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ABSTRACT The cost functions and their performances of direct position determination (DPD) methods in
the presence of multipath propagation are investigated. We first establish a general DPD (GDPD) model in
the presence of multi-path propagation and point out that the existing cost functions cannot get the emitter
positions correctly because of the singularity of the manifold matrix in a multipath propagation scenario.
Eight cost functions are developed for the GDPD model and formulated in a unified subspace fitting (USF)-
based framework, which provides insight into their algebraic and asymptotic relations. Moreover, we derive
the closed-form expressions of the asymptotic distributions of the estimation errors, which are optimized by
those cost functions. Besides, the optimal cost function for achieving an optimal asymptotic performance is
derived based on the optimization theory. Finally, the numerical simulations and Cramér–Rao lower bound
are provided to verify the analytical results and show that: 1) the cost functions which work well in the single-
path DPD model cannot find the emitters correctly in a multipath scenario; 2) the signal subspace fitting
cost functions and noise subspace fitting cost functions, which are proposed in this paper, find the emitters
accurately in the multipath propagation scenarios; 3) the optimal-weighted-subspace-fitting cost function
holds the best asymptotic performance under the USF framework; and 4) the asymptotic performance of a
multiple dimension cost function is better than a 1D cost function.

INDEX TERMS Asymptotic distribution, direct position determination, multipath propagation, subspace
fitting, maximum likelihood, multiple signal classification, weighted subspace fitting.

I. INTRODUCTION
Most of the position systems are designed for the LoS
(Line-of-Sight) emitters, such as GPS (Global Position Sys-
tem), LoRa (Long Range) positioning system. The research
about NLoS (None-Line-of-Sight) emitters positioning has
attracted much attention in recent years. Aero platforms
(satellite, EWA: Early Warning Air-plane, etc.) are adopted
to extend the positioning area for the positioning of NLoS
emitters. We are interested in the positioning of NLoS emit-
ters assisted by aero platforms (UAV: Unmanned Aerial Vehi-
cle, satellite, etc.) in this paper. There are two ways to get
NLoS emitter positions, the first is to sample directly and
synchronously on aero platforms (e.g. WSN:Wireless Sensor

Network), and the second is to forward the signal to the
receivers without any processing except frequency-shifting
and power amplification (e.g. satellite). Compared with the
first scheme, the transponders in the second scheme only need
forwarding the received signal to the receivers, and does not
need transmitting the sampled data to the positioning center
(See FIGURE 1).

Additional communication overhead and synchronization
cost are not required for transponders in the second scheme,
and it is important for a transponder which is installed on a
UAV or satellite.

Multipath propagation is the most difficult problem in this
positioning system. The signals received by each antenna are
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FIGURE 1. Position System assisted with transponders .

the superposition of multiple delay and frequency-shifting
signals (See FIGURE 1). Most of existing positioning meth-
ods are designed by developing statistical measurements to
against multi-path effects. For example, using CAF (Cross
Ambiguity Function) method to estimate time-frequency dif-
ference, using Received Signal Strength Indication (RSSI)
fingerprinting to match energy intensity, and using UWB
(Ultra Wide Bandwidth) signal to separate difference paths
from received signal. The common feature of these methods
is to reduce the influence of secondary path on main path, and
then locate it as a single path location problem.

When CAF is adopted for estimating the time-frequency
difference in the presence of multipath propagation, multiple
peaks will be generated because of the multi-path propaga-
tion. The matching problem between peaks of the CAF and
their relevant paths difference will be very difficult. In addi-
tion, in a low SNR scenario, the two-step positioning method
may not be able to accurately estimate the time-frequency
difference.

Unlike existing methods to reduce multipath interference,
the Direct Position Determination (DPD) method makes use
of the multipath propagation to improve the reliability and
availability of the position system. DPD can theoretically
achieve a better positioning performance. Du et al. [1] estab-
lished a GDPD (General Direct Positioning Determination)
mathematical model and algorithm of forwarding positioning
system, and compared the positioning performance of differ-
ent cost functions by Monte Carlo simulation, but theoretical
analyses of cost functions are absent.

DPD methods obtain the emitter positions directly for
achieving better performances [2]–[7] than two-step position-
ing methods. A DPD method uses the observations from all
sensors together, and establishes a cost function that depend
only on the emitter for achieving a global optimal estimations.
DPD methods overcome the problem of associating esti-
mated parameters with their relevant sources, and are shown
to outperform two-step methods (TDOA: Time-Difference-
Of-Arrival, FDOA: Frequency-Difference-Of-Arrival, DOA:
Direction-Of-Arrival etc.), especially in low Signal-to-Noise
Ratio (SNR) scenarios [8], [9]. The key idea of a DPDmethod
is that the two-step optimizations (measure estimations and
position optimizations) are combined into a one-step opti-
mization (position optimizations) to obtain a theoretical opti-
mal solution.

In DPD methods, The Maximum Likelihood (ML) and
MUltiple SIgnal Classification (MUSIC) are widely used as
cost functions. A DPD method with an ML cost function
mainly focuses on the positioning of known waveform sig-
nals. ML establishes a likelihood function of the received
signals, which determined only by emitter positions, as the
cost function, and obtains the maximum likelihood estimate
of the emitter positions. A DPD method with a MUSIC
cost function is mainly for the unknown waveform signal
positioning, and the cost function is formed by maximizing
the projection of the array manifold vectors onto the signal
subspace.Weiss et al. compared the positioning performances
of different cost functions by numerical simulation in [10].
The results shown that when the number of snapshots was
sufficient,ML andMUSIC can effectively closewith Cramér-
Rao Lower Bound (CRLB). A Signal Subspace Projection-
MUltiple SIgnal Classification (SSP-MUSIC) cost function
is developed in their works. The SSP-MUSIC maximized the
arraymanifold projection onto the signal subspace for achiev-
ing the optimal estimations of emitter position. In a direction
finding application, since the path attenuation of each antenna
has been calibrated in advance, themaximization of the signal
subspace projection is equivalent with the minimization of
the Noise Subspace Projection-MUSIC (NSP-MUSIC) of the
array manifold space. A GDPD model which took the multi-
path propagation into account was established in [1]. Amar
andWeiss pointed out that the cost function, proposed in [10],
which works well for single-path propagation DPD method,
would be failed in finding the emitter positions. In a multi-
path propagation scenario, the array manifold matrix would
be singular or nearly singular when there are two or more
paths with the same propagation delays from the candidates
to receiving stations. In this case, the difference between an
SSP-MUSIC cost function and a NSP-MUSIC cost function
turns to be significant, and fake solutionswill be find for those
candidates. Although existing literatures have found that per-
formances of different cost functions are different, there are
few theoretical analyses on the performance of different cost
functions. The performances of those cost functions were
verified by Monte Carlo simulations rather than a theoretical
analysis in the existing literatures. A cost function is regarded
as a reasonable cost function, if the error covariance matrix
closes to the CRLB with the increases of snapshots number.

There have been many results about the asymptotic per-
formance for the single parameter estimation problem in the
direction finding application. The main research results of
the existing literature are concentrated in three areas: (1) the
asymptotic distribution analysis of DOA estimation errors
for specific signals, (2) the asymptotic distribution analysis
of DOA estimation errors with model errors, and (3) the
asymptotic distribution analysis of DOA estimation errors
under Subspace Fitting framework.

Most of existing studies focused on the asymptotic distri-
bution analysis of DOA estimation error for specific signals.
Hamza and Buckley [11] analyzed the effects of a limited
number of snapshots on a general class of multiple dimension
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signal subspace estimation methods. Kaveh and Barabell [12]
analyzed the statistical performance of the music and the
minimum-norm algorithms in resolving plane waves in noise.
Li et al. [13] and Dauxois et al. [14] studied the asymp-
totic performance by Principal Component Analysis (PCA)
method for non-circular signals in the presence of circu-
lar white Gaussian noise. Wang and Kaveh [15], [16] pre-
sented an analytical evaluation of detection and estimation
performances of narrow-band signal and coherent wide-band
system subspace processing for multiple source direction
finding. An asymptotic analysis was presented of a class of
high-resolution estimators for resolving correlated and coher-
ent plane waves in noise for direction finding application
in [17]. Stoica and Nehorai [18] proposed a numerical and
analytical study of conditional and unconditional DOA esti-
mation. An analytical performance evaluation of the errors
of the direction-of-arrival estimates obtained by the MUSIC
algorithm for uncorrelated sources was studied by Porat and
Friedlander [19], [20]. Delmas and Meurisse [21] studied the
asymptotic performance of direction finding algorithms with
temporally correlated narrowband signal. Zhou et al. [22]
analyzed the asymptotic performance of DOA estimation
based on the G-MUSIC algorithm for a single source using
RLA (Random-Linear-Array).

The asymptotic distribution of DOA estimation error in the
presence of model errors has also attracted the interest of
some scholars. Swindlehurst and Kailath [23], [24] studied
the performance of subspace algorithms for the situations on
which the noise covariance and array response are perturbed
from their assumed values. Ferreol et al. [25] proposed an
asymptotic performance analysis of subspace DOA estima-
tion in the presence of modeling errors.

Some literatures focused on the asymptotic distribution of
DOA estimation error under the Subspace Fitting framework.
Ottersten et al. [26] proposed an asymptotic analysis of the
ML and Weighted Subspace Fitting (WSF) methods for the
deterministic emitter signals. Five methods of DOA estima-
tion which were derived from ML principle and analytic
results on their theoretical performance levels were proposed
by Stotica and Sharman [27]. Moulines and Cardoso [28] and
Cardoso and Moulines [29] derived and worked out closed-
form expressions of the asymptotic covariance of MUSIC-
like DOA estimates based on two fourth-order cumulate
matrices. Bengtsson and Ottersten introduced a general class
of Subspace Fitting (SF) algorithms for consistent estima-
tion of parameters from a possibly full-rank data model.
The asymptotic performances of the algorithms are analyzed,
and an optimally weighted algorithm is derived in [30].
Ottersten et al. [31], [32] proposed several estimation meth-
ods as solutions to different versions of a basic subspace
fitting problem, and the asymptotic performance of the multi-
dimensional subspace fitting methods was investigated. They
studied the asymptotic robustness of sensor array process-
ing methods further, and pointed out that the asymptotic
properties of essentially all DOA estimation methods based
on a multidimensional search, depend only on the second

order properties of the emitter signals in [33]. Stoical and
Nehorai [34], [35] analyzed the asymptotic distribution of the
MUSIC algorithm for the single parameter estimation prob-
lem in the direction finding application. The minimization
of NSP-MUSIC was adopted as the cost function in their
works. The asymptotic distribution neglected the terms with
O(1/N ), and it was only a upper bound of the asymptotic
distribution.

Viberg et al. [36], [37] introduced a Weighted Subspace
Fitting (WSF) method. Viberg analyzed the asymptotic dis-
tribution of the ML, Multiple Dimension-MUSIC (MD-
MUSIC), and WSF for the direction finding problem, and
obtained the optimal weights of a WSF for achieving the best
asymptotic distribution performance. Authors derived a close
form of the asymptotic performance of a signal subspace
fitting MUSIC cost function. The asymptotic distribution
performances of an MD-MUSIC and an ML were com-
pared by numerical simulations. Numerical simulation results
showed that the asymptotic distribution performance of an
MD-MUSIC method was worse than an ML method. It was
unexpected since the One Dimension-MUSIC (1D-MUSIC)
was known to have the same asymptotic performance as the
ML for uncorrelated sources [34]. An MD-MUSIC method
not only takes the correlation between sources signals into
account, but also extends the searching dimensions, and it
theoretically obtains a better performance than a 1D-MUSIC
method. However, reasons of the unexpected result was not
analyzed further in their works.

Viberg and Ottersten [36] maximized the projection onto
the signal subspace to obtain the emitter position. It is well
known that the SSP-MUSIC is a simplified version of the
NSP-MUSIC. Obviously, an SSP-MUSIC holds a worse per-
formance than an NSP-MUSIC. It is regrettable that Stoica
did not give the asymptotic distribution result of an NSP-
MUSIC with O(1/N ), and did not compare the asymptotic
distribution performance between an NSP-MUSIC and an
ML theoretically. It is necessary to analyses the second
moment statistical properties of eigen-vectors for getting an
O(1/N ) asymptotic distribution performance. If an eigen-
value is different with other eigenvalues (eigenvalues related
to the signal subspace), the second moment statistical prop-
erties of the eigen-vector correspond to the eigenvalue have
been well studied in [38] and [39], and the results are adopted
for getting the asymptotic distribution properties of an SSP-
MUSIC in [36]. However, the eigenvalues correspond to the
noise subspace are multiple roots, and there are few results
on the second moment statistical properties of eigen-vectors
corresponding to the multiple roots. Arie et al. pointed out
that the classical derivation of the asymptotic efficiency uses a
first-order perturbation analysis, relying on a ‘‘small-errors’’
assumption, which under sub-asymptotic conditions turns
inaccurate, rendering theML generally biased and inefficient.
A tensor formulation of higher-order derivatives to derive
a tractable formulation of a higher (up to the third) order
perturbation analysis was proposed for predicting the bias and
Mean Squared Error (MSE) matrix of the ML of parameter
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vectors in general non-linear models under sub-asymptotic
conditions in [40].

The above literatures focused on the asymptotic perfor-
mance for the direction finding application. It was assumed
that the path attenuations were well calibrated or known
precisely in advance. However, the path attenuations are
unknown in a GDPD application, and some simplification
methods in the existing literatures can not work well in a
GDPD model.

The motivation of this paper is to develop the cost func-
tions for the DPD method in multipath propagation scenar-
ios, and to analysis the asymptotic distribution of those cost
functions. A GDPD positioning model in the presence of
multi-path propagation is established as the base positioning
model. We develop eight cost functions under the Unified
Subspace Fitting (USF) framework, and derive the closed-
form expressions of asymptotic distributions of those cost
functions. MUSIC and ML cost functions are unified into the
Weighted Signal Subspace Fitting (WSSF) framework, and
the optimal weights of aWSSF cost function for achieving the
optimal asymptotic performance is derived base on algebra
and optimization theories. Finally, the asymptotic distribution
performances of different cost functions and the CRLB of the
position estimations are compared by numerical simulations.

This paper is organized as: First, a GDPD model in pres-
ence of multi-path propagation is established in the section 2;
Then, A geometric understanding of USF and eight cost
functions are proposed in section 3 and section 4; Next,
the asymptotic distribution properties of Multiple Dimension
functions and CRLB are studied in section 5; Afterwards,
The optimal weights are optimized for achieving the best
asymptotic distribution performance in the section 6; Finally,
a numerical simulation is taken to verify above results in the
section 7 and a conclusion is proposed in the section 8.

II. GDPD MODEL IN THE PRESENCE OF MULTI-PATH
PROPAGATION
The GDPD model in presence of multi-path propagation
follows the model in [1], [41], and [42]. For the convenience
of reading, we give the relevant variables descriptions and
formulas again.

Consider D emitters are located at pe, and L passive
transponders are placed at pt, where

pe = [pTe (1),p
T
e (2), . . . ,p

T
e (D)]

T , (1)

pt = [pTt (1),p
T
t (2), . . . ,p

T
t (L)]

T , (2)

and pe(d) , [pe(d, x), pe(d, y), pe(d, z)]T and pt(`) ,
[pt(`, x), pt(`, y), pt(`, z)]T are the 3D coordinates of emit-
ter positions and transponder positions. The signals trans-
mitted by the emitters are reflected by the transponders
and intercepted by N receiving arrays. The raw signal
samples are transferred ‘‘in-band’’ (i.e., as multipath), and
required tightly synchronized in time and frequency [41].
Each array includes M antennas, and the centers of arrays
are located at pr = [pTr (1),p

T
r (2), . . . ,p

T
r (N )]T , and

pr(N ) , [pr(n, x), pr(n, y), pr(n, z)]T . It is assumed that the
locations of transponders and receivers are known a pri-
ori(e.g. transponders are installed on UAVs whose positions
are known a priori), but the signal waveforms are unknown.
The scenario is depicted in figure 2 [1].

FIGURE 2. Multiple-path positioning problem with static
transponders/receivers.

Denote the signal propagation delay between the d th emit-
ter and the `th transponder by τ̄d,` = 1

c ‖pe(d)− pt(`)‖F .
Let τ̃`,n,m = 1

c ‖pr(n,m)− pt(`)‖F denotes the propagation
delay between the `th transponder and the mth antenna in the
nth receiver, where c = 3 × 108 m/s, and pr(n,m) is the
position of the mth antenna in the nth array. Denote

τ̃ `,n = [τ̃`,n,1, τ̃`,n,1, . . . , τ̃`,n,M ]T , (3)

where τ̃ `,n is anM×1 vectors which represents the Delay Of
Arrical (DOA) from the transponder ` to the receiving array n.
The path attenuation from the d th emitter to the nth

receiver array which reflected by the `th transponder is
denoted by αd,`,n. We assume that the receiving arrays have
been corrected for all antennas, and each antenna in an array
shares the same path attenuation.

We assume that the path attenuations, αd,`,n, remains con-
stant during the observation time interval and the noise level
σ is known. The frequency-domainmodel for the kth Discrete
Fourier Transform (DFT) coefficient of the nth receiving
array is given by:

rn(k) =
L∑
`=1

D∑
d=1

αd,`,nã`,n(k)e−iωk τ̄`,d sd (k)+ n(k), (4)

ã`,n(k) = e−iωk τ̃ `,n , (5)

sd (k) = s̃d (k)e−iωk td (6)

ωk =
2πk
T
, 0 ≤ k ≤ K − 1, (7)

where td is the unknown transmit time of the emitter d , s̃d (k)
is the kth Fourier coefficient of the d th source signal šd (t), t ∈
[0,T ]. rn(k) and n(k) are M × 1 vectors of the kth Fourier
coefficients of r̄n(t) and n̄(t), t ∈ [0,T ]. ã`,n(k) is an M × 1
vector, and it denotes the generalized array response of the
nth receiver at frequency ωk .

Denote the unknown parameter vector θ = [pTe , ᾱ
T ]T ,

where pe are emitter positions vector, and ᾱ are path
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attenuations vector. Make (4) into matrix form

r(k) = A(k, θ )s(k)+ n(k) (8)

where

r(k) , [rT1 (k), r
T
2 (k), . . . , r

T
N (k)]

T , (9)

rTn (k) = [rTn1(k), r
T
n2(k), . . . , r

T
nM (k)]T , (10)

A(k, θ ) , 0(pe, k)α, (11)

0(pe, k) , Ã(τ̃ , k)V(τ̄ , k), (12)

Ã(τ̃ , k)=


Ã1(τ̃ , k) 0 . . . 0

0 Ã2(τ̃ , k) . . . 0
...

...
. . .

...

0 0 . . . ÃN (τ̃ , k)

, (13)

Ãn(τ̃ , k) = [ã1,n(k), ã2,n(k), . . . , ãL,n(k)], (14)

where ã`,n(k) , ã`,n(τ̃ `,n, k).

V(τ̄ , k) = IN ⊗ V̄(τ̄ , k), (15)

V̄(τ̄ , k) = [V̄1(τ̄ , k), V̄2(τ̄ , k), . . . , V̄D(τ̄ , k)], (16)

V̄d (τ̄ , k) = diag([e−iωk τ̄d,1 , e−iωk τ̄d,2 , . . . , e−iωk τ̄d,L ]), (17)

α =


α1
α2
...

αN

, (18)

αn =


α1n 0 . . . 0
0 α2n . . . 0
...

...
. . .

...

0 0 . . . αDn

, (19)

αdn = [αd1n, αd2n, . . . , αdLn]T , (20)

s(k) , [s1(k), s2(k), . . . , sD(k)]T , (21)

where⊗ is the kronecker product, and IN is an identify matrix
with size of N × N .

The covariance matrix of received data is

R(k) = E{r(k)rH (k)}

= A(k, θ )P(k)AH (k)+ σ 2(k)I, (22)

where P(k) , s(k)sH (k), and R(k) is estimated by

R̂(k) =
1
J

J∑
j=1

rj(k)rHj (k). (23)

Denote the eigenvectors of R̂(k) by Û(k).

Û(k) , [Ûs, Ûn], (24)

where Ûs(k) = [ûs(1), ûs(2), . . . , ûs(D)] is consisted by
eigenvectors correspond to the maximal Dth eigenvalues
3̂s = [λ̂1, λ̂2, . . . , λ̂D]T , and Ûn(k) = [ûn(D + 1), ûn(D +
2), . . . , ûn(NM )] is consisted by the other NM −D eigenvec-
tors 3̂n = [λ̂D+1, λ̂D+2, . . . , λ̂NM ]T .

III. A GEOMETRIC UNDERSTANDING OF USF
The Subspace Fitting (SF) approach was first described for
single parameter estimation by Schmidt [43], [44] and for-
malized by Cadzow [45]. Based on the works of Schmidt
and Cadzow, we extend the SF approach for single parameter
model to the GDPD model and named Unified Subspace
Fitting Framework (USF). The differences between the USF
and the SF are: (1) the dimension of unknown parameters is
increased; (2) the array manifold matrix may be singular due
to multipath propagation. Conclusions that are applicable in a
single parameter SF approach turns to be no longer applicable
in a USF framework because of the differences. Therefore,
it is necessary to study the theories and methods of USF
framework.

A USF cost function measures the geometric relations
between the subspace spanned manifold vectors, the signals
subspace and the noise subspace. In order to give readers a
more intuitive understanding of USF framework, we propose
a geometric interpretation of USF framework.

A. POSITIONING PROBLEM
Denote θ∗ as the true value of unknown parameters. It is seen
from (8) that each snapshot r(k) from the array is just a linear
combination of the columns of A(k, θ∗), In other words,
each observation is constrained to lie in the d-dimensional
subspace of CMN defined by the d columns of A(k, θ∗).
A geometric schematic of Subspace Fitting Framework is
given in FIGURE 3.

FIGURE 3. Geometric interpretation of positioning problem.

Assume that there are three receivers and two emitters.
200 observations are collected by each receiver which are
denoted by ri = [r1,i, r2,i, r3,i]T , i = 1, 2, . . . , 200.
An observation vector ri corresponds to a dot in the
FIGURE 3. Substitute the true parameters θ∗ into the man-
ifold matrix A(k, θ∗), and columns of A(k, θ∗) are denoted
as a∗1 and a

∗

2.
From (8), the received signals are represented by

ri = s1,ia∗1 + s2,ia
∗

2 + ni, (25)
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where s1,i and s2,i are the ith samples of source 1 and source 2,
i = 1, 2, . . . , 200. the received signal ri is a linear combina-
tion of a∗1 and a∗2, so the dots in FIGURE 3 are distributed
around the subspace spanned by a∗1 and a

∗

2.
Parameters estimation problem for signal model (25) is

to find the optimal vectors a∗1 and a∗2 which are determined
by the unknown parameters θ . From a geometric point of
view, it is to search for the optimal plane which is determined
by θ , so that the dots are near the plane. We should design
a reasonable cost function to measure the performance of a
parameter vector θ to obtain θ∗.

B. MAXIMUM LIKELIHOOD
The most intuitive approach is to fit a plane, which is spanned
by a1(θ ) and a2(θ ) over the dots and minimize the fitting
error:

θ̂ = argmin gm(θ ) = ‖ri − s1,ia1(θ )− s2,ia2(θ )‖2F , (26)

where ‖·‖F means the Frobenius norm. The cost function (26)
is known as the ML method if the noise is the AWGN. If the
source signal waveforms are unknown, s1,i and s2,i in (26) are
required to be optimized. There will be a large scale searching
to obtain the waveforms parameters.

C. SIGNAL SUBSPACE PROJECTION
If s1,i and s2,i are incoherent over i, the PCA (Principal
Component Analysis) method can find the optimal fitting
plane of programming (26) without the optimization of signal
waveforms. Eigenvectors, correspond to the largest two eigen
values of the covariance matrix of received signals, span the
signal subspace (the yellow plane in FIGURE 4), and the
noise subspace is orthogonal with the signal subspace.

FIGURE 4. Geometric interpretation of 1D-SP-MUSIC.

If we search a(θ ) along the array manifold space (the red
curve), and maximize the projection of a(θ) onto the signal
subspace (the green vector):

ˆ[θ ] = argmax gps(θ ) = ‖a(θ)us‖2F , (27)

we can find local optimal solutions at â1 and â2 which follow
â1 → a∗1 and â2 → a∗2. The cost function which maximizes
the projections onto the signal subspace one by one is known
as the One Dimension-SSP-MUSIC (1D-SSP-MUSIC).

If we serach a(θ) along the array manifold space, and
minimize the projection onto the noise subspace (the purple
vector):

ˆ[θ ] = argmin gpn(θ ) = ‖a(θ)un‖2F . (28)

We can find local optimal solutions at â1 and â2 which follow
â1 → a∗1 and â2 → a∗2. The cost function which minimizes
the projections onto the noise subspace one by one is known
as the One Dimension-NSP-MUSIC (1D-NSP-MUSIC).

Remark: If the length of a(θ ) has been normalized to 1,
the maximization of the projection onto the signal subspace
is equivalent with the minimization of the projection onto the
noise subspace, that is 1D-SSP-MUSIC is equivalent with
1D-NSP-MUSIC is the length of manifold vector has been
normalize to 1.

D. SIGNAL SUBSPACE FITTING
If we search a1(θ ) and a2(θ ) simultaneously, and fit the
subspace which is spanned by a1(θ ),a2(θ ) (the blue plane
in FIGURE 5) to the signal subspace (the yellow plane in
FIGURE 5), it is named as Signal Subspace Fitting (SSF)
method.

FIGURE 5. Geometric interpretation of SSF.

In the SSF method, fitting the plane spanned by a1(θ ) and
a2(θ ) to the plane spanned by u1 and u2 is equivalent to
measuring the coplanarity of those vectors, where u1 and u2
is the eigen vectors corresponds to λ1 and λ2. If ud , d =
1, 2, is a linear combination of a1(θ ) and a2(θ ), vector ud
is in the plane spanned by a1(θ ) and a2(θ ). In the Multiple
Dimension-Signal Subspace Fitting (MD-SSF), we measure
the coplanarity of the fitting by

ˆ[θ ] = argmin gs(θ ) = ‖Us − A(θ)T‖2F , (29)

where A(θ ) = [a1(θ ), a2(θ )], Us = [u1,u2], and T is 2 × 2
linear transform matrix.
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If the manifold vector a(θ ) is in the plane spanned by u1
and u2, a(θ) = UsT. However, if a(θ ) satisfies a(θ) = UsT,
a(θ ) not always in the plane spanned by u1 and u2. If a(θ ) = 0
andT = 0, the equation is satisfied, but we do not find the true
manifold vector. We can not minimize ‖a(θ )−UsT‖ to obtain
the true manifold vector unless constrains ‖a(θ )‖F = 1.
Since the lengths of the column vectors in Us have been

normalized to 1, we can get the true manifold subspace A(θ )
without the normalization of column vectors of matrix A(θ).
If we search a manifold vector a(θ ) in the array manifold

space, the cost function turns to be a One Dimension-SSF
(1D-SSF) cost function:

ˆ[θ ] = argmin gs(θ ) = ‖Us − a(θ)T‖2F , (30)

and there are two local optimal solutions of programming (30)
which corresponds to â1(θ ) and â2(θ ).

The geometric understanding of min gs,1(θ ) = ‖u1 −
a(θ )t1‖F in (30) is to minimize distance between u1 and
scaled a(θ ). if the manifold subspace is orthogonal with
the signal subspace, the projection of u1 onto the manifold
subspace is the optimal estimation of a(θ )t1, and it is the true
estimation parameters vector θ∗.
Since the manifold subspace can not always be orthogonal

with the signal subspace, 1D-SSF is a simplified version of
MD-SSF, and holds a worse performance than an MD-SSF.

E. NOISE SUBSPACE FITTING
If we search a subspace which is spanned by a1(θ ), a2(θ )
and measure the orthogonality with the noise subspace, it is
named as Noise Subspace Fitting (NSF) method.

In a direction finding application, the cost function of a
MUSIC method is

θ̂ = argmax g1(θ ) =
1

aH (θ )UnUH
n a(θ)

. (31)

From a geometric point of view, the MUSIC method searches
the manifold vector a(θ ) who has the minimal projection
length onto the noise subspace. Since aH (θ )a(θ ) = 1 always
holds, the orthogonality of the two subspaces is correctly
defined by aH (θ )UsUH

s a(θ ).
In a single path propagation DPD model, the cost function

of a MUSIC method is

θ̂ = argmax g2(θ ) =
1

αHA(θ )UnUH
n AH (θ )α

, (32)

where α is the unknown path attenuations column vector,
A(θ ) is a diagonal matrix with full rank. From a geometric
point of view, αHA(θ )UnUH

n A
H (θ )α is the projection length

of vector αHA(θ ) onto vector Un. Since the length of vector
αHA(θ ) is αHA(θ )AH (θ )α = αHα = 1, the orthogonality
of the two subspaces is correctly defined by the MUSIC cost
function.

MUSIC cost functions (32) for DPD method are widely
used in the existing literatures [2], [3], [5], [8], but it will be
failed in a multipath propagation scenario.

In a multipath propagation positioning application,
the matrix A(θ ) turns to be a diagonal block matrix.

The matrix A(θ) will be singular if there are two differ-
ent paths from an emitter to a receiving antenna with the
same propagation delay. In this case, we can not guarantee
that the length of manifold vector is 1, or even ∃α makes
αHA(θ )AH (θ )α = 0. The manifold vector space will be a
surface rather than a curve (the red surface in FIGURE 6).

FIGURE 6. Geometric interpretation of NSF.

In a GDPD application, NSP-MUSIC only finds the array
manifold vector whose projection length is zero because that
its own length is zero, instead of finding the array manifold
vector who orthogonal to the noise subspace. In this paper,
we normalize the length of a(θ ) to 1 in the cost function to
overcome the problem of NSP-MUSIC:

ā(θ ) ,
a(θ )
‖a(θ )‖F

, (33)

Following the principle that if a space A is orthogonal with
a anther space B, a is orthogonal with b, where a is any
vector in space A, and b is any vector in B, We measure the
orthogonality of the subspace spanned by A(θ) and the noise
subspace by:

θ̂ = argmin gn = ‖ĀH (θ )Un‖
2
F , (34)

where Ā(θ) , [ā1, ā2]. Since ād has been normalized to
1, and ‖ūn‖F = 1, ‖ād ūn‖2F measures the orthogonality of
those vectors correctly in a GDPD model in the presence of
multipath propagation.

IV. COST FUNCTIONS OF USF
We have studied the intuitive geometric interpretations of
USF in section III. We will propose general models of cost
functions under the USF framework in this section.

A. SIGNAL SUBSPACE FITTING METHOD
The basic Signal Subspace Fitting (SSF) method is posed as

[θ̂ , T̂] = argmin s̄(θ ,T) = ‖Us − A(θ )T‖2F . (35)

The columns ofUs span the signal subspace, θ is the unknown
parameters vector and A(θ ) is the array manifold matrix
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which determined by θ . ‖ · ‖F is the Frobenius norm of
a matrix. The SSF method fits the manifold matrix A(θ )
to the signal subspace Us by optimizing θ and T, and the
fitting Root-Mean-Square Error (RMSE) is defined as the
cost function of an SSF method.

The optimization of programming (35) is separable in θ
and T. For a fixed θ , By substituting the pseudo-inverse solu-
tion, T̂ = A+(θ )Us, back into (35), we obtain the following
equivalent programming

θ̂ = argmaxC1(θ ) = tr{PA(θ )UsUH
s }, (36)

where PA(θ ) , A(θ )A+(θ ) is the projection matrix that
projects onto the subspace spanned by the columns of A(θ),
and A+(θ ) , [AH (θ )A(θ)]−1AH (θ )is the pseudo-inverse of
A(θ ). (36) is a unified cost function of the Subspace Fitting
Model, and the different definitions of Us and A(θ ) lead to
the different cost functions.

1) ONE DIMENSION-SIGNAL SUBSPACE FITTING
For the uncorrelated D source signals scenario, there are D
intersections between the manifold subspace and the signal
subspace. If we search the vector in the manifold space over
the available region, and we can find D vectors witch lie on
the signal subspace. One Dimension-Signal Subspace Fitting
(1D-SSF) method searches the optimal manifold vector in the
manifold space one by one to obtain the D emitter positions.
The combinations of multiple emitters are not taken into
account in this method. SetUs , Ûs(k),A(θ ) , a(k, θ ) in the
(35), where a(k, θ ) is a column ofA(k, θ ), 1D-SSF is defined
as:

[θ̂ , T̂] = argmin s̄1(θ ,T) =
K∑
k=1

‖Ûs(k)− a(k, θ )T(k)‖2F ,

(37)

where θ , [pe,α], a(k, θ ) corresponds to themanifold vector
of parameters θ . Substitute the optimal estimation of T(k)
into (37), and follows (36)

θ̂ = argmax s1(θ ) =
K∑
k=1

tr{Pa(k, θ )Ûs(k)ÛH
s (k)}, (38)

where Pa(k, θ ) , a(k, θ )a+(k, θ ) is the projection matrix of
a(k, θ ), and a+(k, θ ) ,

[
aH (k, θ )a(k, θ )

]−1 aH (k, θ ) is the
pseudo-inverse of a(k, θ).

2) MULTIPLE DIMENSIONS-SIGNAL SUBSPACE FITTING
All emitters are taken into account in the Multiple Dimen-
sions Signal Subspace Fitting (MD-SSF) cost function. The
manifold matrix A(θ ) , A(k, θ ) is a MN × D matrix. Set
Us , Ûs(k), and adopt the subspace fitting formulation,
the method is posed as:

[θ̂ , T̂] = argmin s̄2(θ ,T) =
K∑
k=1

‖Ûs(k)− A(k, θ)T(k)‖2F .

(39)

Substitute the optimal estimation of T(k) into (39)

θ̂ = argmax s2(θ ) =
K∑
k=1

tr{PA(k, θ )Ûs(k)ÛH
s (k)}, (40)

where Ûs(k) is defined in (24), and PA(k, θ ) ,
A(k, θ )A+(k, θ) is the projection matrix of A(k, θ ), and
A+(k, θ ) ,

[
AH (k, θ )A(k, θ )

]−1AH (k, θ ) is the pseudo-
inverse of A(k, θ).

3) ONE DIMENSION-WEIGHTED SIGNAL SUBSPACE FITTING
Set Us , Ûs(k)W1/2(k), and A(θ ) , a(k, θ ), where a(k, θ )
is a column ofA(k, θ ), the cost function of aWeighted Signal
Subspace Fitting (1D-WSSF) is defined by:

[θ̂ , T̂] = argmin s̄3(θ ,T)

=

K∑
k=1

‖Ûs(k)W1/2(k)− a(k, θ )T(k)‖2F . (41)

Substitute the optimal estimation of T(k) into (41):

θ̂=argmax s3(θ )=
K∑
k=1

tr{Pa(k, θ )Ûs(k)W(k)ÛH
s (k)}, (42)

where Pa(k, θ ) has been defined in 1D-SSF, W1/2(k) is a
diagonal matrix with size of D × D, and the d th element in
the diagonal is the weight of the d th eigenvector in the signal
subspace (d = 1, 2, . . . ,D).

4) MULTIPLE DIMENSION WEIGHTED SIGNAL SUBSPACE
FITTING
Set Us , Ûs(k)W1/2(k), and A(θ ) , A(k, θ), the cost
function of Multiple Dimension Weighted Signal Subspace
Fitting (MD-WSSF) is defined by:

[θ̂ , T̂] = argmin s̄4(θ ,T)

=

K∑
k=1

‖Ûs(k)W1/2(k)− A(k, θ )T(k)‖2F . (43)

Substitute the optimal estimation of T(k) into (43):

θ̂=argmax s4(θ )=
K∑
k=1

tr{PA(k, θ )Ûs(k)W(k)ÛH
s (k)}, (44)

where PA(k, θ ) = A(k, θ )A+(k, θ ), and W1/2(k) has been
defined in 1D-WSSF.

5) DETERMINISTIC MAXIMUM LIKELIHOOD
We choose Us , r(k), A(θ) , A(k, θ ) and T = S(k) in (35),
and it gives the Deterministic Maximum Likelihood (DML)
cost function. For an AWGN channel, cost function of the
DML method is

[θ̂ , Ŝ] = argmin s̄5(θ ,S)=
K∑
k=1

‖r(k)−A(k, θ )s(k)‖2F . (45)
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Follows with (36),

θ̂ = argmax s5(θ ) =
K∑
k=1

tr{PA(k, θ)r(k)rH (k)}

=

K∑
k=1

tr{PA(k, θ )R̂(k)}, (46)

where PA(k, θ ) = A(k, θ )A+(k, θ ), The ML method fits a
3D+DNL-dimensional subspace spanned by the columns of
A(k) to the received data r(k).

B. NOISE SUBSPACE FITTING METHOD
Since the noise subspace of the received signals is orthogonal
with the signal subspace, fitting the manifold space onto
the signal subspace is equivalent to minimize the manifold
projection length onto the noise subspace.

The angle between a(k, θ ) and un(k, i) is:

cos(βi) =
‖aH (k, θ )un(k, i)‖F
‖a(k, θ)‖F‖un(k, i)‖F

, (47)

where a(k, θ ) is a vector in the manifold matrix, and un(k, i)
is the ith column of Un(k). If cos(βi) = 0, the vector
a(k, θ ) is orthogonal with un(k, i). If the space A(k, θ ) is
orthogonal with the space Un(k), each vector in the space
A(k, θ ) is orthogonal with all vectors in the space Un(k).
In a direction finding application or a single path DPD
application, ∀θ , ‖a(k, θ )‖F = 1, and ‖un(k, i)‖F = 1.
In this case, the measurement of the orthogonality is
simplified as

cos(βi) = aH (k, θ )un(k, i). (48)

The NSF methods for direction finding or single-path prop-
agation applications minimize cos(βi) over θ , and get the
optimal estimation of θ :

θ̂ = argmin n(θ) = ‖aH (k, θ )un(k, i)‖2F . (49)

However, the length of a manifold vector in a GDPD model
can not always keep 1 [1]. In a scenario with multipath prop-
agation, ∃θ and d , makes the length of the d th column vector
in the manifold matrix A(k, θ ) satisfies ‖ad (k, θ)‖ = 0,
and leads to ‖ûHn (k, i)ad (k, θ )‖ = 0,∀i. In this case,
programming (49) reaches the minimum value, since ‖ ·
‖F ≥ 0. However, θ is a fake solution (In FIGURE 3,
the manifold curve intersects the signal space near
to zero).

The length of a manifold vector should be normalized in
the Noise Subspace Fitting method to avoid finding the fake
solutions.

1) ONE DIMENSION-NOISE SUBSPACE FITTING
One Dimension-Noise Subspace Fitting (1D-NSF) method
normalize the length of all vectors in the manifold matrix,

and minimize the manifold vector projection length onto the
noise subspace.

θ̂ = argmin ū1(θ )

=

K∑
k=1

MN−D∑
i=1

‖ûHn (k, i)a(k, θ )‖
2
F

‖a(k, θ )‖2F

=

K∑
k=1

‖ÛH
n (k)a(k, θ )‖

2
F

‖a(k, θ)‖2F

=

K∑
k=1

aH (k, θ )Ûn(k)ÛH
n (k)a(k, θ )

aH (k, θ )a(k, θ )
,

=

K∑
k=1

tr
{
Pa(k, θ)Ûn(k)ÛH

n (k)
}
. (50)

2) MULTIPLE DIMENSION-NOISE SUBSPACE FITTING
Multiple Dimension-Noise Subspace Fitting (MD-NSF)
method normalize the length of all vectors in the manifold
matrix, and minimize the manifold matrix projection length
onto the noise subspace.

θ̂ = argmin ū2(θ )

=

K∑
k=1

MN−D∑
i=1

D∑
d=1

‖ûHn (k, i)ad (k, θ)‖
2
F

‖ad (k, θ)‖2F

=

K∑
k=1

D∑
d=1

‖ÛH
n (k)ad (k, θ )‖

2
F

‖ad (k, θ )‖2F

=

K∑
k=1

D∑
d=1

aHd (k, θ )Ûn(k)ÛH
n (k)ad (k, θ )

aHd (k, θ )ad (k, θ)

=

K∑
k=1

D∑
d=1

tr
{
Pa(k, d, θ)Ûn(k)ÛH

n (k)
}
. (51)

3) MULTIPLE DIMENSION-WEIGHTED NOISE
SUBSPACE FITTING
Weight the D manifold vectors as:

θ̂ = argmin ū3(θ )

=

K∑
k=1

MN−D∑
i=1

D∑
d=1

‖ûHn (k, i)ad (k, θ)w
1
2
d ‖

2
F

‖ad (k, θ )‖2F

=

K∑
k=1

D∑
d=1

‖ÛH
n (k)ad (k, θ )w

1
2
d ‖

2
F

‖ad (k, θ )‖2F

=

K∑
k=1

D∑
d=1

wd
aH (k, θ )Ûn(k)ÛH

n (k)ad (k, θ)
aHd (k, θ )ad (k, θ )

=

K∑
k=1

D∑
d=1

wd tr
{
Pa(k, d, θ )Ûn(k)ÛH

n (k)
}
. (52)

C. UNIFIED SUBSPACE FITTING COST FUNCTION FAMILY
TheMUSICmethod is themost commonly used cost function
in the DPD framework for unknown waveform signals. In a
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single path propagation positioning application, the length
of a manifold vector is constrained to 1, and the existing
cost functions ignore the lengths of manifold vectors. Weiss
et al. simplified the Noise Subspace Projection to the Signal
Subspace Projection further for reducing the computational
complexity.

We pointed out that the length of a manifold vector can not
be ignored in a GDPD model in the presence of multipath
propagation, and proposed 8 cost functions which can be
used in a GDPD model. The eight cost functions are listed
in Table 1.

TABLE 1. Unified subspace fitting (USF) cost functions.

The USF framework is divided into the Signal Subspace
Fitting (SSF) methods and the Noise Subspace Fitting (NSF)
methods. If a column vector of the manifold matrix is adopted
to measure the relation of the array manifold space and
the signal/noise subspace, it is named 1D-Subspace Fitting
method, otherwise, it is namedMD-Subspace Fitting method.

V. ASYMPTOTIC DISTRIBUTION ANALYSIS
We will analysis the asymptotic distributions of the estima-
tion errors which are optimized by those cost functions in this
section.

For a 3D geolocation application, there are 3 + LN
unknown parameters of each emitter, and they are organized
in a vector which is denoted as

θ̂ =
[
p̂Te (x) p̂Te (y) p̂Te (z) α̂

T
1 α̂

T
2 . . . α̂

T
L

]
, [θ̂

T
1 , θ̂

T
2 , . . . , θ̂

T
3+LN ]

T , (53)

where

p̂e(ν) , [p̂e(ν, 1), p̂e(ν, 2), · · · , p̂e(ν,D)]T , (54)

α̂` , [α̂T`,1, α̂
T
`,1, · · · , α̂

T
`,N ]

T ,

α̂`,n , [α̂`,1,1, α̂`,1,2, · · · , α̂`,1,N ]T , (55)

ν ∈ {x, y, z}, and θ̂ i is aD×1 column vector, which represents
the ith unknown parameter vector.

A. ASYMPTOTIC DISTRIBUTION OF THE MD-WSSF
The cost function of MD-WSSF is defined in (44), and the
asymptotic distribution of an MD-WSSF cost function is
given by Theorem 1.
Theorem 1: Assume thatW(k), k = 1, 2, . . . ,K , are Her-

mitian positive definite matrices. θ̂ and θ0 are the optimal
solution and true values of programming (44). The normal-
ized estimation error,

√
J (θ̂ − θ0), is asymptotically normal

distributed with zero mean and covariance matrix 6, which
is given by:

6 = (C̄′′)−1Q(C̄′′)−1, (56)

C̄′′ = −2
K∑
k=1

Re
{
F(k, θ )� [13+LN ⊗ ET (k)]

}
, (57)

Q = 2
K∑
k=1

σ 2
k Re{F(k, θ )� [13+LN ⊗GT (k)]}, (58)

F(k, θ ) = AH
θ (k)P

⊥

A(k)Aθ (k), (59)

Aθ (k) =
[
Aθ1 (k),Aθ2 (k), . . . ,Aθ3+LN (k)

]
, (60)

Aθ i (k) =
[
∂a1(k)
∂θi(1)

,
∂a2(k)
∂θi(2)

, . . . ,
∂aD(k)
∂θi(D)

]
, (61)

G(k, θ ) , A+(k)Us(k)W(k)3s(k)3̃
−2

(k)

×W(k)Us(k)HA+H (k), (62)

E(k, θ ) , A+(k)Us(k)W(k)UH
s (k)A

+H (k), (63)

3s(k) , diag[λ1(k), λ2(k), . . . , λD(k)], (64)

3̃(k) , [3s(k)− σ 2
k I], (65)

where ad (k) is the dth column of A(k, θ ), λd (k) is the dth
eigenvalue of the covariance matrix R, σk is the noise stan-
dard deviation of frequencyωk . 13+LN is a (3+LN )×(3+LN )
matrix with all ones, I is a D× D identity matrix.

Proof: Since θ̂ the optimal solution of program-
ming (44), we haveC′(θ̂ ) = 0. The first order of Taylor series
expansion of C′(θ̂ ) around the true θ0 leads to

0 = C′(θ0)+ C′′(θ ξ )(θ̂ − θ0), (66)

where θ ξ is a point on the line segment joining θ0 and θ̂ .
Denote the limiting second order derivative of C(θ ) by

C̄′′(θ ) , lim
J→∞

C′′(θ ). (67)

Since

‖C′′(θ ξ )− C̄′′(θ )‖F
≤ ‖C′′(θ ξ )− C′′(θ0)‖F + ‖C′′(θ0)− C̄(θ0)‖F . (68)

Reference [36, Th. 1] proved that θ̂ obtained from (44) con-
verges w.p.1 to θ0 as J → ∞. Since C ′′(θ ) is continuous
by assumption, the first term on the right side ‖C′′(θ ξ ) −
C′′(θ0)‖F → 0 because of the limiting definition of (67).
Consequently, C′′(θ ξ ) → C̄′′(θ0) w.p.1. and we assume

that C̄′′(θ0) is invertible. For large J we then have

θ̂ − θ0 = −{C̄′′(θ0)}−1C′(θ0)+ o(C′(θ0)). (69)

The first order deviation of the cost function C′(θ0) has
been defined in (197), and the second order deviation C′′(θ0)
defined in (215).
It follows fromLemma 4 that for large number of snapshots

J , the estimated Ûs(k) = Us(k) + op(J−1/2), and we get the
ηth element of C′(θ0):

Cη(θ0) = 2
K∑
k=1

D∑
d=1

Re[wdH (k)UH
s (k)

×A+H (θ0, k)AH
η (θ0, k)P

⊥

A(θ0, k)ûs,d (k)]

+ op(J−1/2), (70)
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where ûs,d (k) is the d th column of Ûs(k). Define the signal
space estimation error vector ũs,d (k) , ûs,d (k)−us,d (k), and
notice that P⊥A(k, θ0)us,d (k) = 0, d = 1, 2, . . . ,D, the (70)
turns to be:

Cη(θ0) = 2
K∑
k=1

D∑
d=1

Re
[
wdH (k)UH

s (k)

×A+H (θ0, k)AH
η (θ0, k)

×P⊥A(θ0, k)ũs,d (k)
]
+ op(J−1/2). (71)

Since ũs,d (k) is asymptotically normal, the gradient,
C ′(θ0), is also asymptotically normal:

√
JC ′(θ0) ∈ AsN(0,Q), (72)

where AsN(·) means the Asymptotically Normal Distribu-
tion,and the ηth row and ξ th column element of matrix Q is
defined by:

Qηξ = lim
J→∞

J · E
{
CηCξ

}
. (73)

The normalized estimation error,
√
J (θ̂ − θ0), is asymp-

totically normal distributed with zero mean and covariance
matrix 6, which is given by:

6 = (C̄′′)−1Q(C̄′′)−1. (74)

Substitute (71) into (73) as:

Qηξ = 4 lim
J→∞

J · E


K∑

ki=1

D∑
di=1

Re
[
9ξ,di (k1)ũs,di (ki)

]

·

K∑
kj=1

D∑
dj=1

Re
[
9η,dj (kj)ũs,dj (kj)

], (75)

where 9ξ,di (k) , wH
di (k)U

H
s (k)A

+H (k)AH
ξ (k)P

⊥

A(k),
9η,dj (k) , wH

dj (k)U
H
s (k)A

+H (k)AH
η (k)P

⊥

A(k). Since

Re{x}Re{y} = 1
2Re(xy

T
+ xyH ),

(75) turns to be

Qηξ = 2 lim
J→∞

K∑
k=1

D∑
di=1

D∑
dj=1

×Re
{
J9ξ,di (k)E[ũs,di (k)ũ

T
s,dj (k)]9

T
η,dj (k)

+ J9ξ,di (k)E[ũs,di (k)ũ
T
s,dj (k)]9

H
η,dj (k)

}
. (76)

Apply Lemma 4 to (76)

Qηξ = 2
K∑
k=1

D∑
di=1

Re
{

−

D∑
dj=1
dj 6=di

[
3(λdi , λdj , k)9ξ,di (k)us,dj (k)u

T
s,di (k)9

T
η,dj (k)

]

+

D∑
d=1
d 6=di

[
3(λdi , λd , k)9ξ,di (k)us,d (k)u

H
s,d (k)9

H
η,dj (k)

]

+3(λdi , σ
2
k , k)9ξ,di (k)Un(k)UH

n (k)9
H
η,dj (k)

}
, (77)

where 3(λi, λj, k) ,
λi(k)λj(k)

[λi(k)−λj(k)]2
.

Since P⊥A(k)us,d (k) = 0, we get uTs,d (k)P
⊥T
A (k) = 0, and

uHs,d (k)P
⊥H
A (k) = 0. Equation (77) turns to be

Qηξ = 2
K∑
k=1

D∑
d=1

Re
{
3(λd , σ 2

k , k)9ξ,d (k)

Un(k)UH
n (k)9

H
η,d (k)

}
. (78)

Noting that

P⊥A(k)Un(k)UH
n (k) = P⊥A(k)[I− Us(k)UH

s (k)]

= P⊥A(k), (79)

Qηξ = 2
K∑
k=1

σ 2
k Re

{
tr[Dξη(k)G(k, θ )]

}
, (80)

where

Dξη(k) , AH
ξ (k)P

⊥

A(k)Aη(k); (81)

G(k, θ ) , A+(k)Us(k)W(k)3s(k)3̃
−2

(k)

×W(k)Us(k)HA+H (k); (82)

3s(k) , diag[λ1(k), λ2(k), . . . , λD(k)]; (83)

3̃(k) , 3s(k)− σ 2
k I. (84)

The matrix form of (80) is

Q = 2
K∑
k=1

σ 2
k Re{F(k, θ )� [13+LN ⊗GT (k)]}, (85)

where 13+LN is a (3+ LN )× (3+ LN ) matrix with all ones,
and F(k, θ ) is defined in (211)

Substitute Q(θ0) in (85) and C̄′′(θ0) in (215) into (69):
√
J (θ̂ − θ0) ∈ AsN(0,6), (86)

where 6 = (C̄′′)−1Q(C̄′′)−H .
Theorem 1 is the base theorem for the asymptotic dis-

tribution analysis of the SSF framework, and it gives the
asymptotic distribution performance of an MD-WSSF cost
function with O(J−1).

B. ASYMPTOTIC DISTRIBUTION OF MD-SSF
If the weights of the signal subspace are same, that isWk = I,
MD-WSSF degenerates to MD-SSF. Substitute Wk = I into
theorem 1, and get the asymptotic distribution of an MD-SSF
estimator from theorem 2.
Theorem 2: The MUSIC (Wk = I) estimation errors θ̂−θ

are asymptotically (for large J) joinly Gaussian distributed
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with zero means and the asymptotically covariances are given
in (56),(57),(58) with

G(k, θ ) = [A2(k)S(k)A2(k)]−1

+ σ 2[A2(k)SH (k)A2(k)S(k)A2(k)]−1, (87)

E(k, θ ) = [AH (k)A(k, θ)]−1. (88)

where A2(k) , AH (k)A(k, θ ).
Proof: The covariance of received signals is

A(k, θ )S(k)AH (k)+ σ 2
k I

= R(k)

= Us(k)3s(k)UH
s (k)+ Un(k)3n(k)UH

n (k)

= Us(k)3s(k)UH
s (k)+ σ

2
k Un(k)UH

n (k). (89)

Denote 3̃(k) , 3s(k)− σ 2
k I,

A(k, θ )S(k)AH (k) = Us(k)3̃(k)UH
s (k); (90)

3̃(k) = UH
s (k)A(k, θ )S(k)A

H (k)Us(k); (91)

[UH
s (k)A(k, θ )]

−13̃(k)[AH (k)Us(k)]−1 = S(k); (92)

AH (k)Us(k)3̃
−1

(k)UH
s (k)A(k, θ ) = S−1(k). (93)

3̃
−1

(k) = [AH (k)Us(k)]−1S−1(k)[UH
s (k)A(k, θ )]

−1
;

3̃
−2

(k) =
{
[AH (k)Us(k)]−1S−1(k)[UH

s (k)A(k, θ )]
−1
}2
;

(94)

AH (k)Us(k)3̃
−2

(k)UH
s (k)A(k, θ )

= S−1(k)[UH
s (k)A(k, θ )]

−1[AH(k)Us(k)]−1S−H(k);

= S−1(k)[AH (k)Us(k)UH
s (k)A(k, θ )]

−1S−H (k).

(95)

Since

PA(k)Us(k) = Us(k);

A(k, θ )[AH (k)A(k, θ )]−1AH (k)Us(k) = Us(k);

UH
s (k)A(k, θ )[A

H(k)A(k, θ)]−1AH(k)Us(k) = ID;

AH(k)Us(k)UHs(k)A(k, θ )=AH(k)A(k, θ).

(96)

substitute (96) into (95)

AH (k)Us(k)3̃
−2

(k)UH
s (k)A(k, θ )

= S−1(k)[AH (k)A(k, θ )]−1S−H (k). (97)

Notice that

3s(k)3̃
−2

(k)

= diag

{
λ1(k)

[λ1(k)−σ 2
k ]

2
,

λ2(k)

[λ2(k)−σ 2
k ]

2
, . . . ,

λD

[λD(k)−σ 2
k ]

2

}

= diag

[
1

λ1(k)− σ 2
k

,
1

λ2(k)− σ 2
k

, . . . ,
1

λD(k)− σ 2
k

]

+ diag

{
σ 2
k

[λ1(k)−σ 2
k ]

2
,

σ 2
k

[λ2(k)−σ 2
k ]

2
, . . . ,

σ 2
k

[λD(k)−σ 2
k ]

2

}
= 3̃

−1
(k)+ σ 2

k 3̃
−2

(k). (98)

Substitute (98) andW(k) = I into (62), and apply (93)(97)

G(k, θ )= [A2(k)]−1S−1(k)[A2(k)]−1

+ σ 2
k [A

2(k)]−1S−1(k)[A2(k)]−1S−H (k)[A2(k)]−1

= [A2(k)S(k)A2(k)]−1

+ σ 2
k [A

2(k)SH (k)A2(k)S(k)A2(k)]−1. (99)

where A2(k) , AH (k)A(k, θ). Substitute (96) into (210)

E(k, θ ) = A+(k)Us(k)UH
s (k)A

+H (k)

= A+(k)A+H (k)

= [AH (k)A(k, θ )]−1. (100)

From Theorem 1, the normalized estimation error,
√
J (θ̂ −

θ ), is asymptotically normal distributed with zero mean and
covariance matrix 6, which is given by:

6 = (C̄′′)−1Q(C̄′′)−1; (101)

C̄′′ = −2
K∑
k=1

Re
{
F(k, θ )� [13+LN ⊗ ET (k)]

}
; (102)

Q = 2
K∑
k=1

σ 2
k Re{F(k, θ)� [13+LN ⊗GT (k)]}. (103)

where G(k, θ ) is defined in (99), E(k, θ ) is defined in (100),
and F is defined in (59)

C. ASYMPTOTIC DISTRIBUTION OF DML
From another point of view, DML can be regarded as aWSSF
method from Lemma 1 in Appendix A .

Follow from Theorem 1, substitute the weight matrix of a
DML estimator W(k) = 3̃(k) into Theorem 1, and get the
asymptotic distribution of a DML estimator from Theorem 3.
Theorem 3: The ML (W(k) = 3̃(k)) estimation errors θ̂−

θ are asymptotically (for large J) joinly Gaussian distributed
with zero means and the asymptotically covariances are given
in (56),(57),(58) with

G(k, θ ) = S(k)+ σ 2
k [A

H (k)A(k, θ )]−1, (104)

E(k, θ ) = S(k). (105)

Proof: SubstituteW(k) = 3̃(k) into (62)

G(k, θ )=A+(k)Us(k)3̃(k)3s(k)3̃
−2

(k)3̃(k)Us(k)HA+H (k)

= A+(k)Us(k)3s(k)Us(k)HA+H (k)

= A+(k)Us(k)[3̃(k)+ σ 2
k I]Us(k)A+H (k)

= A+(k)Us(k)3̃(k)Us(k)A+H (k)

+ σ 2
k A
+(k)Us(k)Us(k)A+H (k)

= A+(k)Us(k)3̃(k)Us(k)A+H (k)

+ σ 2
k [A

H (k)A(k, θ )]−1. (106)

From (93), we get

AH (k)Us(k)3̃
−1

(k)UH
s (k)A(k, θ ) = S−1(k)

3̃
−1

(k) = [AH (k)Us(k)]−1S−1(k)[UH
s (k)A(k, θ )]

−1

3̃(k) = UH
s (k)A(k, θ )S(k)A

H (k)Us(k). (107)
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Substitute (107) into the first item of the right part in (106)

A+(k)Us(k)3̃(k)Us(k)A+H (k)

= A+(k)Us(k)UH
s (k)A(k, θ )S(k)

AH (k)Us(k)Us(k)A+H (k)

= S(k). (108)

Substitute (108) into (106)

G(k, θ ) = S(k)+ σ 2
k [A

H (k)A(k, θ )]−1. (109)

SubstituteW(k) = 3̃(k) into (210)

E(k, θ ) , A+(k)Us(k)3̃(k)UH
s (k)A

+H (k) = S(k). (110)

D. ASYMPTOTIC DISTRIBUTION OF 1D-NSF
Theorem 4: The asymptotically covariance of the estima-

tion errors of a 1D-NSF cost function is the same as that of a
1D-SSF cost function.

Proof: The cost function of 1D-NSF is

θ̂ = argmin ū1(θ )

=

K∑
k=1

tr
{
Pa(k, θ )Ûn(k)ÛH

n (k)
}

=

K∑
k=1

tr
{
Pa(k, θ )

[
I− Ûs(k)ÛH

s (k)
]}

=

K∑
k=1

tr {Pa(k, θ)}−
K∑
k=1

tr
{
Pa(k, θ)Ûs(k)ÛH

s (k)
}
. (111)

Since

tr{Pa(k, θ )}

= tr
{
a(k, θ)[aH (k, θ )a(k, θ )]−1aH (k, θ )

}
= tr

{
aH (k, θ )a(k, θ )[aH (k, θ )a(k, θ )]−1

}
= 1. (112)

Move the constant term in the (111)

θ̂ = argmax ũ1(θ ) =
K∑
k=1

tr
{
Pa(k, θ )Ûs(k)ÛH

s (k)
}
. (113)

It is the same as the programming (38) of 1D-SSF.

E. ASYMPTOTIC DISTRIBUTION OF MD-WNSF
The cost function of an MD-WNSF is given by

θ̂ = argmin ū3(θ )

=

K∑
k=1

D∑
d=1

wd
aHd (k, θ )Ûn(k)ÛH

n (k)ad (k, θ)

aHd (k, θ )ad (k, θ )
,

=

K∑
k=1

D∑
d=1

wd tr
{
Pa(k, θ , d)Ûn(k)ÛH

n (k)
}
,

=

K∑
k=1

{
D∑
d=1

wd tr{Pa(k, θ , d)}

−

D∑
d=1

wd tr
[
Pa(k, θ , d)Ûs(k)ÛH

s (k)
]}
, (114)

where Pa(k, θ , d) , aHd (k, θ )[a
H
d (k, θ )ad (k, θ )]

−1aHd (k, θ )
denotes the projection matrix of ad (k, θ ), and

tr{Pa(k, θ , d)}
= tr

{
ad (k, θ )[aHd (k, θ )ad (k, θ)]

−1aHd (k, θ )
}

= tr
{
aHd (k, θ )ad (k, θ )[a

H
d (k, θ )ad (k, θ )]

−1
}

= 1. (115)∑D
d=1 wd = 1, substitute (115) into (114), and move the

constant items in the (114):

θ̂ = argmax u3(θ )

=

K∑
k=1

{
D∑
d=1

wd tr
[
Pa(k, θ , d)Ûs(k)ÛH

s (k)
]}
. (116)

The cost function of 1D-SSF is given by

θ̂ = argmax s4(θ ) =
K∑
k=1

tr{Pa(k, θ )Ûs(k)ÛH
s (k)}. (117)

Replace A(k, θ ) by a(k, θ ) and set W(k) = ID in Theo-
rem 1, we will get the asymptotic distribution of a 1D-SSF
cost function. From (116), the asymptotic distribution of an
MD-NWNSF can be derived from the conclusion of 1D-SSF.
Theorem 5: The asymptotically covariance of the estima-

tion errors of cost function

θ̂d = argmax zd = Cd (θd ) (118)

is defined by

6d (θ∗d ) = C′′d (θ
∗
d )
−1Qd (θ∗d )C

′′
d (θ
∗
d )
−1. (119)

where C′d (θ
∗
d ) and C′′d (θ

∗
d ) is the first and second deriva-

tive the cost function Cd (θ∗d ) around the true θ
∗
d . Qd (θ∗d ) is

the covariance matrix of the random vector
√
JC′d (θ

∗
d ), and

C′di (θ
∗
d ) is independent with C

′
dj (θ
∗
d ) if i 6= j. The asymptoti-

cally covariance of the estimation errors of cost function

θ̂ = argmaxV =
D∑
i=1

wdCd (θd ) (120)

is given by

6v(θ∗) = V(θ∗)−1Q̄(θ∗)V(θ∗)−1, (121)

where

θ = [θT1 , θ
T
2 , . . . , θ

T
D]

T ,

V(θ∗) ,
D∑
d=1

wdV′′d (θ
∗
d ), (122)

Q̄(θ∗) ,
D∑
d=1

wd Q̄d (θ∗d ), (123)
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where the element at row d+Di and column d+Dj of matrix
V′′d (θ

∗
d ) is the element at row i and column j of matrixC

′′
d (θ
∗
d ),

and the other elements are 0. The element at row d +Di and
column d + Dj of matrix Q̄′′d (θ

∗
d ) is the element at row i and

column j of matrix Q′′d (θ
∗
d ), and the other elements are 0.

Proof: The first order derivative of V is

V′(θ∗) =
D∑
i=1

wdV′d (θ
∗), (124)

where the element at row d + Di of V′d (θ
∗) is the element at

row i of C′d (θ
∗
d ), and the other elements of V′d (θ

∗) are 0;
The second derivative of V is

V′′(θ ) =
D∑
i=1

wdV′′d (θ
∗), (125)

where the element at row d+Di and column d+Dj of matrix
V′′d (θ

∗) is the element at row i and column j of matrixC′′d (θ
∗
d ),

and the other elements are 0.
Since C′di (θdi ) is independent with C′dj (θ

∗
dj ) if di 6= dj,

the covariance matrix of the random vector
√
JV′(θ∗) is

Q̄(θ∗) =
D∑
i

wdQd (θ∗d ). (126)

The asymptotically covariance of the estimation errors of
cost function θ̂ = argmaxV =

∑D
i=1 wdCd (θ ) is

6v(θ∗) = V(θ∗)−1Q̄(θ∗)V(θ∗)−1, (127)

where V(θ∗) ,
∑D

d=1 wdC
′′
d (θ
∗
d ), Q̄(θ∗),

∑D
d=1 wdQd (θ∗d ).

The asymptotic distribution ofMD-WSSF has been studies
in Theorem 1, and that of a 1D-SSF can be derived easily from
the Theorem. Substitute items in the asymptotic distribution
analysis of a 1D-SSF cost function C′′d (θ

∗
d )
−1 and Qd (θ∗d )

into Theorem 5, we will get the asymptotic distribution of
an MD-WNSF cost function.

F. CRLB ANALYSIS
We studied the asymptotic distribution of MD-WSSF,
MD-SSF, DML, and MD-WNSF in Theorem 1, Theorem 2,
Theorem 3 and Theorem 5. The CRLB of the parameters
estimation is given in this section.
Theorem 6: The signal model is defined as (8). The CRLB

of the emitter position parameters and path attenuations is
given by

CRLB(θ)

=
σ 2

2

{
K∑
k=1

Re
{
F(k, θ )�

{
13+LN ⊗ [s(k)sH (k)]

}}}−1
,

(128)

where 13+LN is a (3+ LN )× (3+ LN ) matrix with all ones,
and

F(k, θ ) = AH
θ (k)P

⊥

A(k)Aθ (k), (129)

where Aθ (k) was defined in (60).

Proof: Stoica and Nehorai [34] proposed the CRLB
result in the application of direction finding, and Du et al. [1]
analyzed the CRLB of multiple emitters positioning in the
presence of multi-path propagation. We study the CRLB of
path attenuations and the position estimations in this section.
The unknown parameter vector for a multiple unknown
waveform signals positioning application is denoted as
θ̄ = [s̄(1), s̃(1), s̄(2), s̃(2), . . . , s̄(K ), s̃(K ), θ ]T , where s̄(k) =
[s̄1(k), s̄2(k), . . . , s̄D(k)] are real parts of D signals at fre-
quency k and s̃(k) are imaginary parts, θ is defined in (53).

Follow from the Appendix C, the Fisher Information
Matrix of the observed data is

Iθ̄ =



G(1) 0 · · · 0

--- V(1)
0 G(2) · · · 0

--- V(2)
...

...
. . .

...

---

...

0 0 · · · G(K )

--- V(K )
- - - - - - - - - - - - - - - - - - -- - - - - - - - -

---- - - - - - -
VH (1) VH (2) · · · VH (K )

--- Iθθ


(130)

,

[
G V
VH Iθθ

]
, (131)

where G(k, θ ) ,

[
Is̄s̄(k) Is̄s̃(k)
IHs̄s̃(k) Is̃s̃(k)

]
, V(k) =

[
Is̄θ (k)
Is̃θ (k)

]
. The

CRLB of θ is

CRLB−1(θ ) = Iθθ − VHG−1V, (132)

Since G is a block diagonal matrix,

VHG−1V =
K∑
k=1

VH (k)G−1(k)V(k). (133)

The second derivative of Log-likelihood function were
derived in Appendix C

Iθθ =
2
σ 2

K∑
k=1

Re
{
SH (k)AH

θ (k)Aθ (k)S(k)
}
; (134)

S(k) = I3+LN ⊗ S(k); (135)

S(k) = diag{s(k)}; (136)

V(k) =

 2
σ 2Re

{
AH (k)Aθ (k)S(k)

}
−

2
σ 2 Im

{
AH (k)Aθ (k)S(k)

}
; (137)

G(k, θ ) =
[
Re{H(k)} −Im{H(k)}
Im{H(k)} Re{H(k)}

]
; (138)

H(k) =
2
σ 2A

H (k)A(k, θ ). (139)

where I3+LN is a (3+ LN )× (3+ LN ) identify matrix. Since

G−1(k) =
[

Re{H−1(k)} Im{H−1(k)}
−Im{H−1(k)} Re{H−1(k)}

]
, (140)

VH (k)G−1(k)V(k)

=
2
σ 2Re

{
SH (k)AH

θ (k)A(k, θ)[A
2(k)]−1

AH (k)Aθ (k)S(k)
}
. (141)

6902 VOLUME 7, 2019



J. Du et al.: USF Framework and Its Performance Analysis for DPD in the Presence of Multipath Propagation

CRLB of θ is

CRLB−1(θ ) = Iθθ − VHG−1V,

=
2
σ 2Re

{
SH (k)AH

θ (k)P
⊥

A(k)Aθ (k)S(k)
}

=
2
σ 2Re

{
[AH
θ (k)P

⊥

A(k)Aθ (k)]

�

{
13+LN ⊗ [s(k)sH (k)]

}}
. (142)

where

P⊥A(k) = I− PA(k), (143)

PA(k) = A(k, θ )[AH (k)A(k, θ )]−1AH (k), (144)

F(k, θ ) , AH
θ (k)P

⊥

A(k)Aθ (k) (145)

and 13+LN is a (3 + LN ) × (3 + LN ) matrix with all ones.
Denote,

CRLB−1(θ )

=
2
σ 2

K∑
k=1

{
Re
{
F(k)�

{
13+LN ⊗ [s(k)sH (k)]

}}}
. (146)

We discussed the asymptotic distribution of MD-WSSF,
MD-NSF, MD-SSF and DML in this section, and the CRLB
of the unknown parameters was studied in addition.

VI. THE OPTIMAL WEIGHTS OF THE MD-WSSF
The asymptotic distribution properties were given in the
above Theorems. The DML and MD-SSF are regarded as
special cases in the WSF framework. The optimal weights
of a WSSF framework are optimized in this section.
Theorem 7: For all Hermitian matricesW(k)

6[3̃
2
(k)3−1s (k)] ≤ 6(W(k)), (147)

where 6 is defined in (56)
Proof: Set W(k) = 3̃

2
(k)3−1s (k), and substitute it into

Theorem 1:

E(k, θ )=A+(k)Us(k)3̃
2
(k)3−1s (k)UH

s (k)A
+H (k),

(148)

G(k, θ ) = A+(k)Us(k)3̃
2
(k)3−1s (k)Us(k)HA+H(k)

= E(k, θ ), (149)

6[3̃
2
(k)3−1s (k)] = (C̄′′)−1Q(C̄′′)−1, (150)

(151)

where

C̄′′ = −2
K∑
k=1

Re
{
F(k, θ )� [13+LN ⊗ ET (k)]

}
, (152)

Q = 2
K∑
k=1

σ 2
k Re{F(k, θ )� [13+LN ⊗ ET (k)]}. (153)

Since the noise is AWGN, denote σk = σ, k = 1, 2, . . . ,K ,

6[3̃
2
(k)3−1s (k)]

=
σ 2

2

{
K∑
k=1

Re {F(k, θ)� {13+LN ⊗H(k)}}

}−1
, (154)

where H(k) , [A+(k)Us(k)3̃
2
(k)3−1s (k)UH

s (k)A
+H (k)].

Follow from Lemma 5

6(W)

≥
σ 2

2

{
K∑
k=1

Re
{
F(k, θ )�{13+LN⊗[E(k)G−1(k)E(k)]}

}}−1
,

(155)

where

E(k, θ )G−1(k)E(k, θ )

= A+(k)Us(k)W(k)UH
s (k)A

+H (k)

× [A+(k)Us(k)W(k)3s(k)3̃
−2

(k)W(k)Us(k)HA+H (k)]−1

×A+(k)Us(k)W(k)UH
s (k)A

+H (k)

= A+(k)Us(k)3̃
2
(k)3−1s (k)UH

s (k)A
+H (k). (156)

Substitute (156) into (155)

6(W) ≥
σ 2

2

{
K∑
k=1

Re {F(k, θ )� {13+LN ⊗ [H(k)]}}

}−1
= 6[3̃

2
(k)3−1s (k)]. (157)

We can get the optimal weights of an MD-WSSF cost
function from Theorem 7. Substitute the optimal weights
Wk = 3̃

2
(k)3−1s (k) into the cost function of a MD-WSSF

estimator, and get the best asymptotic distribution perfor-
mance in the WSSF framework.

VII. NUMERICAL SIMULATIONS
Some numerical examples are presented in this section
to compare the performances of the discussed cost
functions. The simulation scenarios in this paper fol-
low from [1]. Three emitters are located at [0, 0, 0],
[100, 0, 0] and [0, 100, 0], and four receiving arrays are
located at [2200,−2100, 0], [3300, 600, 0], [3100,−700, 0],
and [2300, 2500, 0]. Four transponders are located at
[−1210, 100, 200],[100, 1120, 200], (−200,−1040, 200)
and [970, 160, 200] to transmit the signals. The layout of
elements in the scenario are given in FIGURE 7 (All are
measured in km).

Each receiving array is a Uniform Circular Array (UCA)
with eight antennas and radius of 30 m. The band width
is 8 kHz. The carrier frequency is 10 MHz. The complex-
valued signal frequency coefficients subject to ‖sd‖2F = 1.
The path attenuation coefficients are drawn from a uniform
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FIGURE 7. Scenario Layout.

distribution between 0 and 1. The SNR is defined in terms of
‘‘Post Processing SNR’’, which is given by

SNR ,
E
{∑K

k=1 ‖A(k)s(k)‖
2
F

}
Kσ 2 . (158)

Root-Mean-Squared Error (RMSE) of the estimated posi-
tion is given by

RMSE(pe) ,

√∑Ns
i=1 ‖p̂e − pe‖2F

NsD
, (159)

where Ns is the number of Monte-Carlo runs (Ns is set as
200 in this section),D is the number of emitters, pe are the real
emitter positions and p̂e are the estimated emitter positions.
An scalar quantity of the error covariance matrix corre-

sponding to RMSE is defined as

6(pe) ,

√
tr{6(pe)}

D
. (160)

A. SPATIAL SPECTRUM OF 1D-NSF AND 1D-MUSIC
We compare the spatial spectrum of a 1D-NSF cost func-
tion and that of a 1D-MUSIC. The 1D-MUSIC cost func-
tion was proposed by Weiss [2], and it was widely used in
the existing DPD methods. The 1D-MUSIC method maxi-
mizes the manifold projection length onto the signal subspace
(1D-SSP-MUSIC) or minimizes the manifold projection
length onto the noise subspace (1D-NSP-MUSIC) without
normalizations.

Because the cost function of a 1D-NSF and the cost func-
tion of a 1D-SSF are equivalent, only the spatial spectrum
of the 1D-NSF cost function is given. Since it is a three-
dimensional emitters position searching problem, the spatial
spectrum should be a three-dimensional function. Only a slice
of z = 0 in the three-dimensional spatial spectrum is given
for a more intuitive comparison (See FIGURE 8, FIGURE 9,
FIGURE 10, and FIGURE 11 ).

FIGURE 8. Spatial spectrum of 1D-SSP-MUSIC (SNR = 10dB).

FIGURE 9. Spatial spectrum of 1D-NSP-MUSIC (SNR = 10dB).

Since 1D-SSP-MUSIC and 1D-NSP-MUSIC do not nor-
malize the length of the manifold vector, and they can not
find emitters correctly. Three peaks can be clearly found in
the spatial spectrum of the 1D-NSFmethod, and each of them
corresponds to an emitter location.

B. STANDARD DEVIATIONS VERSUS SNR
We have got the theoretical asymptotic distribution perfor-
mances of DPD methods in section 4. The asymptotic perfor-
mances of them are compared in FIGURE 12.

The number of snapshots J is 1000 and the number
of frequency K is 32 in the numerical simulation. From
FIGURE 12, theMultiple Dimension-OptimalWeighted Sig-
nal Subspace Fitting (MD-OWSSF) cost function gets the
best performance than other cost functions. The Maximum
Likelihood (ML) cost function had a better performance than
the Multiple Dimension-Signal Subspace Fitting (MD-SSF)
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FIGURE 10. Spatial spectrum of 1D-NSP (SNR = 10dB).

FIGURE 11. Spatial spectrum of 1D-NSP (SNR = 10dB, 3D view).

FIGURE 12. Standard deviations of DPD cost functions versus SNR
(theoretical result).

cost function. The multiple dimension cost functions get
better performances than one dimension cost functions in the
numerical simulation.

C. STANDARD DEVIATIONS VERSUS NUMBER
OF SNAPSHOTS
The asymptotic distribution of DPD methods are analyzed in
this section. FIGURE 13 gives standard deviations of DPD
cost functions versus the number of snapshots.

FIGURE 13. Standard deviations of DPD cost functions versus the number
of snapshots (SNR = −30dB).

From FIGURE 13, the error standard deviations decrease
with the increase of the number of snapshots. Because of
the limitation of paper length, the theoretical comparison
analysis of different cost functions is not discussed here. The
numerical simulation results can only show the performance
comparison of those methods in this scenario, and the simula-
tion results can not apply to other scenarios. However, the the-
oretical asymptotic performances of those cost functions pro-
posed in this paper can get the asymptotic performances for
a given scenario.

D. PERFORMANCES AND THE NUMBER
OF RECEIVING STATIONS
In the positioning system described in this paper,
the more receiving stations, the higher positioning accuracy.
FIGURE 14 shows the performance comparison of different
cost functions when there is only one receiving stations (The
receiving station is placed at [2200,−2100, 0]km).
When there is only one receiving station, the positioning

performance decreases compared to that of the four receiving
stations in FIGURE 12. The OWSSF cost function is less
affected by the decrease of the number of receiving stations
than other cost functions.

E. PERFORMANCES AND THE NUMBER OF EMITTERS
When transponders and receiving stations are fixed, the fewer
emitter, the higher positioning accuracy. FIGURE 15 shows
the performance comparison of different cost functions
when there is only one emitter (The emitter is placed at
[0, 0, 0]km).
When there is only one emitter, performances of all cost

functions are improved, and the performances difference of
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FIGURE 14. Performances of one receiving station.

FIGURE 15. Performances of one emitter.

FIGURE 16. Performances of the minimum system.

those cost functions are not significant. It is because that
an MD-SSF method degenerates to a 1D-SSF method when
there is only one emitter.

F. PERFORMANCES OF THE MINIMUM SYSTEM
The minimum system consists of one emitter, three transpon-
ders and one receiving station. FIGURE 16 shows the
positioning performance of different cost functions for
the minimum system (Three transponders are placed at
[−1210, 100, 200], [200, 1120, 200], [−200,−1040, 200],
one emitter is placed at [0, 0, 0], and one receiving station
is placed at [2200,−2100, 0](km)).

As can be seen from FIGURE 16, all cost functions have
the same positioning performance at the minimum system,
and all are close to CRLB.

VIII. CONCLUSIONS
This paper attempts to collect the General Direct Position
Determination (GDPD) cost functions in a unified frame-
work. Some algebraic asymptotic distribution conclusions are
presented in the unified framework. The main contributions
of this paper are:

We analyzed the reason why the existing Direct Position
Determination (DPD) cost function can not be used in a
multipath propagation scenario, and proposed eight cost func-
tions for DPD model with multipath propagation. The eight
cost functions were collected in a Unified Subspace Fitting
(USF) framework for the General Direct Position Deter-
mine (GDPD) model. Furthermore, the USF framework was
divided into Signal Subspace Fitting (SSF) framework, and
Noise Subspace Fitting (NSF) framework. MD-MUSIC and
DML were studied as special cases of a Multiple Dimension-
Weighted Signal Subspace Fitting (MD-WSSF) method.

A unified derivation of the asymptotic distribution prop-
erties of MD-WSSF cost functions for GDPD model was
proposed. The second moment of the signal subspace eigen-
vectors were adopted to analysis the covariance matrix of
the estimations which were optimized by an MD-WSSF cost
function. Besides, the estimation covariance matrices of the
Deterministic Maximum Likelihood (DML) and the Multiple
Dimension-SSF (MD-SSF) were derived from the unified
derivation process. The Cramér-Rao Lower Bound (CRLB)
in presence of multi-path propagation was derived. It was
assumed that the noise levels were known in advance, but the
complex source signal waveforms and the path attenuations
were unknown in the model. Some algebraic Lemmas were
proposed and proved to assistant the derivation of the CRLB.
We compared the asymptotic distribution performances of
cost functions in the USF framework by numerical simu-
lations. The numerical simulation results showed that the
Multiple Dimension-Optimal Weighted Signal Subspace Fit-
ting (MD-OWSSF) cost function holds the best asymptotic
distribution performance in the USF framework.

We discussed the asymptotic distribution properties of dif-
ferent cost functions in this paper, but a theoretical analysis of
performance comparisons has not been done yet. We would
keep on investigating in the asymptotic distribution perfor-
mance comparisons in the future work.

6906 VOLUME 7, 2019



J. Du et al.: USF Framework and Its Performance Analysis for DPD in the Presence of Multipath Propagation

APPENDIX A
BASIC LEMMAS
We introduce some Lemmas firstly:
Lemma 1: The Deterministic ML method has the same

asymptotic distribution as the following estimator:

θ̂ = argmin m̄(θ ) =
K∑
k=1

‖Ûs(k)3̃
1
2
k − A(k, θ)T(k)‖2F

= argmaxm(θ ) =
K∑
k=1

tr{PA(k, θ)Ûs(k)3̃(k)ÛH
s (k)},

(161)

where 3̃(k) = 3s(k)− σ 2
k I.

Proof: The Deterministic ML criterion function is

θ̂ = argmax s5(θ ) =
K∑
k=1

tr{PA(k, θ )R̂(k)}, (162)

where

R̂(k) = Ûs(k)3̂s(k)ÛH
s (k)+ Ûn(k)3̂n(k)ÛH

n (k). (163)

Since 3̂n(k) can be replaced by σ 2
k I without affecting the

asymptotic properties [34]. (163) turns to be

R̂(k) = Ûs(k)3̂s(k)ÛH
s (k)+ σ

2
k Ûn(k)ÛH

n (k)

= Ûs(k)3̂s(k)ÛH
s (k)+ σ

2
k [I− Ûs(k)ÛH

s (k)]

= σ 2
k I+ Ûs(k)[3̂s(k)− σ 2

k I]Û
H
s (k). (164)

Substitute (164) into (162)

θ̂ = argmax s5(θ ) =
K∑
k=1

tr{PA(k, θ )σ 2
k

+PA(k, θ )Ûs(k)[3̂s(k)− σ 2
k I]Û

H
s (k)}, (165)

and notice that the first item in the cost function:

tr{PA(k, θ )σ 2
k }

= σ 2
k tr{A(k, θ )[A

H (k, θ )A(k, θ )]−1AH (k, θ )}

= σ 2
k tr{A

H (k, θ )A(k, θ )[AH (k, θ )A(k, θ )]−1}

= σ 2
k D, (166)

is a constant item, and remove it from the objective function

θ̂ = argmaxm(θ )

=

K∑
k=1

tr{PA(k, θ )Ûs(k)[3̂s(k)− σ 2
k I]Û

H
s (k)}. (167)

By [36, Lemma 5], replacement of the weighting matrix
Ŵ(k) = 3̂s(k) − σ 2

k I by W(k) = 3s(k) − σ 2
k I does not

change the asymptotic distribution of the estimate.
Lemma 2: A is a complex matrix with size of N × N, and

C is a Hermitian matrix with size of N × N, then

tr[(A+ AH )C] = 2Re{tr[AC]}. (168)

Proof: Denote an is the nth row of A, cn is the nth
column of C, and c̄n is the nth row of C.

A =


a1
a2
...

aN

, (169)

C =
[
c1 c2 · · · cN

]
=


c̄1
c̄2
...

c̄N

. (170)

The left term of (168) is expanded as

tr[(A+ AH )C] = tr[AC]+ tr[AHC], (171)

where

tr[AC] =
N∑
n=1

ancn, (172)

tr[AHC] = tr[CAH ]

=

N∑
n=1

(c̄naHn ). (173)

Since C is a Hermitian matrix, c̄n = cHn .

tr[AHC] =
N∑
n=1

(c̄naHn ) =
N∑
n=1

(cHn a
H
n ) = {tr[AC]}

H . (174)

Substitute (174) into (171)

tr[AC]+ tr[AHC] = tr[AC]+ {tr[AC]}H

= 2Re{tr[AC]}. (175)

Lemma 3: A,B,C are real symmetric matrices. Denote

U =
[
A B
B C

]
, (176)

Matrix C− (BA−1B) is a semi-definite matrix, if U is a semi-
definite matrix,

Proof: Denote

V =
[
I 0
0 C− BA−1B

]
. (177)

Since[
A−

1
2 0

−BA−1 I

][
A B
B C

][
A−

1
2 0

−BA−1 I

]T
=

[
I 0
0 C− BA−1B

]
, (178)

U and V are congruence. If U is a semi-definite matrix, V is
a semi-definite matrix too. ∀x ∈ R

x(C− BA−1B)xT

=
[
0 x

] [ I 0
0 C− BA−1B

] [
0
xT

]
. (179)

SinceV is a semi-definite matrix, x(C−BA−1B)xT ≥ 0, and
C− BA−1B is a semi-definite matrix
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APPENDIX B
DERIVATIVES OF AN MD-WSSF COST FUNCTION
The cost function of an MD-WSSF method is defined as

θ̂ = argmaxC7(θ )

=

K∑
k=1

tr{PA(k, θ )Ûs(k)W(k)ÛH
s (k)}. (180)

A. THE FIRST DERIVATIVES OF A MANIFOLD MATRIX
The unknown parameter vector is defined as (53). Denote θη
as the ηth element of θ , The first order deviation of A(k, θ ) is
denoted by

Aη(k) ,
∂A(k, θ )
∂θη

. (181)

If θη is an position real parameter

∂A(k, θ )
∂θη

= Ã(k, θ )
∂V(k, θ )
∂θη

α, (182)

where

∂V(k, θ )
∂θη

= IN ⊗

[
0, . . . ,

∂V̄d (k, θ )
∂θη

, . . . , 0

]
,

∂V̄d (k, θ )
∂θη

= diag
[
∂e−iωk τ̄1d

∂θη
,
∂e−iωk τ̄2d

∂θη
, . . . ,

∂e−iωk τ̄Ld

∂θη

]
.

If θη = αd,`,n is a path attenuation parameter with complex
value which represents to the path attenuation from emitter d ,
relayed by transponder `, to the receiver array n.

∂A(k, θ )
∂θη

= A(k, θ)V(k, θ )
∂α

∂θη
, (183)

where
∂α

∂θη
= Id`n, (184)

where the ith row, jth column of Id`n is defined as

Id`n(i, j) =
{
1 i = (n− 1)LD+ (d − 1)L + `, j = d;
0 else.

(185)

B. THE FIRST DERIVATIVES OF A MANIFOLD VECTOR
The d th column of A(k, θ ) is

ad (k, θ ) = Ã(k, θ )Vd (k, θ)αd , (186)

whereVd (k, θ)=IN⊗V̄d (k, θ ),αd = [αTd1,α
T
d2, . . . ,α

T
dN ]

T .
If θη = pd,ζ are position parameters (ζ ∈ {1, 2, 3} which

represents coordinates x, y, z) of emitter d ,
∂ad (k, θ )
∂pd,ζ

= Ã(k, θ )
∂Vd (k, θ )
∂pd,ζ

αd , (187)

where
∂Vd (k, θ)
∂pd,ζ

= IN ⊗
∂V̄d (k, θ )
∂pd,ζ

, (188)

∂V̄d (k, θ )
∂pd,ζ

= diag
{[
∂e−iωk τ̄1,d

∂pd,ζ
,
∂e−iωk τ̄2,d

∂pd,ζ
, . . . ,

∂e−iωk τ̄L,d

∂pd,ζ

]}
.

(189)

where τ̄`,d is the propagation delay from the emitter d to the
transponder `, and η = 3(ζ − 1)+ d .
If θη = αd,`,n are path attenuation parameters

∂ad
∂αd,`,n

= ÃVd
∂αd

∂αd,`,n
, (190)

where
∂αd

∂αd,`,n
= [0, . . . , 1︸ ︷︷ ︸

(n−1)L+`

, 0, . . . , 0]T , (191)

and η = 3+ (n− 1)L + `.

C. THE FIRST DERIVATIVES OF THE PROJECTION MATRIX
Denote the first partial derivative of the projection matrix
PA(k, θ ) with respect to independent variable θη by

PAη(k, θ ) ,
∂PA(k, θ )
∂θη

=
∂A(k, θ )
∂θη

A(k, θ )+ + A(k, θ )
∂A(k, θ )+

∂θη
,

(192)

The first order derivative of the pseudo-inverse of A(k, θ ):

∂A(k, θ )+

∂θη
= [A(k, θ )HA(k, θ)]−1AH

η (k, θ )P
⊥

A(k, θ )

−A(k, θ )+Aη(k, θ )A(k, θ )+. (193)

Substitute (193) into (192):

PAη(k, θ ) = A(k, θ )+HAH
η (k, θ )P

⊥

A(k, θ )

+P⊥A(k, θ )Aη(k, θ )A(k, θ )
+. (194)

D. THE FIRST DERIVATIVE OF THE COST FUNCTION
The cost function is defined in (180). Denote Cη as the ηth
component of the gradient C ′(θ0) and θ0 are the true values
of the unknown parameters:

Cη =
K∑
k=1

Cη(k, θ ), (195)

where

Cη(k, θ ) = tr{PAη(k, θ )Ûs(k)W(k)ÛH
s (k)}. (196)

Substitute (194) into (196)

Cη(k, θ ) = 2Re
{
tr
[
W(k)ÛH

s (k)A(k, θ )
+H

AH
η (k, θ )P

⊥

A(k, θ )Ûs(k)
]}
. (197)

E. THE SECOND DERIVATIVE OF A PROJECTION MATRIX

∂2PA(k, θ )
∂θη∂θξ

=

{
PA
⊥
ξ (k, θ )Aη(k, θ )A

+(k, θ)

+PA
⊥(k, θ )Aηξ (k, θ )A+(k, θ )

+PA
⊥(k, θ )Aη(k, θ )A+ξ (k, θ)

}
+{· · · }

H , (198)
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where {· · · }H means that the same expression appears again
with complex conjugate and transpose. and

Aη(k, θ ) ,
∂A(k, θ )
∂θη

;

Aξ (k, θ ) ,
∂A(k, θ )
∂θξ

;

Aηξ (k, θ ) ,
∂2A(k, θ )
∂θη∂θξ

;

A+ξ (k, θ ) ,
∂A+(k, θ )
∂θξ

;

PA
⊥
ξ (k, θ ) ,

∂P⊥A(k, θ )
∂θξ

. (199)

Substitute (193) and (194) into (198):

∂2PA(k, θ )
∂θη∂θξ

=

{
−PA

⊥(k, θ )Aξ (k, θ )A+(k, θ)Aη(k, θ )A+(k, θ )

− A+H (k, θ )AH
ξ (k, θ )PA

⊥(k, θ )Aη(k, θ)A+(k, θ )

+ PA
⊥(k, θ )Aηξ (k, θ )A+(k, θ )

+ PA
⊥(k, θ )Aη(k, θ )[A2(k, θ )]−1AH

ξ (k, θ )PA
⊥(k, θ )

−PA
⊥(k, θ )Aη(k, θ)A+(k, θ )Aξ (k, θ )A+(k, θ )

}
+ {· · · }

H . (200)

F. THE SECOND DERIVATIVE OF THE MD-WSSF
COST FUNCTION
The element in the ηth row ξ th column ofC′′, evaluated in θ0
is given by

Cηξ (θ0) = lim
N→∞

K∑
k=1

tr
{
∂2PA(k, θ0)
∂θη∂θξ

Ûs(k)W(k)Ûs(k)H
}
.

(201)

Apply (200) to (201) and PA
⊥Us(k) = 0:

Cηξ =
K∑
k=1

tr
{
∂2PA(k, θ0)
∂θη∂θξ

Us(k)W(k)Us(k)H
}

= −

K∑
k=1

tr
{
[AH
ξ (k, θ )PA

⊥(k, θ)Aη(k, θ )

+AH
η (k, θ )PA

⊥(k, θ )Aξ (k, θ)]

A+(k, θ )Us(k)W(k)UH
s (k)A

+H (k, θ )
}
. (202)

Apply Lemma 2 in Appendix B

Cηξ = −2
K∑
k=1

Re
{
tr
[
AH
ξ (k, θ )PA

⊥(k, θ )Aη(k, θ )

A+(k, θ)Us(k)W(k)UH
s (k)A

+H (k, θ )
]}
. (203)

The second derivative matrix of C(k, θ ) is denoted as

C′′(k, θ )=

 C′′1,1(k, θ ) · · · C′′1,3+LN (k, θ )
...

. . .
...

C′′3+LN ,1(k, θ ) · · · C′′3+LN ,3+LN (k, θ )

,
(204)

where

C′′i,j(k, θ ) ,

[
∂C(k, θ)

∂θTi

]H
∂C(k, θ)

∂θTj
. (205)

Denote ξ is an unknown parameter in θ i corresponding to the
βth emitter, and η is an unknown parameter in θ j correspond-
ing to the γ th emitter. We have

Aξ (k, θ ) = [0, · · · , 0,
∂aβ (k, θ )
∂ξ︸ ︷︷ ︸

i columns

, 0, · · · , 0]; (206)

Aη(k, θ ) = [0, · · · , 0,
∂aγ (k, θ )
∂η︸ ︷︷ ︸

j columns

, 0, · · · , 0]. (207)

where aβ (k, θ ) and aγ (k, θ) are the βth and the γ th columns
of A(k, θ). Denote

Dξ,η(k, θ) , AH
ξ (k, θ )PA

⊥(k, θ )Aη(k, θ )

=


0 0 0
0 dβ,γi,j (k, θ ) 0
0 0 0

, (208)

where dβγi,j (k, θ ) =
∂aHβ (k,θ )
∂ξ

PA
⊥ ∂aγ (k,θ )

∂η
. Dξη(k, θ ) is a

matrix with all zeros except the element in the row i column j.
Substitute (208) into (203), and denote the βth row γ th
column element of Ci,j(k, θ) as C

β,γ
i,j (k, θ).

Cξ,η = Cβγi,j = −2
K∑
k=1

Re
[
tr
{
Dβγi,j (k, θ )E(k, θ )

}]
=

K∑
k=1

Re
[
dβ,γi,j (k, θ )eγ,β (k, θ )

]
, (209)

where eγ,β (k, θ ) the element at row γ column β of E(k, θ ),
and

E(k, θ ) , A+(k, θ )Us(k)W(k)UH
s (k)A

+H (k). (210)

where

F(k, θ ) = AH
θ (k, θ )PA

⊥(k, θ )Aθ (k, θ ). (211)

Matrix F is denoted as

F(k, θ ) =

 F1,1(k, θ ) · · · F1,3+LN (k, θ )
...

. . .
...

F3+LN ,1(k, θ ) · · · F3+LN ,3+LN (k, θ )

,
(212)
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where the ith row j column block matrix Fi,j(k, θ ) is defined
as

Fi,j(k, θ ) ,
[
Aθ i (k, θ )

]H PA
⊥(k, θ )Aθ j (k, θ ), (213)

where Aθ i (k, θ ) and Aθ j (k, θ ) are defined in (206) and (207);
the βth row γ th column element of Fi,j(k, θ ) is denoted
as f β,γi,j (k, θ ). Since (213) and (208), we get f β,γi,j (k, θ ) =

dβ,γi,j (k, θ ). Substitute (213) into (209)

Cξ,η(k, θ) = −2Re
[
f β,γi,j (k, θ )eγ,β (k, θ )

]
, (214)

Make (214) into matrix form

C′′(k, θ) = −2Re
{
F(k, θ )� [13+LN ⊗ ET (k, θ )]

}
, (215)

where � represents the Hadamard-Schur product, ⊗ is the
Kronecker product, 13+LN is a (3 + LN ) × (3 + LN ) matrix
with all ones.

G. THE SECOND DERIVATIVE OF MD-NSF
The element in the ηth row ξ th column ofC′′, evaluated in θ0
is given by

Cηξ (θ0) = lim
N→∞

K∑
k=1

tr
{
∂2PA(k, θ0)
∂θη∂θξ

Ûn(k)Ûn(k)H
}
. (216)

Apply (200) to (216) and AH (k, θ0)Un(k) = 0:

Cηξ =
K∑
k=1

tr
{
∂2PA(k, θ0)
∂θη∂θξ

Un(k)Un(k)H
}

=

K∑
k=1

tr
{
[Aη(k, θ0)E(k, θ0)AH

ξ (k, θ0)

+Aξ (k, θ0)E(k, θ0)AH
η (k, θ0)]

PA
⊥(k, θ0)Un(k)UH

n (k)PA
⊥(k, θ0)

}
. (217)

where E(k, θ0) , [A(k, θ0)HA(k, θ0)]−1. Since

PA
⊥(k, θ0)Un(k) = [I− PA(k, θ0)]Un(k)

= Un(k), (218)

PA
⊥(k, θ0)Un(k)UH

n (k)PA
⊥(k, θ0) = Un(k)UH

n (k), (219)

apply Lemma 2 in Appendix B, (217) turns

Cηξ = 2
K∑
k=1

Re
{
tr
{
Aη(k, θ0)E(k, θ0)AH

ξ (k, θ0)

Un(k)UH
n (k)

}}
= 2

K∑
k=1

Re
{
tr
{
AH
ξ (k, θ0)Un(k, θ0)UH

n (k)Aη(k, θ0)

E(k, θ0)}} , (220)

Make (220) into matrix from:

C′′(k, θ0) = −2Re
{
F(k, θ0)� [13+LN ⊗ ET (k, θ0)]

}
,

(221)

where

F(k, θ0) = AH
θ (k, θ0)Un(k)UH

n (k)Aθ (k, θ0), (222)

E(k, θ0) = [AH (k, θ0)A(k, θ0)]−1. (223)

APPENDIX C
FISHER INFORMATION MATRIX
The log-likelihood function of the observations is

log[p(r|θ̄ )] = KMN log(πσ 2)

+
1
σ 2

K∑
k=1

||r(k)− A(k, θ )s(k)||2. (224)

Move the constant item

L = −
1
σ 2

K∑
k=1

[r(k)− A(k, θ )s(k)]H [r(k)− A(k, θ )s(k)].

(225)

A. THE FIRST DERIVATIVES OF THE LOG-LIKELIHOOD
FUNCTION
If θ̄i is a real value parameter, the first derivative of the log
likelihood function is:

∂L

∂θ̄i
=

1
σ 2

K∑
k=1

{
∂[A(k, θ)s(k)]H

∂θ̄i
e(k, θ )

+eH (k, θ )
∂[A(k, θ )s(k)]

∂θ̄i

}
=

2
σ 2

K∑
k=1

Re
{
∂[A(k, θ )s(k)]H

∂θ̄i
e(k, θ )

}
, (226)

where e(k, θ ) = r(k)− A(k, θ )s(k).
If θ̄j is an imaginary value parameter, the first derivative of

the log likelihood function is

∂L

∂θ̄j
=

1
σ 2

K∑
k=1

{
−i
∂[A(k, θ )s(k)]H

∂θ̄j
e(k, θ )

+ ieH (k, θ)
∂[A(k, θ )s(k)]

∂θ̄j

}

=
2
σ 2

K∑
k=1

Im

{
∂[A(k, θ )s(k)]H

∂θ̄j
e(k, θ )

}
, (227)

B. THE SECOND DERIVATIVES OF THE LOG-LIKELIHOOD
FUNCTION
Notice the following results:

Re(x)Re(yT ) =
1
2
[Re(xyT )+ Re(xyH )];

Im(x)Im(yT ) = −
1
2
[Re(xyT )− Re(xyH )];

Re(x)Im(yT ) =
1
2
[Im(xyT )− Im(xyH )].

(228)
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If θ̄i and θ̄j are real parameters, the second derivatives are:

∂2 L
∂θi∂θj

=
4
σ 4

K∑
k1=1

K∑
k2=1

Re
{
∂[A(k1)s(k1)]H

∂θ̄i
e(k1)

}

×Re

{
∂[A(k2)s(k2)]H

∂θ̄j
e(k2)

}T

=
2
σ 4

K∑
k1=1

K∑
k2=1{

Re
{
∂[A(k1)s(k1)]H

∂θ̄i
[e(k1)eT (k2)]

∂[A(k2)s(k2)]HT

∂θ̄j

}

+Re

{
∂[A(k1)s(k1)]H

∂θ̄i
[e(k1)eH (k2)]

∂[A(k2)s(k2)]
∂θ̄j

}}
.

(229)

The fisher information matrix corresponding to θi and θj
which are real value parameters

Iij=E

{
∂2 L

∂θ̄i∂θ̄j

}

=
2
σ 4

K∑
k1=1

K∑
k2=1

×

{
Re

{
∂[A(k1)s(k1)]H

∂θ̄i
E{e(k1)eT(k2)}

∂[A(k2)s(k2)]HT

∂θ̄j

}

+Re

{
∂[A(k1)s(k1)]H

∂θ̄i
E{e(k1)eH(k2)}

∂[A(k2)s(k2)]
∂θ̄j

}}
.

(230)

Since E{e(k1)eT (k2)} = 0,∀k1, k2; E{e(k1)e(k2)H } =
0,∀k1 6= k2, and E{e(k, θ )eH (k, θ )} = σ 2I

Iij =
2
σ 2

K∑
k=1

Re

{
∂[A(k, θ )s(k)]H

∂θ̄i

∂[A(k, θ )s(k)]
∂θ̄j

}
. (231)

If θ̄i and θ̄j are imaginary parameters, the second deriva-
tives are:

∂2 L

∂θ̄i∂θ̄j
=

2
σ 4

K∑
k1=1

K∑
k2=1

×

{
−Re

{
∂[A(k1)s(k1)]H

∂θ̄i
e(k1)eT (k2)

∂[A(k2)s(k2)]HT

∂θ̄j

}

+Re

{
∂[A(k1)s(k1)]H

∂θ̄i
e(k1)eH (k2)

∂[A(k2)s(k2)]
∂θ̄j

}}
.

(232)

The fisher information matrix corresponding to θ̄i and θ̄j
which are imaginary value parameters:

Iij =
2
σ 2

K∑
k=1

Re

{
∂[A(k, θ )s(k)]H

∂θ̄i

∂[A(k, θ )s(k)]
∂θ̄j

}
. (233)

If θ̄i is a real value parameter and θ̄j is an imaginary parameter,
the second derivative are:

∂2 L

∂θ̄i∂θ̄j

=
2
σ 4

K∑
k1=1

K∑
k2=1

×

{
Im

{
∂[A(k1)s(k1)]H

∂θ̄i
e(k1)eT (k2)

∂[A(k2)s(k2)]HT

∂θ̄j

}

−Im

{
∂[A(k1)s(k1)]H

∂θ̄i
e(k1)eH (k2)

∂[A(k2)s(k2)]
∂θ̄j

}}
.

(234)

The fisher information matrix corresponding to θ̄i and θ̄j
which θ̄i is a real parameter and θ̄j is an imaginary value
parameter:

Iij = −
2
σ 2

K∑
k=1

Im

{
∂[A(k, θ )s(k)]H

∂θ̄i

∂[A(k, θ )s(k)]
∂θ̄j

}
.

(235)

C. ELEMENTS OF THE FISHER INFORMATION MATRIX

Iθθ , E
{
∂L
∂θ

H ∂L
∂θ

}
=

2
σ 2

K∑
k=1

Re
{
∂[A(k, θ )s(k)]H

∂θ

∂[A(k, θ )s(k)]
∂θ

}

=
2
σ 2

K∑
k=1

Re
{
SH (k)AH

θ (k, θ )Aθ (k, θ )S(k)
}
, (236)

where S(k) = I3+LN ⊗ S(k), S(k) = diag{s(k)}.

Is̄θ (k) , E
{
∂L
∂ s̄(k)

H ∂L
∂θ

}
=

2
σ 2

K∑
k=1

Re
{
∂[A(k, θ )s(k)]H

∂ s̄(k)
∂[A(k, θ )s(k)]

∂θ

}

=
2
σ 2

K∑
k=1

Re
{
AH (k, θ )Aθ (k, θ )S(k)

}
, (237)

Is̃θ (k) , E
{
∂L
∂ s̃(k)

H ∂L
∂θ

}
= −

2
σ 2

K∑
k=1

Im
{
∂[A(k, θ )s(k)]H

∂[s̃(k)i]
∂[A(k, θ )s(k)]

∂θ

}

= −
2
σ 2

K∑
k=1

Im
{
AH (k, θ)Aθ (k, θ )S(k)

}
, (238)

Is̄s̄(k) , E
{
∂L
∂ s̄(k)

H ∂L
∂ s̄(k)

}
=

2
σ 2

K∑
k=1

Re
{
∂[A(k, θ )s(k)]H

∂ s̄(k)
∂[A(k, θ )s(k)]

∂ s̄(k)

}

=
2
σ 2

K∑
k=1

Re
{
AH (k, θ )A(k, θ )

}
, (239)
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Is̄s̃(k) , E
{
∂L
∂ s̄(k)

H ∂L
∂ s̃(k)

}
= −

2
σ 2

K∑
k=1

Im
{
∂[A(k, θ )s(k)]H

∂ s̄(k)
∂[A(k, θ )s(k)]
∂[s̃(k)i]

}

= −
2
σ 2

K∑
k=1

Im
{
AH (k, θ)A(k, θ )

}
, (240)

Is̃s̃(k) , E
{
∂L
∂ s̃(k)

H ∂L
∂ s̃(k)

}
=

2
σ 2

K∑
k=1

Re
{
∂[A(k, θ )s(k)]H

∂[s̃(k)i]
∂[A(k)s(k)]
∂[s̃(k)i]

}

=
2
σ 2

K∑
k=1

Re
{
AH (k)A(k, θ )

}
, (241)

The Fisher Information Matrix is

Iθ̄ =



G(1) 0 · · · 0

--- V(1)
0 G(2) · · · 0

--- V(2)
...

...
. . .

...

---

...

0 0 · · · G(K )

--- V(K )
- - - - - - - - - - - - - - - - - - -- - - - - - - - -

---- - - - - - -
VH (1) VH (2) · · · VH (K )

--- Iθθ


, (242)

where G(k, θ ) ,
[
Is̄s̄(k) Is̄s̃(k)
Is̃s̄(k) Is̃s̃(k)

]
, V(k) ,

[
Is̄θ (k)
Is̃θ (k)

]
.

APPENDIX D
LEMMAS FOR ASYMPTOTIC ANALYSIS
A. COVARIANCE OF THE EIGENVECTOR ESTIMATIONS
Lemma 4: Denote that R is the covariance matrix of

received data. The columns of U is the eigenvectors of R.
Us = [us(1),us(2), . . . ,us(D)] is consisted by the eigenvec-
tors corresponding to the D signals. ûs(d) is a estimation
of us(d) from R̂. The eigenvector estimation errors ũs(d) =
û(d)− us(d) are asymptotically (for large N , where N is the
number of snapshots) jointly Gaussian distributed with zero
means and covariance matrices given by

E{[ûs(di)− us(di)][ûs(dj)− us(dj)]H }

=
λs(di)
N


D∑
d=1
d 6=di

λs(d)
[λs(d)− λs(di)]2

us(d)uHs (d)

+
σ 2

[σ 2 − λs(di)]2
UnUH

n

 δdi,dj + o(N−1), (243)

E
{
[ûs(di)− us(di)][ûs(dj)− us(dj)]T

}
= −

λs(di)λs(dj)
N [λs(di)− λs(dj)]2

us(dj)uTs (di)(1− δdi,dj )+ o(N
−1),

(244)

where λs(d) is the dth eigenvalue. σ is the noise standard
deviation, and δdi,dj is the Kronecker delta (=1 if di = dj,

and =0 if di 6= dj). Un is consisted by the eigenvectors
corresponding to the noise.

Proof: This Lemma was proposed and had been proved
in [27], [38], [39], and [46]–[50] .

APPENDIX E
LEMMAS FOR THE OPTIMAL WEIGHTS OF
WEIGHTED SIGNAL SUBSPACE FITTING
Lemma 5: Let Ak , Bk and Ck be m × m (Hermitian)

Positive semi-definite matrices (Bk can be Hermitian only).
Denote 1 is a n × n square matrix with all ones. Then,
assuming that the inverses appearing below exist, it holds that{

K∑
k=1

Re[Ak � (1⊗ Bk )]

}−1 { K∑
k=1

Re[Ak � (1⊗ Ck )]

}

×

{
K∑
k=1

Re[Ak � (1⊗ Bk )]

}−1

≥

{
K∑
k=1

Re
{
Ak � [1⊗ (BkC−1k Bk )]

}}−1
. (245)

Proof: Notice that

Dk =

[
Ak Ak
Ak Ak

]
=

[
Im
Im

]
A
[
Im Im

]
, (246)

where Im is an m× m identity matrix. Denote

Fk =
[
1⊗ Ck 12 ⊗ Bk
12 ⊗ Bk 13 ⊗ (BkC−1k Bk )

]
=

[
Imn

1⊗ (BkC−1k )

]
(1⊗ Ck )

[
Imn 1⊗ (C−1k Bk )

]
,

(247)

where Imn is an mn × mn identity matrix. Since Ck and Bk
are Hermitian matrices,Dk and Fk are semi-definite matrices.
Follow from [34, Lemma A.1] (Let Dk ,Fk ∈ Cm×m be two
(Hermitian) positive semi-definite matrices. Then the matrix
Dk � Fk is positive semi-definite too.), and the fact that
Re{Dk � Fk} ≥ 0 if Dk � Fk ≥ 0. Sum Re{Dk � Fk} over
k , we get

K∑
k=1

Re(Dk � Fk ) =
[
MAC MAB
MAB MBCB

]
≥ 0. (248)

where

MAC ,
K∑
k=1

Re[Ak � (1⊗ Ck )], (249)

MAB ,
K∑
k=1

Re[Ak � (12 ⊗ Bk )], (250)

MBCB ,
K∑
k=1

Re[Ak � (13 ⊗ BkC−1k Bk )]. (251)
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Since 1m = Nm−11, (248) turns to be
K∑
k=1

Re(Dk � Fk ) =
[
MAC nM̄AB

nM̄AB n2 ¯MBCB

]
≥ 0. (252)

where

M̄AB ,
K∑
k=1

Re[Ak � (12 ⊗ Bk )], (253)

¯MBCB ,
K∑
k=1

Re[Ak � (13 ⊗ BkC−1k Bk )]. (254)

From Lemma 3,{
K∑
k=1

Re[Ak � (1⊗ Bk )]

}−1 { K∑
k=1

Re[Ak � (1⊗ Ck )]

}

×

{
K∑
k=1

Re[Ak � (1⊗ Bk )]

}−1

≥

{
K∑
k=1

Re
{
Ak � [1⊗ (BkC−1k Bk )]

}}−1
. (255)
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