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ABSTRACT The traditional target tracking algorithms have utilized the information on the target position.
With the development of radar high-resolution technology, it is possible to obtain the pose of target. In this
paper, two target tracking algorithms aided by the pose of target are proposed. First, the pose of the target
is estimated in the real time by the high-resolution range profile, and then, the pose is added to the target
measurement equation. Because the relationship between the pose and the motion parameters of the targets
is nonlinear, the extended Kalman filter algorithm aided by the pose of target (Pose-EKF) and the unscented
Kalman filter algorithm aided by the pose of target (Pose-UKF) are proposed. The results of simulation
demonstrate that compared with the traditional extended Kalman filter algorithm (EKF) and the traditional
Unscented Kalman filter algorithm (UKF), the proposed algorithm can greatly improve the target tracking
accuracy (position precision and velocity precision) and the convergence speed. The pose measurement error
has a little effect on the tracking performance. The difference in the tracking accuracy between Pose-EKF
and Pose-UKF is very little. But the Pose-EKF is better than Pose-UKF in terms of computation time, but
Pose-EKF fails and Pose-UKF is effective when the pose is critical.

INDEX TERMS Target tracking, pose measure, the extended Kalman filter, the unscented Kalman filter,
the high resolution range profile.

I. INTRODUCTION
Target tracking algorithm is an important research topic
in the field of radar data processing [1]–[4]. The tradi-
tional target tracking algorithms are based on the obser-
vations of target distance, azimuth angle and elevation
angle. With the development of radar technology, Radar
Cross Section (RCS) [5]–[7], radial velocity [8]–[10],
target amplitude [11]–[13] and High Resolution Range Pro-
file (HRRP) [14], [15] are acquired and applied for radar
target tracking. In [5], the noncoherent pulse integration on
RCS-assisted tracking can gain the potential benefit. The
authors in [6] propose a RCS estimation scheme for air
targets generalized to ground-moving objects and then imple-
mented into the Gaussian mixture probability hypothesis
density filter. RCS is estimated and used as additional tar-
get attribute information, which can improve the tracking
performance, but the advantage of RCS-assisted tracking is
limited in [7]. In [8]–[10], the radial velocity using Doppler
measurements has been applied to Kalman filter to improve
the target tracking performance. In [11], the new conservative
amplitude likelihoods for the probabilistic data association
filter with amplitude information are proposed to improve

the robustness. An expectation–maximization algorithm was
proposed for Bayesian track-before-detect with target ampli-
tude function which can improve the performance of detec-
tion and tracking in [12]. In [13], the modified Riccati
equation was evaluated with amplitude information for the
case of more precisely K-distributed, background noise, or a
Swerling I target in heavy-tailed. In [14], the new formula-
tion from the scattering centers high-resolution range (HRR)
measurements has been developed, based on target motion
features. In [15], local motion features extracted from HRRP
was used to assist data association.

With the development of high resolution radar technology,
the acquisition of target pose becomes a possibility [16]–[18].
In [16], the authors propose a pose estimation algorithm using
HRRP which can be obtained from the high resolution radar,
and the algorithm is based on motion state filtering and
profile matching and applied to the missile track. In this
paper, two tracking algorithms aided by the pose of tar-
get were proposed. It includes the extended Kalman filter
algorithm aided by the pose of target (Pose-EKF) and the
Unscented Kalman filter algorithm aided by the pose of target
(Pose-UKF). Firstly, the pose of the target is estimated in
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the real time by HRRP, and then the pose is added to the
target measurement equation. Then because the relationship
between the pose and the motion parameters of the targets
is nonlinear, Pose-EKF uses the Taylor series expansion to
linearize the pose, and Pose-UKF approximates the posterior
probability density function (PDF) of the state vector and
performs Unscented Kalman filter (UKF). Particle filter algo-
rithm (PF) is not adopted because of its large amount of cal-
culation and low engineering application value. In this paper,
the proposed algorithms are compared with the traditional
extended Kalman filter algorithm (EKF) [21]–[23] and the
traditional UKF [24]–[26] in the following aspects: the root
mean square error of the target position, themean square error
of the velocity, the convergence speed and the computation
time. The proposed algorithms can greatly improve the target
tracking accuracy (position precision and velocity precision)
and the convergence speed, and the Pose-EKF is better than
Pose-UKF in terms of computation time. Meanwhile the
effect of the pose measurement error on the target tracking
performance is analyzed, and the pose measurement error has
little effect on the tracking performance.

FIGURE 1. The define of the pose.

II. POSE OF TARGET
As shown in Fig. 1, the pose of target obtained by HRRP
is defined as the angle between velocity vector and position
vector.

cosψ =
(x, y)T · (ẋ, ẏ)T∥∥(x, y)T∥∥ · ∥∥(ẋ, ẏ)T∥∥ = xẋ + yẏ√

x2 + y2
√
ẋ2 + ẏ2

(1)

ψ = arccos(
xẋ + yẏ√

x2 + y2
√
ẋ2 + ẏ2

)(0 ≤ ψ ≤ 180) (2)

where (x, y) is position vector and (ẋ, ẏ) is velocity vector.

III. MATHEMATICAL MODE
Assume that the target moves uniformly in a straight line in
x − y− z plane.

The equation of the state can be described as

xk = Fk|k−1xk−1 + wk−1 (3)

where xk = [xTk , ẋTk , yTk , ẏTk , zTk , żTk ]T denotes the motion
state at time k , superscript T denotes the transpose of
the matrix, (xTk , yTk , zTk ) denotes the position of target,
(ẋTk , ẏTk , żTk ) denotes the velocity of target, Fk|k−1 denotes
the transitional matrix, wk−1 denotes a zero-mean Gaussian
noise with state noise intensity σ 2

w and covariance Q.

Fk|k−1 =


1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1



Q = σ 2
w



T 3/3 T 2/2 0 0 0 0
T 2/2 T 0 0 0 0
0 0 T 3/3 T 2/2 0 0
0 0 T 2/2 T 0 0
0 0 0 0 T 3/3 T 2/2
0 0 0 0 T 2/2 T


The ‘‘T ’’ in the matrix expression represents the sampling
interval.

The equation of the measurement can be described as:

zk = h(xk )+ vk (4)

where zk denotes the measurement at time k , zk = [rTk ,
θTk , ϕTk , ψTk ]T , rTk denotes the radial distance of target at
time k , θTk denotes the azimuth of target at time k , ϕTk
denotes the elevation of target at time k ,ψTk denotes the pose
of target at time k , h(•) denotes the measurement function,
and vk denotes a zero-mean Gaussian observation noise with
covariance R.

h(xk ) =



√
x2k + y

2
k + z

2
k

arctan(yk/xk )

arctan(zk/
√
x2k + y

2
k )

arccos(
xk ẋk + yk ẏk√

x2k + y
2
k

√
ẋ2k + ẏ

2
k

)


(5)

IV. TRACKING ALGORITHMS AIDED
BY THE POSE OF TARGET
A. IMPLEMENTATION PROCESS
The implementation process of tracking algorithm aided by
the pose of target is as shown in Fig. 2. Firstly, Using
actual measurement or electromagnetic simulation calcula-
tion, the target range profile database is established in off-line
state and normalized. According to requirements for accuracy
of pose estimation, multiple angle intervals are divided, and
the range profile templates of each angle interval are pre-
stored. Secondly, On-line state, the radar can measure the
target range profile in real time and match the range pro-
file templates. Because of the huge amount of calculation,
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FIGURE 2. The implementation process of tracking algorithm.

the pose of target can be predicted by using the motion state
information and equation (1), so that the optimal value can
be searched in a small range. On the one hand, the computa-
tional cost can be reduced. On the other hand, the outliers of
the pose estimation can be eliminated. According to certain
recognition conditions, the pose of target can be obtained.
Finally, the pose, distance, azimuth and elevation of target
are added to the measurement of radar to non-linear filter and
estimate the target state. In this paper, Pose-EKF algorithm
is proposed by combining the pose aid with EKF algorithm,
and Pose-UKF algorithm is proposed by combining the pose
aid with UKF algorithm.

B. Pose_EKF ALGORITHM
1) LINEARIZING THE MEASUREMENT EQUATION
The pose in the measurement equation is a nonlinear func-
tion. The pose is linearized by carrying out the Taylor series
expansion and omitting high-order quantities, and then the
nonlinear problem is transformed into a linear problem.

The target measurement prediction equation is written in
matrix form as follows.

Zk|k−1 = h(X̂k|k−1) (6)

For 0 < β < 180,

∂ψ

∂X

∣∣∣X=X̂k|k−1 = ∂(arccos( xẋ+yẏ
√
x2+y2
√
ẋ2+ẏ2

))

∂X

∣∣∣X=X̂k|k−1

Let C = arccos( xẋ+yẏ
√
x2+y2
√
ẋ2+ẏ2

),

∂ψ

∂X

∣∣∣X=X̂k|k−1 = − 1
√
1− C2

∂C
∂X

∣∣∣X=X̂k|k−1
= −

1
√
1− C2

∂( xẋ+yẏ
√
x2+y2
√
ẋ2+ẏ2

)

∂X

∣∣∣X=X̂k|k−1
= −

1
√
1− C2

∂( xẋ+yẏ
√
x2+y2

. 1√
ẋ2+ẏ2

)

∂X

∣∣∣X=X̂k|k−1
= −

1
√
1− C2

(
1√

ẋ2 + ẏ2
.

∂( xẋ+yẏ
√
x2+y2

)

∂X

∣∣∣X=X̂k|k−1
+

xẋ + yẏ√
x2 + y2

.

∂( 1√
ẋ2+ẏ2

)

∂X

∣∣∣X=X̂k|k−1 ) (7)

where

∂( xẋ+yẏ
√
x2+y2

)

∂X

∣∣∣X=X̂k|k−1
= [( ˆ̇xk|k−1ŷ2k|k−1−ˆ̇yk|k−1x̂k|k−1ŷk|k−1)/(x̂

2
k|k−1 + ŷ

2
k|k−1)

3/2,

x̂k|k−1/(x̂2k|k−1 + ŷ
2
k|k−1)

1/2,

( ˆ̇yk|k−1x̂2k|k−1− ˆ̇xk|k−1x̂k|k−1ŷk|k−1)/(x̂
2
k|k−1+ŷ

2
k|k−1)

3/2,

ŷk|k−1/(x̂2k|k−1 + ŷ
2
k|k−1)

1/2, 0, 0] (8)

∂( 1√
ẋ2+ẏ2

)

∂X

∣∣∣X=X̂k|k−1
= [0,−ˆ̇xk|k−1/( ˆ̇x2k|k−1 + ˆ̇y

2
k|k−1)

3/2, 0,

− ˆ̇yk|k−1/( ˆ̇x2k|k−1 + ˆ̇y
2
k|k−1)

3/2, 0, 0] (9)

Substituting equation (8) and equation (9) into
equation (7),

For ˆ̇xk|k−1ŷk|k−1 ≥ x̂k|k−1 ˆ̇yk|k−1,

∂ψ

∂X

∣∣∣X=X̂k|k−1
= [−ŷk|k−1/(x̂2k|k−1 + ŷ

2
k|k−1), ˆ̇yk|k−1/( ˆ̇x

2
k|k−1 +

ˆ̇y2k|k−1),

−x̂k|k−1/(x̂2k|k−1+ŷ
2
k|k−1), ˆ̇xk|k−1/( ˆ̇x

2
k|k−1+

ˆ̇y2k|k−1), 0, 0]

For ˆ̇xk|k−1ŷk|k−1 ≺ x̂k|k−1 ˆ̇yk|k−1,

∂ψ

∂X

∣∣∣X=X̂k|k−1
= [ŷk|k−1/(x̂2k|k−1 + ŷ

2
k|k−1),−ˆ̇yk|k−1/( ˆ̇x

2
k|k−1 +

ˆ̇y2k|k−1),

x̂k|k−1/(x̂2k|k−1+ŷ
2
k|k−1),−ˆ̇xk|k−1/( ˆ̇x

2
k|k−1+

ˆ̇y2k|k−1), 0, 0]

The measurement matrix H (k) is as follows:

H (k) =
∂h
∂X

∣∣∣X=X̂k|k−1
=


H11 H12 H13 H14 H15 H16
H21 H22 H23 H24 H25 H26
H31 H32 H33 H34 H35 H36
H41 H42 H43 H44 H45 H46


H11 = x̂k|k−1/(x̂2k|k−1 + ŷ

2
k|k−1 + ẑ

2
k|k−1)

1/2
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H13 = ŷk|k−1/(x̂2k|k−1 + ŷ
2
k|k−1 + ẑ

2
k|k−1)

1/2

H15 = ẑk|k−1/(x̂2k|k−1 + ŷ
2
k|k−1 + ẑ

2
k|k−1)

1/2

H21 = −ŷk|k−1/(x̂2k|k−1 + ŷ
2
k|k−1)

1/2

H23 = x̂k|k−1/(x̂2k|k−1 + ŷ
2
k|k−1)

1/2

H31 = −x̂k|k−1ẑk|k−1/[(x̂2k|k−1 + ŷ
2
k|k−1)

1/2

× (x̂2k|k−1 + ŷ
2
k|k−1 + ẑ

2
k|k−1)]

H33 = −ŷk|k−1ẑk|k−1/[(x̂2k|k−1 + ŷ
2
k|k−1)

1/2

× (x̂2k|k−1 + ŷ
2
k|k−1 + ẑ

2
k|k−1)]

H35 = (x̂2k|k−1 + ŷ
2
k|k−1)

1/2/(x̂2k|k−1 + ŷ
2
k|k−1 + ẑ

2
k|k−1)

H41 =


−ŷk|k−1/(x̂2k|k−1 + ŷ

2
k|k−1)

ˆ̇xk|k−1ŷk|k−1 ≥ x̂k|k−1 ˆ̇yk|k−1
ŷk|k−1/(x̂2k|k−1 + ŷ

2
k|k−1)
ˆ̇xk|k−1ŷk|k−1 ≺ x̂k|k−1 ˆ̇yk|k−1

H42 =


ˆ̇yk|k−1/(x̂2k|k−1 + ŷ

2
k|k−1)
ˆ̇xk|k−1ŷk|k−1 ≥ x̂k|k−1 ˆ̇yk|k−1

−ˆ̇yk|k−1/( ˆ̇x2k|k−1 + ˆ̇y
2
k|k−1)

ˆ̇xk|k−1ŷk|k−1 ≺ x̂k|k−1 ˆ̇yk|k−1

H43 =


−x̂k|k−1/(x̂2k|k−1 + ŷ

2
k|k−1)

ˆ̇xk|k−1ŷk|k−1 ≥ x̂k|k−1 ˆ̇yk|k−1
x̂k|k−1/(x̂2k|k−1 + ŷ

2
k|k−1)
ˆ̇xk|k−1ŷk|k−1 ≺ x̂k|k−1 ˆ̇yk|k−1

H44 =


ˆ̇xk|k−1/( ˆ̇x2k|k−1 + ˆ̇y

2
k|k−1)
ˆ̇xk|k−1ŷk|k−1 ≥ x̂k|k−1 ˆ̇yk|k−1

−ˆ̇xk|k−1/( ˆ̇x2k|k−1 + ˆ̇y
2
k|k−1)

ˆ̇xk|k−1ŷk|k−1 ≺ x̂k|k−1 ˆ̇yk|k−1
H12 = 0, H14 = 0, H16 = 0, H22 = 0,

H24 = 0,H26 = 0, H32 = 0, H34 = 0,

H36 = 0, H45 = 0, H46 = 0 (10)

2) Pose_EKF ALGORITHM
Suppose that the target state is X̂k−1|k−1, the covariance
matrix is Pk−1|k−1 at time k-1, and the measurement at
time k is zk . zk = [rTk , θTk , ϕTk , ψTk ]T .The detailed steps
of the Pose_EKF algorithm aided by the pose of target are as
follows:
Step 1: predict the target state at time k.

X̂k|k−1 = FX̂k−1|k−1 (11)

Step 2: predict the covariance matrix at time k.

Pk|k−1 = FPk−1|k−1FT + Qk−1 (12)

Step 3: calculate the Kalman gain

Kk = Pk|k−1HkS1k (13)

whereHk is the Jacobianmatrix of themeasurement function,
and Sk is the measurement prediction covariance.

Hk = (1xkh
T (Xk ))T (14)

Sk = HkPk|k−1HT
k + Rk (15)

Step 4: the pose of target ψTk obtained by HRRP is used to
form the measurement zk = [rTk , θTk , ϕTk , ψTk ]T .
Step 5: update the target state at time k.

X̂k|k = X̂k|k−1 + Kk (zk − h(X̂k|k−1)) (16)

Step 6: update the covariance matrix at time k.

Pk|k = [I − KkHk ]Pk|k−1[I − KkHk ]T − KkRkKT
k (17)

The shortage of this algorithm is ψTk 6= 0 and ψTk 6= 180.In
other words, Pose-EKF fails when the pose is critical.

C. Pose_UKF ALGORITHM
UKF does not need to linearize the measurement equa-
tion, but approximates the posterior probability density func-
tion (PDF) of the state vector, and then performs recursive
filtering in the framework of standard Kalman filter. The
Pose-UKF algorithm adds the pose of target to the equation
of measurement and performs UKF. The detailed steps of
the Pose_UKF algorithm aided by the pose of target are as
follows:
Step 1: Parameters Initialization.

x̂0|0 = E(x0) (18)

P0|0 = E((x0 − x̂0|0)(x0 − x̂0|0)T ) (19)

where x0 denotes the initial state vector, x̂0|0 denotes the esti-
mated value of initial state vector, P0|0 denotes the estimated
value of the initial error covariance matrix.
Step 2: Time Update

χ0
k−1|k−1 = x̂k−1|k−1
χ ik−1|k−1 = x̂k−1|k−1+(

√
(n+λ)Pk−1|k−1),

i = 1, 2, ..., n
χ ik−1|k−1 = x̂k−1|k−1−(

√
(n+λ)Pk−1|k−1),

i = n+1, n+2, ..., 2n

(20)


ωm0 = κ/(n+ κ)
ωc0 = κ/(n+ κ)+ 1− α2 + γ
ωmi = ω

c
i = κ/[2(n+ κ)], i = 1, ..., 2n

(21)

χ ik|k−1 = F .χ ik−1|k−1 (22)

Predict the target state at time k:

x̂k|k−1 = Fx̂k−1|k−1 (23)

Predict the covariance matrix at time k:

Pk|k−1=
2n∑
i=0

ωci (χ
i
k|k−1−x̂k|k−1)(χ

i
k|k−1−x̂k|k−1)

T
+ Qk−1

(24)

where ωci is the weight used to calculate the estimated mean
of χ ik−1|k−1, ω

m
i is the weight used to calculate the estimated

covariance matrix of χ ik−1|k−1.
Step 3:Measurement Update.
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The pose of target ψTk obtained by HRRP is used to form
the measurement zk = [rTk , θTk , ϕTk , ψTk ]T .

ξ ik|k−1 = h(χ ik|k−1) (25)

ẑk|k−1 =
2n∑
i=0

ωmi ξ
i
k|k−1 (26)

Pzk =
2n∑
i=0

ωci (ξ
i
k|k−1 − ẑk|k−1) · (ξ

i
k|k−1 − ẑk|k−1)

T (27)

Pxk zk =
2n∑
i=0

ωci (χ
i
k|k−1 − x̂k|k−1) · (ξ

i
k|k−1 − ẑk|k−1)

T (28)

Step 4: Filter Update
Calculate the Kalman gain:

Kk = PzkP
−1
xk zk

(29)

Update the target state at time k:

x̂k|k = x̂k|k−1 + Kk (zk − ẑk|k−1) (30)

Update the covariance matrix at time k:

Pk|k = Pk|k−1 − KkPzkK
T
k (31)

The advantage of the Pose-UKF algorithm relative to the
Pose-EKF algorithm is that the Pose-UKF algorithm is effec-
tive when the pose is critical. The performance of the two
algorithms will be compared in the following simulation.

V. SIMULATIONS AND ANALYSIS
In order to illustrate the performance of the proposed algo-
rithms, the following scenario has been designed A target is
assumed to fly out of its initial position (12000m, 12000m,
1000m), the X-axis velocity is 100m/s, and the Y-axis veloc-
ity is - 80m/s in a uniform linear motion. The altitude remains
unchanged at 1000m. The trajectory of the target for a single
run is shown in Fig. 3. The data are observed every 1s and

FIGURE 3. The trajectory of the target for a single run.

the simulation lasts 100s. In the simulation, the error of
measuring distance is 30m, the error of measuring azimuth
is 0.06◦. HRRP template matching method is used to estimate
the pose the target. According to the range of pose, 3600 angle
intervals are divided, and the range profile templates of each
angle interval are pre-stored. Radar can measure the target
range profile in real time and match the range profile tem-
plates, and the pose of target can be obtained. The pose
interval of the target range profile database is 0.1◦, and the
error of measuring pose are 0.5◦ and 1◦ respectively. The
200 Monte Carlo simulations have been done. The process
noise is white noise whose mean value is 0 and variance is 1.
Pose-EKF algorithm, Pose-UKF algorithm, traditional EKF
algorithm and traditional UKF algorithm are used to compare
respectively.

The root mean square error (RMSE) of target position is
defined as

RMSEpk =

√√√√ 1
N

N∑
i=1

[(xTk − x iTk )
2 + (yTk − yiTk )

2] (32)

The root mean square error of target velocity is defined as

RMSEvk =

√√√√ 1
N

N∑
i=1

[(ẋTk − ẋ iTk )
2 + (ẏTk − ẏiTk )

2] (33)

whereN is the number ofMonte Carlo experiments, (x iTk , y
i
Tk )

is the target position, and (ẋ iTk , ẏ
i
Tk ) is the target velocity

estimated in the i experiment at time k.
The Pose-EKF algorithm and the Pose-UKF algorithm

proposed in this paper are compared with the traditional EKF
algorithm and the traditional UKF algorithm. The results are
compared from four aspects: the root mean square error of
the target position, the mean square error of the velocity,
the convergence speed and the computation time.

FIGURE 4. RMSE of target position.

From the RMSE curve of target position in Fig. 4, it can
be seen that the RMSE of target position of the traditional
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EKF algorithm and the traditional UKF algorithm is 25 m,
while adopting our proposed algorithm, the RMSE of target
position of the Pose-EKF algorithm is 19 m and that of the
Pose-UKF algorithm is 18 m when the error of measuring
pose is 0.5◦. The Pose-UKF algorithm is almost the same as
the Pose-EKF algorithm in the accuracy of target position,
and has higher precision than the traditional EKF algorithm
and the traditional UKF algorithm. From the convergence
speed of target position error, The Pose-UKF algorithm and
the Pose-EKF algorithm are also faster than the traditional
EKF algorithm and the traditional UKF algorithm.

FIGURE 5. RMSE of target velocity.

From the RMSE curve of target velocity in Fig. 5, it can
be seen that the RMSE of target velocity of the traditional
EKF algorithm is 27 m/s, and that of the traditional UKF
algorithm is 19 m/s, while adopting our proposed algorithm,
the RMSE of target velocity of the Pose-EKF algorithm and
the Pose-UKF algorithm is 9 m/s. The Pose-UKF algorithm
is almost the same as the Pose-EKF algorithm in the accu-
racy of target velocity. The Pose-UKF algorithm and the
Pose-EKF algorithm are higher in the accuracy of target
velocity, and faster in the convergence speed of target velocity
error than the traditional EKF algorithm and the traditional
UKF algorithm.

From the computation time curve in Fig. 6, it can be seen
that the traditional EKF algorithm takes 50 us to compute,
the traditional UKF algorithm takes 156 us to compute,
the Pose-EKF algorithm takes 64 us to compute, and the
Pose-UKF algorithm takes 165 us to compute. The tradi-
tional EKF algorithm is the best in the computation time,
followed by the Pose-EKF algorithm, and then the traditional
UKF algorithm and the Pose-UKF algorithm. Because the
pose is added to the target observation, the Pose-EKF algo-
rithm is more time-consuming than the traditional EKF algo-
rithm, and the Pose-UKF algorithm is more time-consuming
than the traditional UKF algorithm. Comparing the Pose-
EKF algorithm with the Pose-UKF algorithm, the Pose-EKF

FIGURE 6. The computational time of four algorithms.

algorithm is better than the Pose-UKF algorithm in terms of
computation time.

FIGURE 7. RMSE of target position varied with different pose error.

The effect of pose error on the performance of Pose-EKF
algorithm and Pose-UKF algorithm has been also analyzed.
As can be seen from Fig. 7 and Fig. 8, when the pose error
is 2 times of the pose accuracy, the RMSE of the target
position of Pose-EKF algorithm is 19 m, RMSE of the target
velocity of Pose-EKF algorithm is 10 m/s, the RMSE of the
target position of Pose-UKF algorithm is 18m, and the RMSE
of the target velocity of Pose-UKF algorithm is 10 m/s. The
error of pose has little effect on the performance of Pose-EKF
algorithm and Pose-UKF algorithm, and it can be neglected.

As mentioned above, Pose-EKF algorithm and Pose-UKF
algorithm are superior to the traditional EKF algorithm
and UKF algorithm in performance, embodied in the fast
convergence speed, small the RMSE of the target posi-
tion, small RMSE of the target velocity In terms of com-
putation time, the Pose-EKF algorithm is superior to the
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FIGURE 8. RMSE of target velocity varied with different pose error.

Pose-UKF algorithm. When the pose error does not change
significantly, the performance of Pose-EKF algorithm and
Pose-UKF algorithm has little effect.

VI. CONCLUSION
Compared with the traditional EKF algorithm and the tradi-
tional UKF algorithm, the proposed algorithms aided by the
pose of target can improve the target tracking performance
greatly. The Specific performance is reflected in the smaller
RMSE of target position, the smaller RMSE of velocity and
the faster convergence speed. The impact on tracking perfor-
mance of pose error is little.
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