents the 1×1 convolution operation. It can be seen that
this network is not fully connected, only convolution and
sampling. This is also an end-to-end network where the input
is an image and the output is an image. The network on
the left is the contracting path: downsampling using con-
volution and maxpooling. The network on the right is an
expansive path: using upsampling combined with the feature
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FIGURE 2. Structure diagram of BEGAN. (a) Generator/Decoder.
(b) Encoder.

FIGURE 3. Structure diagram of original U-Net.

map of the pooling layer on the left contracting path, and
then upsampling to a 392×392 size heatmap. Finally, after
two convolutions, the final heatmap is reached. And then
use a convolution kernel 1×1 convolution to classify, here
is divided into two categories, so use two neurons to do the
convolution operation, get the last two heatmap. For example,
the first heatmap represents the score of the first category
(i.e., each pixel corresponds to the first category has a score),
the second heatmap represents the score of the second cat-
egory, and then the input of the Softmax activation function,
the probability is calculated. Compare the large softmax class
and select it as input to the cross entropy for backpropa-
gation training. The network includes 4 upsamplings and

4 downsamplings. The convolution kernel size is 3×3. max-
pooling is used during pooling and the location information
is preserved so that the location information can be restored
while upsampling. This kind of network design can use a
small amount of data sets for training tests and make a great
contribution to medical image segmentation.

The design idea of this paper is similar to that of BEGAN
andU-Net. The hiding network and extraction network of this
paper also adopt the idea of decoder and encoder. The encoder
network uses U-Net network structure directly to encode the
secret image into the cover image, the simultaneously trained
decoder network is used to extract the secret images present
in the stego image. The specific process is described in
the part III.

III. PROPOSED IMAGE STEGANOGRAPHY SCHEME
A. OVERALL DESIGN IDEAS
As illustrated in Fig. 4, the proposed steganography frame-
work is different from many popular steganographic methods
for encoding secret messages in the LSB of the cover image
and the coverless information hiding method. Our method
compresses and distributes secret images on all available
bits on the cover image. We try different network structures
to avoid the existence of secret information in steganalysis.
Finally, the hiding network and the extraction network of this
paper also adopt the idea of decoder and encoder. The specific
functions are as follows:

Hiding network: The encoder network is used directly to
encode the secret image into the cover image. Using a U-Net
structured convolutional neural network, the cover image and
the secret image are concatenated into a 6-channels tensor as
an input to the hiding network.

Extraction network: The trained decoder network is used
to extract the secret image existing in the stego images. The
network has 6 convolutional layers with a convolution kernel
size of 3×3, except that the last layer uses the Sigmoid
activation function [33], and each layer is followed by a BN
Layer and ReLU activation layer. A stego image generated by
a hiding network is used directly as an input to the extraction
network.

B. HIDING NETWORK STRUCTURE
As illustrated in Fig. 5, the specific network architecture
parameter settings are similar with the U-Net network struc-
ture, the hiding network in this paper has a contraction
phase and an expansion phase. The contraction phase is
a typical convolutional neural network structure. At this
time, unlike the U-Net network, the input of the network
is 256×−256 cascading 6-channels feature tensor, which is
completed by a 4×4 convolution layer in each downsam-
pling process. Each convolution is followed by a LeakyReLU
activation function and BN operation to speed up network
training. In each downsampling step, we double the number
of feature channels after convolution. After seven downsam-
pling operations, the number of feature channels is 512 and
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FIGURE 4. Flow chart of the proposed scheme.

FIGURE 5. Hiding network architecture diagram.

the size of the feature map is 2×2. In the expansion phase,
the feature map is upsampled using a deconvolution layer
(DeConv), which is also 4×4 in size and halve the number
of feature channels. At this time, each upsampling operation
is cascaded with the feature map from the contraction phase,
so that the network learns the feature maps of different stages.
In each upsampling process, a 4×4 convolutional layer is
used, each convolution followed by a ReLU activation func-
tion andBNoperation for accelerated network training. At the
last level of the network, the 4×4 convolution is used to
compress the convolved 64 feature vectors into a 3-channels
feature map and the Sigmoid activation function to compute
an output [33], which is the hidden stego image. It can be
seen that the hiding network is a full convolutional neural
network. The input and output are images, and there is no
fully connected layer. The shallower high-resolution layer is
used to solve the problem of pixel positioning, and the deeper
layer is used to solve the problem of pixel classification. It is
worth noting that in this paper, in order to achieve the same
size of the input and output, it is very important to select
the size of the input image block, so that when the image is
hidden, the input image is downsampled to a 2×2 feature map
through the contraction path. Therefore, a 256×256 image is
used as input during the training phase, and the corresponding
output is a stego image containing secret information.

C. EXTRACTION NETWORK STRUCTURE
As illustrated in Fig. 6, we designed a Convolutional
Neural Network Architecture (CNN) to recover secret images
from stego images generated by hiding networks, called

FIGURE 6. Extraction network architecture diagram.

extraction networks.We studied the architecture of the extrac-
tion net-work to accurately recover information from hiding
networks. Unlike the hiding network structure, the designed
network is a ‘‘plain network’’ with six convolution layers.
In CNN, the dropout operation, activation function and pool-
ing layer are used to enhance the nonlinear learning ability
of the neural network. The purpose of CNN is to use non-
linear features to learn the fitting parameters. The weight
parameters in each layer of the network are learned to fit
the mapping between input and output. If the effects of these
nonlinear operations are ignored, the effect of CNN is sim-
ilar to the effect of linear multivariate equations. With this
in mind, we designed the filter size for each convolutional
layer to be 3×3, with each convolution layer followed by a
ReLU activation function and BN operation without using the
pooling layer and dropout operation. At the last level of the
network, each 64-components feature vector is mapped to the
desired number of categories using a 3×3 convolution, and
the Sigmoid activation function [33] is used to compute the
two outputs, which are secret image and cover image.
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D. LOSS FUNCTION AND EVALUATION INDICATOR
In order to minimize the loss of the generated stego image c′

and the original cover image c and the extracted secret
image s′ and the original secret image s, the paper forces
hiding networks and extraction networks to continually opti-
mize learning, ultimately minimizing reconstruction errors.
The model loses the cost of loss between the stego image c′

obtained by the reconstruction and the original cover image c
and the extracted secret image s′ and the original secret
image s. The parameter2 = {wi, bi} is continuously adjusted
by backpropagation, for a set of real images Xj and the
network reconstructed image Fj(Y ;2), this paper uses mean
squared error (MSE) as the cost function:

L(2) =
1
n

n∑
i=1

‖ F j(Y ;2)− Xj ‖2 (1)

where n represents the number of training samples. Complete
network training by minimizing the loss of equation (2):

L(c, c′, s, s′) =‖ c− c′ ‖ +α ‖ s− s′ ‖ (2)

where c and s are the cover and the secret image, respectively,
and α is the trade-off error. ‖ c−c′ ‖ and ‖ s−s′ ‖ are the cost
of hiding network and extraction network, respectively. Here,
the weight of the error term ‖ c−c′ ‖ of the hiding network is
not shared with the weight of the extraction network, and the
weight of the error term ‖ s− s′ ‖ is shared between the two
networks. This ensures that the two networks adjust the net-
work training by receiving this error term to minimize the
error loss of the hiding network reconstructed secret image
and the cover image, and to ensure that the information of the
secret image is completely encoded on the cover image. The
network uses the Adam optimization method and the back
propagation algorithm [34] to minimize the MSE to adjust
the parameters of the network. The network weight update
process is:

1k+1 = 0.9×1k−η ×
∂L

∂W l
k

, W l
k+1 = W l

k+1k+1, (3)

where1k represents the last weight update value, l represents
the number of layers in the network, and k represents the
number of iterations of the network. η is the learning rate.
W l
k represents the weight of the k th iteration of the l th

layer. ∂L/∂W l
k represents the partial bias of the correspond-

ing weight in the cost function. The weights are randomly
initialized by a Gaussian distribution with a mean of 0 and
a variance of 0.001. The model can automatically adjust the
learning rate within the determined range during the training
process, making the parameter learning relatively stable.

In this paper, two common evaluation indicators, peak
signal to noise ratio (PSNR) [35] and structural similarity
(SSIM) [36], are used to measure the difference between
the image quality and the original image after reversible
steganography.

As an objective measure of image quality, PSNR evaluates
image quality by calculating the error between correspond-
ing pixels. The PSNR unit is dB, and the larger the value,

FIGURE 7. The model hides the effect in the middle of training.

FIGURE 8. The model hide results after stable training.

the smaller the image distortion. Calculated by using:

PSNR = 10 log10(
(2n − 1)2

MSE
) (4)

whereMSE is the mean square error of the original image and
the evaluated image, (2n − 1)2 is the square of the maximum
value of the signal, and n is the number of bits of each sample
value.

SSIMmeasures image similarity in three ways: brightness,
contrast, and structure. The range of SSIM value is [0, 1]. The
closer the SSIM value to 1, the smaller the distortion effect is.
Calculated by using:

SSIM (X ,Y ) = l(X ,Y ) · c(X ,Y ) · s (X ,Y ) (5)

l(X ,Y ) =
2µXµY + C1

µ2
X + µ

2
Y + C1

(6)

c(X ,Y ) =
2σXσY + C2

σ 2
X + σ

2
Y + C2

(7)

s(X ,Y ) =
2σXY + C3

σXσY + C3
(8)

among them: in this paper, X is represented as a stego image
and an extracted secret image, respectively; Y is the origi-
nal cover image and secret image, respectively; µX and µY
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FIGURE 9. The model hide results on natural images after stable training.

represent the mean of the images X and Y , respectively;
σX and σY represent the standard deviation of the stego image
and the cover image, the reversible extracted secret image
and the original secret image; σXσY denotes the covariance of
the stego image and the cover image, the reversible extracted
secret image and the original secret image.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT AND DATASET
In this paper, 45,000 images for training and 5000 images for
testing were collected as training set training network models
from ImageNet. The initial learning rate of the network is
set to 0.001, and the hyperparameter α is set to 0.75. The
Adam optimizationmethod is used to automatically adjust the
learning rate so that the network parameters can be learned
smoothly. The number of images per batch is set to 16, and
the network trains 200 iterations. In the GPU is NVIDIA
GeForce 1080 Ti, the experimental environment is Pytorch,
and the application is Python 3.5 for simulation experiments.
The training results of this model will verify the practica-
bility of the proposed method from two aspects: subjective
steganography result and hidden capacity.

B. SUBJECTIVE STEGANOGRAPHY RESULT
In view of the large amount of hidden information, we will
experimentally prove that the method is to place supple-
mentary information in the cover image instead of simply
modifying the LSB. As illustrated in Fig. 7 and Fig. 8,
in order to more intuitively compare the model to hide the
image changes during the training process, we show the effect
of the intermediate process of hiding and extracting under
different iterations of the model. Fig. 7 and Fig. 8 list the
results of hiding 6 images. From top to bottom, the first

row is the cover image, the second row is the stego image
(container), the third row is the secret image that needs to
be hidden, and the fourth row is the extracted secret image.
In contrast, in Fig. 7, in the early stage of training of the
model, the loss of MSE is very large, and the hidden secret
image outline information is clearly visible on the cover
image, and the pixel loss is visually unacceptable. While
Fig. 8 is in the model training stabilization phase, the MSE
loss is minimized. After the cover image encodes the secret
image, although all the secret image information is encoded
and the cover image is reconstructed from the stego image,
most of the reconstructed cover image looks almost identical
to the original cover image, the visual effects change very
little, and it is difficult to distinguish whether there are traces
of modification, which are barely noticeable to the human
eye. Similarly, after the secret image is decoded from the
stego image, the visual change is very small, and the image
distortion is almost imperceptible. As shown in Fig. 9, this
paper selects natural images besides the ImageNet training
set for testing. The steganography and extraction effects are
still stable, and it is still difficult to distinguish whether there
are traces of modification.

To further illustrate the effect of steganography, observe
the difference between the cover image and the secret image
before and after steganography. As illustrated in Fig. 10,
shows the hidden results of this model. As illustrated
in Fig. 10 (a, b, e, f), shows the cover image and stego image
and their error histogram. Fig. 10 (c, d, g, h), shows the
original secret image and the secret image extracted from
the stego image and their error histogram. It can be found
that the overall trend of the high and low frequency infor-
mation of the image hardly changes, and there is almost
no large pixel error. In addition, as shown in Table 1,
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FIGURE 10. The difference between cover image and secret image before and after steganography. (a) Original cover image and
its histogram. (b) Stego image and its histogram. (c) Original secret image and its histogram. (d) Extracted secret image and its
histogram. (e) Original cover image and its histogram. (f) Stego image and its histogram. (g) Original secret image and its
histogram. (h) Extracted secret image and its histogram.

in addition to visually verifying the four pairs of images
listed in Fig. 10, we randomly select one thousand sam-
ples from the ImageNet dataset, including the cover image
and the secret image before and after steganography. The
PSNR and SSIM indicators were used to further analyze the
degree of change of each image before and after steganog-
raphy. From the results, it can be found that the PSNR
and SSIM of the four pairs of images listed in Fig. 10 are
very high, reached (39.9837/0.9728), (34.8328/0.9814),
(40.2027/0.9668), (36.9231/0.9871), respectively. Under the
ImageNet dataset, the average of PSNR and SSIM for the
cover image reached (40.4716/0.9794), the average of PSNR
and SSIM for the secret image reached (40.6665/0.9842). It is
worth noting that the method is to place supplementary infor-
mation in each pixel in the cover image instead of directly
modifying the pixel value, and thus is visually difficult to
find.

C. STEGANOGRAPHY CAPACITY
Different from many popular steganography methods for
encoding secret messages in the LSB of the cover image
and coverless information hiding method, Our method com-
presses and distributes secret images on all available bits on
the cover image. At present, traditional embedding steganog-
raphy and based on coverless information hiding of steganog-
raphy capability are relatively low. Since our method is a new
embedding hiding method, in order to make a more intuitive
comparison, in this paper we simply compare the steganog-
raphy with other most advanced embedding steganography
methods and based on the non-embedding hiding method.
There are non-embedding hiding methods including the
cover-selection-based and the cover-synthesis-based meth-
ods. The comparison results are shown in Table 2, where
the second column is the absolute steganography capac-
ity (steganography capacity per image), the third column
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TABLE 1. Comparison of PSNR(DB) and SSIM values of cover image and
secret image after hinding and extraction process in our scheme.

is the size of the stego image, and the last column is
the relative steganography capacity (steganography capacity
per pixel):

Relative capacity =
Absolute capacity

The size of the image
(9)

TABLE 2. Comparisons of steganography capacities.

Since our method compresses and distributes secret image
pixel information on all available bits of the stego image,
the relative capacity is 1 byte/pixel and the result is shown
in the last row of Table 2. Rows 1-3 show the steganog-
raphy capacity of the cover-selection-based methods. Obvi-
ously, the relative capacity of our method is much larger
than methods of the cover-selection-based. Rows 4-6 show
the steganography ability of the cover-synthesis-based meth-
ods. Although the relative capacity of cover-synthesis-based
methods is significantly improved compared to the relative
capacity of the cover-selection-based methods, it is still lower
than the steganography capacity of our method. In other
words, our approach is superior to the most advanced cover-
selection-based and cover-synthesis-based methods in terms
of steganography capacity.

V. CONCLUSIONS
This paper discards the information embedding of the least
significant bits of the image, but uses an end-to-end approach
to hide one image onto another and has lower pixel distortion.
Experimental results show that this method has significant
advantages in both visual effect and steganography capacity.
The next step in this paper will combine the process of image
delivery with the generative adversarial networks, taking
the form of passing image parameters to the receiver. The
receiver extracts the transmitted secret image through the
pre-trained model, and in the form of double encryption,
ensures that the secret message cannot be detected by the
attacker during the transmission process, and the information
is secure.
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