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ABSTRACT Augmented reality (AR) is one of the emerging use cases relying on ultra-reliable and
low-latency communications (uRLLC). The AR service is composed of multiple dependent computational-
intensive components. Due to the limited capability of user equipment (UE), it is difficult tomeet the stringent
latency and reliability requirements of AR service merely by local processing. To solve the problem, it is
viable to offload parts of the AR task to the network edge, i.e., mobile edge computing (MEC), which is
expected to extend the computing capability of the UE. However, MEC also incurs extra communication
latency and errors on the wireless channel; therefore, it is challenging to make an optimum offload decision.
So far, a little of state-of-the-art work has considered both the latency and reliability of the MEC-enabled
AR service. In this paper, we study the scenario multiple edge nodes cooperate to complete the AR task. The
dependency of task components is modeled by a directed acyclic graph through code partitioning. We aim
to minimize the service failure probability (SFP) of the MEC-enabled AR service considering reliability and
latency. We design an integer particle swarm optimization (IPSO)-based algorithm. Although the solution
of IPSO-based algorithm approaches the optimum of the problem, it is infeasible to use IPSO for real-
time AR services in practice due to the relatively high computational complexity. Hence, we propose a
heuristic algorithm, which achieves a performance close to that of the IPSO-based algorithm with much
lower complexity. Compared with state-of-the-art work, the heuristic algorithm can significantly improve
the probability to fulfill the targeted SFP in various network conditions. Due to the generic characteristics,
the proposed heuristic algorithm is applicable for AR services, as well as for many other use cases in uRLLC.

INDEX TERMS 5G, mobile edge computing, ultra-reliable low latency communications, augmented reality,
code-partitioning offloading.

I. INTRODUCTION
Augmented reality (AR) techniques combine and interact
digital content with physical reality environment in real
time, which can be widely utilized in various fields, like
health care, entertainment, education, and intelligent driving,
etc. [1]. To this end, AR has attracted tremendous attentions
from both industry and academia. So far, many advanced
AR devices and platforms have emerged, such as Google
Glass,1 Microsoft HoloLens,2 Magic Leap One3 and so
on. However, the AR service requires to complete inten-
sive computations, e.g. camera calibration, mapping, tracking
and rendering, within very short response time, where the
motion-to-photo (MTP) latency is generally considered as

1https://x.company/glass/
2https://www.microsoft.com/en-IE/hololens
3https://www.magicleap.com/

less than 15-20 milliseconds and the packet error rate is
expected below 10−5, otherwise users will feel detached and
nausea [2]. Therefore, AR service is one of the appealing use
cases relying on ultra-reliable and low latency communica-
tions (uRLLC) in the fifth generation (5G) communication
systems. Additionally, considering the limited computation
capacity at user equipment (UE), it imposes challenges to
meet the latency and reliability requirements of the AR ser-
vice merely by local processing.

Mobile edge computing (MEC) is one of the promising
technical enablers for AR service. It is a paradigm that dis-
tributes computation and storage resources at the edge of
networks, such as WiFi routers and gateways at smart home,
micro data center and Cloudlet between users and the core
cloud. Compared with the core cloud server, the edge nodes
(ENs) provide extended computational capabilities to UEs
with shorter distance, which can significantly reduce the
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response time and energy consumption taken by service exe-
cution. However, extra communication cost, like transmission
errors and latency, is incurred by offloading task to MEC
through wireless channel. To fulfill the stringent latency and
reliability requirements of the MEC-enabled AR, it is nec-
essary to make optimal offloading strategy, i.e. what tasks
should be offloaded, where tasks will be offloaded to, and
when to execute offloading.

The naive strategy is simply to decide whether to compute
the whole task locally or remotely. However, more sophisti-
cated strategy is to offload parts of the task to ENs and com-
pute different parts of the task in parallel to reduce latency
further, if the task can be partitioned. Some work studies the
partial offloading by partitioning the task into independent
data bits with arbitrary granularity, of which task model is
too ideal for use cases in reality. Instead, the execution of a
task is normally composed of multiple methods or threads.
Each method or thread is regarded as one sub-task. Parts of
these sub-tasks are allowed to be offloaded and computed
remotely, which is known as code-partitioning offloading [3].
For example, the execution of AR service is composed of a
number of procedures including video frame capture, cam-
era calibration, registration, tracking, 2D/3D rendering and
display [4], where the raw video frame capture and virtual
information display have to be completed locally, but other
methods can be computed remotely. The partitioned sub-
tasks are dependent on each other, of which the dependency
is normally modeled by a directed acyclic graph (DAG).
Furthermore, some sub-tasks may be merged or split further
to obtain different partitioning granularities in terms of the
performance requirements.

At present, various mobile computing platforms and algo-
rithms are proposed for optimizing the code-partitioning
offloading strategy, where the latency and energy consump-
tion of the offloading have been well investigated in a variety
of scenarios [5]–[8]. However, little attention is paid to the
reliability performance. In particular, to enable AR service
with MEC paradigm, the design of the code-partitioning
offloading strategy faces the challenges as follows.
• It is difficult to meet the reliability and latency require-
ments of the MEC-enabled AR service simultaneously.
The outage probability on wireless channel generally
dominates the reliability. Offloading more sub-tasks to
ENs may reduce the latency of completing the task, but
could increase the communication error probability on
wireless channel.

• The computation and communication resources at
ENs are limited for a UE. Processing the sub-tasks in
parallel may incur resource contentions within ENs and
wireless channel, which brings negative impact on the
latency of completing the AR task.

• Due to the dependency among sub-tasks, it is complex
to efficiently schedule the edge resource to compute
AR task at an EN. The complexity of the offloading
strategy will increase further, when multiple ENs are
involved.

In this paper, we study the code-partitioning offloading
strategy for AR service, where multiple ENs cooperatively
compute the AR task for the UE. Consider the features of
MEC-enabled AR system, we systematically model the reli-
ability and latency of completing the task, and formulate an
optimization problem. In summary, the main contributions of
this paper are presented as follows.
• Due to the limited resources at wireless channel and
ENs, the queuing latency, as well as the communication
and computation latency, is considered for modeling the
latency to complete the AR task.

• To ensure the reliability of theMEC-enabledAR service,
we model the service failure probability which takes
into account the probability of communication error,
computation failure, and timeout.

• To strike a balance between the latency and reliability,
we formulate an optimization problem to minimize
the service failure probability subject to the latency
constraint.

• To solve the nonconvex problem, we design an integer
Particle Swarm Optimization (IPSO) based algorithm
and a low-complexity heuristic algorithm to optimize the
offloading strategy.

• The numerical results present the probability of the
proposed algorithms fulfilling a given tolerable service
failure probability, which highlights the effectiveness
of the proposed algorithms under various network
conditions.

The rest of this paper is organized as follows. In Section II,
we review the related work on computation offloading
strategy and MEC-enabled AR/virtual reality (VR) system.
In Section III, we present the system model and formulate
an optimization problem. An IPSO-based algorithm and a
heuristic algorithm are proposed to solve the formulated prob-
lem in Section IV and Section V, respectively. The simulation
results are presented and discussed in Section VI. Finally,
we conclude our work in Section VII.

II. RELATED WORK
MEC is a promising enabler to shorten the latency of
computational-intensive applications, which has attracted
much attention from both industry and academia in recent
years. In 2014, European Telecommunications Standards
Institute (ETSI) was set up to create industry specifications
for MEC, which has been supported by Huawei, IBM, Intel,
Nokia Networks, NTT DoCoMo, Vodafone, etc. [9].

In MEC paradigm, computation offloading is a key tech-
nique to allow users leveraging the computation capabili-
ties at the network edge. According to the granularity of
offloaded task, computation offloading schemes can be cat-
egorized into binary offloading and partial offloading. The
binary offloading decides whether a computation task is com-
puted at local CPU or remote server. Sardellitti et al. [10]
jointly optimized the radio resources and the computational
resources to minimize the overall users’ energy consumption
using binary offloading. Chen et al. [11] proposed a game
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theoretic approach for the computation offloading decision
among multiple users.

The partial offloading scheme segments a task into a set
of sub-tasks and offloads parts of them to remote server.
Wang et al. [12] investigated partial offloading by jointly opti-
mizing the computational speed, transmit power and offload-
ing ratio. Munoz et al. [13] proposed a framework for the
joint optimization of the radio and computational resource
usage exploiting the tradeoff between energy consumption
and latency. Considering dense deployment of future net-
works, offloading task from one UE to multiple nearby
ENs has potential to improve the performances of the system.
Chiu et al. [14] pursued the ultra-low latency leveraging com-
putation resource of multiple ENs. Dinh et al. [15] observed
performance gain in energy consumption and latency when
multiple ENs were considered.

Compared with the binary offloading scheme, the partial
offloading scheme provides more flexible offloading strategy
and utilizes the parallelism among sub-tasks execution to
reduce latency. However, above work considers the model
that can partition a task into arbitrary data bits, which is too
ideal for use cases in reality.

To this regard, code-partitioning offloading has been well
investigated to optimize the performances of the latency and
energy consumption. Zhang and Wen [5] leveraged partial
critical path (PCP) analysis to minimize the energy consump-
tion while meeting a deadline in mobile cloud computing
paradigm. Deng et al. [6] minimized the energy consumption
of UE with the latency constraint of completing task by
Binary Particle Swarm Optimizers (BPSO). Considering the
cloud computing paradigm, Mahmoodi et al. [7] maximized
the saved energy of task offloading with the constraint of
delay, and modeled the problem as a linear optimization by
replacing binary offloading indicator (at local or cloud) with
a new variable, which is difficult to apply to the scenario
with multiple ENs. Kao et al. [8] proposed a fully polynomial
time approximation scheme to minimize the latency while
meeting cost constraints for both deterministic and dynamic
environments, which cannot be used to solve our problem
directly. However, these work failed to consider that the avail-
able resource for a UE is limited in the network. If the parallel
sub-tasks of a UE are utilizing the same server or wire-
less channel simultaneously, the resource contention occurs.
In this case, the queuing latency for the contentions cannot be
ignored.

The computation offloading for MEC-enabled AR or VR
was recently investigated in [16]–[19]. Sun et al. [16]
and Yang et al. [17] jointly optimized the computation
offloading and caching policy for VR services, respectively.
Al-Shuwaili and Simeone [18] minimized the energy con-
sumption on UEs utilizing the feature that UEs can share the
same content of AR service. Liu et al. [19] made a tradeoff
between latency and accuracy of AR service by adjusting the
frame resolution to offload. Liu and Zhang [20] investigated
how to optimally offload the AR task in stochastic wireless
environment without prior channel state information.

FIGURE 1. Network architecture.

Little of the state-of-the-art work on computation offload-
ing discusses the reliability requirements. Azimi et al. [21]
studied the transmission failure probability using superposi-
tion coding on wireless fading channel, and optimized the
energy consumption with the constraints of the latency and
reliability. Liu et al. [22] aimed to minimize the energy con-
sumption, and modeled the latency and reliability constraints
by users’ task queue lengths according to the extreme value
theory. It is known that task offloading consists of com-
munication and computation. However, little of those work
considers the computation reliability. Moreover, compared to
the research in this paper, our preliminary work in [23] jointly
optimized the reliability and latency of the offloading with
a different optimization objective, which ideally partitioned
the task into arbitrary bits and only took into account the
bit error rate of wireless channel in the reliability modeling.
It will be more realistic in this paper to optimize both commu-
nication and computation reliability of the code-partitioning
offloading.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, the network architecture and task model are
described, followed by the latency and reliability model of
completing the computation task. Finally, an optimization
problem is formulated.

A. ARCHITECTURE AND TASK MODEL
We consider the scenario that N (N ≥ 1) ENs coopera-
tively complete the computation task for a UE illustrated
in Fig. 1. The UE has been granted the channel resource
and computing capacity of ENs before the AR service can
start, and the offloading decision is focused on achieving
the optimal reliability and latency for the UE. In the pro-
cess of code-partitioning offloading, the UE can split the
code of the task into V inter-dependent methods/threads,
i.e. sub-tasks, and determine the offloading strategy based
on available bandwidth, data size, and computing rate
of CPUs, etc. [3]. According to the offloading strategy, parts
of sub-tasks are offloaded via wireless channel and executed
at the selected ENs. The ENs are assumed to be connected
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with each others via stable communication links. Finally,
the output data of the computation from the ENs will be sent
back to the UE through wireless channel.

The dependency among sub-tasks is modeled by a directed
acyclic graph G(V, E), where V and E are the sets of vertexes
and edges, respectively. The vertex i (i ∈ V) denotes a sub-
task, of which the weight ci denotes the required CPU cycles
to compute sub-task i. The edge e(i, j) (e ∈ E) denotes
the invoking relation between the sub-task i and j, which is
weighted by the transferred data size bij (in bit) from i to j.
Note that not all the sub-tasks can be offloaded to ENs due to
Input/Output, hardware or external constraints [24]. Here, it is
mandatory to compute the first and last sub-tasks at UE, as in
the AR service capturing video frame, i.e. the first sub-task,
and displaying, i.e. the last sub-task, must be run locally.

It is assumed that N is the set of CPUs on UE and ENs,
where N = {0, 1, . . . ,N } and 0 denotes the CPU on UE.
We use a matrix X (N+1)×V to denote the sub-tasks allocation,
where each element xn,i (∀n ∈ N , i ∈ V) in X is an indicator.
If sub-task i is executed at CPU n, xn,i = 1, otherwise,
xn,i = 0. Note that a sub-task can only be allocated to one
of the CPUs. In other words,

∑N
n=0 xn,i = 1 for ∀i ∈ V .

Wireless channel is considered relatively stable during the
processing of each task, since the coherence time at the
carrier frequency of 2.5 GHz is around 200 ms for relatively
static or low-mobility scenario (2 Km/h) [25], which is long
enough to complete a task. The mobility issue and its effect
on the offloading performance will be left for future work.

B. LATENCY MODEL
In this subsection, the total latency for completing the task
is analyzed, including computation latency, communication
latency and queuing latency.

1) COMPUTATION LATENCY
We assume EN n (1 ≤ n ≤ N ) assigns computing capacity
of fn (in cycles/s) to the UE. We also denote the computing
rate of the CPU on UE is f0. The latency for computing the
sub-task i at the CPU n is

T cmpn,i =
ci
fn
, n ∈ N , i ∈ V. (1)

2) COMMUNICATION LATENCY
The UE communicates with each EN via the granted wire-
less resource. The uplink and downlink data rates (in bits/s)
between the UE and the EN n, i.e. ruln and rdln , vary with
the corresponding channel qualities. Moreover, we assume a
fixed data rate r0 for each transmission between two ENs.
Thus, the latency for transferring data bij from CPU m to n is

T cmmmn,ij =


0, m = n
bij/ruln , m = 0, n > 0
bij/rdlm , m > 0, n = 0
bij/r0, otherwise.

(2)

FIGURE 2. Example of task graph, where sub-tasks 1 and 10 must be
computed locally and other sub-tasks can be offloaded to ENs.

3) QUEUING LATENCY
As an EN needs to serve multiple UEs. For each UE, an
EN can only allocate certain amount of computing capac-
ity and wireless resource, which may lead to the resource
contentions for CPUs and wireless channel among parallel
sub-tasks in the task graph. For instance, Fig. 2 shows an
example of the task graph, where sub-tasks 2, 3, 4, 5 and 7 are
parallel to each other. If sub-tasks 2 and 4 are assigned to
the same EN, they cannot simultaneously use all the granted
resource. Therefore, we assume there is a queue at each CPU
and wireless link. The usages of resources follow the first-
come-first-serve principle, i.e. the new arrived data cannot
be processed until the previous arrived data of the queue is
processed.

4) TOTAL LATENCY
Assuming τ si and τ fi (i ∈ V) are the time instant of starting
and finishing computing the sub-task i, respectively, we have

τ
f
i = τ

s
i + T

cmp
i , ∀i ∈ V, (3)

where T cmpi =
∑N

n=0 xn,iT
cmp
n,i and it denotes the latency

of computing the sub-task i. τ si depends on the latency of
completing i’s predecessors and queue length of the required
computation and communication resources.

For the first sub-task, we have τ s1 ≡ 0. For the others, given
sub-task i is allocated to CPU n, the CPU will not start to
compute i until: i) all the input data of sub-task i has arrived
at CPU n; ii) the queue at CPU n is empty. Furthermore,
the input data of sub-task i from its direct predecessor p
cannot be transmitted until: i) p has been completed; ii) the
queue of wireless channel is empty, if it is required to transfer
the input data between the UE and EN. Therefore, given X ,
we have

τ si =

0 i = 1,

max
{
qcmpi ,max

p∈Pi

[
max

(
τ
f
p , qcmmpi

)
+T cmmpi

]}
i > 1,

(4)

where qcmpi is the time instant of being available to compute
sub-task i at the allocated CPU, qcmmpi is the time instant
of being ready to transmit data bpi over the assigned wire-
less channel, Pi is the set of the direct predecessors of
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the sub-task i, T cmmpi is the latency of transmitting bpi and
T cmmpi =

∑N
m=0

∑N
n=0 xm,pxn,iT

cmm
mn,pi.

Based on (3) and (4), the total latency of completing the
task is the difference between the time instant of finishing
the last sub-task, τ fV , and the time instant of starting the first
sub-task, τ s1 , i.e.

T = τ fV − τ
s
1 . (5)

Note that τ s1 ≡ 0.

C. RELIABILITY MODEL
In this subsection, we discuss the reliability of completing the
task, including computation failure probability, communica-
tion error probability, timeout probability and service failure
probability.

1) COMPUTATION FAILURE PROBABILITY
During the period of computing sub-tasks, the soft-
ware or hardware on UE and ENs may break down, which
leads to the failure of the whole task. Normally, the occur-
rences of the software and hardware failures are considered
following Poisson process with failure rate λs and λh, respec-
tively [26]. Therefore, the computation failure probability of
computing sub-task i at CPU n is

Fcmpn,i = 1− exp
{
−(λs + λh)T cmpn,i

}
. (6)

2) COMMUNICATION ERROR PROBABILITY
Due to the effects of path loss, fading or shadowing, the com-
munication reliability is significantly determined by the
transmission errors onwireless channel. In this paper, we con-
sider that the modulation and coding scheme (MCS) of device
is dynamically adjusted to keep the block error rate (BLER)
constant, according to channel quality. The targeted
BLER of the MCS is denoted as η, and the uplink and
downlink transport block (TB) size of EN n are denoted
as ψul

n and ψdl
n , respectively. Moreover, the communication

errors rate between two ENs is negligible, since it is several
magnitude lower than that on wireless channel. Therefore,
the communication error probability of transferring data bij
from CPU m to n is defined as

Fcmmmn,ij =


1− (1− η) bij

/
ψul
n , m = 0, n > 0,

1− (1− η) bij
/
ψdl
m , m > 0, n = 0,

0, Otherwise.

(7)

Note that the retransmission is infeasible in the real-time
AR service, since it may not meet the stringent latency
requirement.

3) TIMEOUT PROBABILITY
It is regarded as a failure as well, if the latency of completing
the task, T , is longer than the allowed delay threshold δ.
Considering the variations of wireless channel and UEmobil-
ity, the latency of the same task may vary with different

network conditions. The timeout probability of the task is
statistically obtained as

Fout = P {T > δ} = lim
I→+∞

1
I

I∑
i=1

1 [T (i)− δ] , (8)

where T (i) denotes the latency of the i-th task, and

1(x) =

{
1, x > 0.
0, x ≤ 0.

4) SERVICE FAILURE PROBABILITY
The task is failed, if the computation breaks down, communi-
cation error occurs, or the task is completed with the latency
longer than the threshold. Therefore, we define the service
failure probability as

F = 1−
(
1− Fol

) (
1− Fout

)
, (9)

whereFol is defined as a conditional probability of offloading
failure under the condition of T ≤ δ, which is

Fol = 1−
V∏
i=1

(
1− Fcmpi

)
·

V∏
i=1

V∏
j=1

(
1− Fcmmij

)∣∣∣∣∣∣
T≤δ

, (10)

where Fcmpi is the computation failure probability of sub-
task i (Fcmpi =

∑N
n=0 xn,iF

cmp
n,i ), and Fcmmij is the communi-

cation error probability of the transferred data bij (Fcmmij =∑N
m=0

∑N
n=0 xm,ixn,jF

cmm
mn,ij). Note that, for a certain task,

we define the service failure probability as

F =

{
Fol, T ≤ δ
1, T > δ.

(11)

D. PROBLEM FORMULATION
To optimize the offloading strategy of the MEC-enabled
AR service, we aim to minimize the service failure proba-
bility which is an important metric for AR combining the
reliability with latency. Specifically for a task, according
to (11), the offloading failure probability should be mini-
mized with the latency constraint, i.e.

P1: min
X

1−
V∏
i=1

(
1− Fcmpi

)
·

V∏
i=1

V∏
j=1

(
1− Fcmmij

)
,

s.t. T ≤ δ, (12a)
N∑
n=0

xn,i = 1, ∀i ∈ V, (12b)

xn,i ∈ {0, 1}, ∀n ∈ N , i ∈ V, (12c)

x0,1 = 1, x0,V = 1. (12d)

Obviously, (12a) is a non-convex constraint. The
constraint (12b) means the sub-task i can only be executed
at one of CPUs, and the constraint (12d) means the first and
last sub-tasks are mandatory to be executed locally.

The formulated problem is a 0-1 integer programming
problem with the non-convex constraint. Except for the first
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and last sub-tasks, each sub-task is computed at one selected
CPU from (N + 1) CPUs, the allocation of the whole task
thus has (N + 1)V−2 solutions. It is obviously impossible to
enumerate all the available solutions and find the optimal one
due to huge complexity. Therefore, a more efficient algorithm
is required for solving P1.

IV. OPTIMIZATION WITH IPSO-BASED ALGORITHM
As we know, the intelligent optimization techniques are
widely used to search approximate solutions to non-convex
problems, where particle swarm optimization (PSO) is a
global optimization algorithm inspired by the social swarm
behavior. Compared with other intelligent optimization tech-
niques, like genetic algorithm, PSO is easier to imple-
ment and more efficient to converge towards the global
optimum [27]. In this section, the integer PSO (IPSO) based
algorithm is designed for solving the problem P1.
In PSO, each individual in the swarm, called a particle,

denotes a potential solution to P1. The position and velocity
of the particle k are denoted by vectors in an V -dimensional
problem space, i.e. nk = [nk1, nk2, . . . , nkV ] and vk =
[vk1, vk2, . . . , vkV ], respectively. Each element nkv (nkv ∈ N )
in nk represents the CPU allocated to sub-task v. The velocity
vk determines the position of particle k in the next generation.
Note that nk is a vector in integer space, while vk is in real
space. As a result, the particle position will be obtained by
rounding off the real position value to the nearest integer
value, which is

ngk =
[
ng−1k + vg−1k

]
, (13)

where the superscript g denotes the g-th generation of the
particle (g ≥ 0), and the operator [·] denotes rounding off
the real value to the nearest integer.

We use nbestk and nglob to represent the historical best
position of the particle k and the swarm best position, respec-
tively. In each generation, the velocity of each particle is
stochastically adjusted according to the nbestk for the particle
itself and the nglob, which is

vgk = ωk
g−1
i +φ1γ1

(
nbestk − ng−1k

)
+ φ2γ2

(
nglobk − ng−1k

)
,

(14)

where ω is the inertia constant to control the exploration
of the search space, φ1 and φ2 are acceleration constants,
and γ1 and γ2 are two random numbers with uniform dis-
tribution ranging from 0 to 1. Defining the fitness func-
tion of PSO with the object function in problem P1, both
the particle best and the swarm best positions can be
derived. In this way, we can obtain the optimal reliability of
computation offloading with the latency constraint through
Algorithm 1.

The worst computational complexity of calculating T
in each loop of Algorithm 1 is O(V 2). The entire com-
plexity of IPSO-based algorithm is O(GnumPnumV 2), where
Gnum is the number of generations, andPnum denotes the num-
ber of particles. The complexity of IPSO-based algorithm is

Algorithm 1 IPSO-Based Algorithm

1: Initialize Pnum feasible solutions
[
n01,n

0
2, . . . ,n

0
Pnum

]
as

the initial position of particles;
2: Calculate Fol(n0k ) for ∀1 ≤ k ≤ Pnum;
3: nbestk ← n0k , n

glob
← argmin

n0k
Fol(n0k );

4: for g← 1 to Gnum do
5: for k ← 1 to Pnum do
6: Calculate vgk and n

g
k in (14) and (13), respectively;

7: Calculate T ;
8: if T > δ then
9: ngk ← ng−1k ;
10: else
11: Calculate Fol(ngk )
12: end if
13: nbestk ← argmin

{
Fol(nbestk ),Fol(ngk )

}
;

14: nglob← argmin
{
Fol(nglob),Fol(nbestk )

}
;

15: end for
16: end for
17: F∗← Fol(nglob)
18: return F∗,nglob;

significantly lower than that of the brute-force enumeration
O
(
V 2(N + 1)V−2

)
. However, to obtain converged solution,

we generally have Gnum � 1 and Pnum � 1, which leads to
a high complexity. As a result, we design an algorithm with a
heuristic way to decrease the complexity.

V. OPTIMIZATION WITH HEURISTIC ALGORITHM
In this section, we propose a heuristic algorithm first to solve
the problem P1 in a tree-structured task graph. Then we solve
a more general task graph by using the proposed heuristic
algorithm.

Offloading a sub-task to MEC can shorten the computa-
tion latency of the sub-task, which also reduces the corre-
sponding computation failure probability according to (6).
Meanwhile, it causes extra communication latency and the
risk of communication errors over wireless channel. To make
a tradeoff between the latency and reliability, the under-
lying rationales of the algorithm design are detailed as
follows:
• Offloading in Cluster: It has been proven by [24] that
the approach minimizing the latency for computing a
sequence of sub-tasks is to simultaneously offload a set
of consecutive sub-tasks to the cloud server. In other
words, sub-tasks should be offloaded in cluster,4 which
is also applied to the scenario here. The reason lies in that
offloading in cluster will reduce the usage of wireless
channel for transferring data between sub-tasks, which
will decrease the communication cost on both reliability
and latency. Therefore, we will group parts of sub-tasks
and offload them in clusters.

4A cluster is a set of sub-tasks that are connected with each other in the
task graph.
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FIGURE 3. Example of tree-structured task graph and cluster definitions:
the cluster C6 is one of sub-clusters of C8.

• Latency-Guaranteed Scheduling: On the one hand,
increasing the parallelism of task computation reduces
the total latency, which prefers small clusters (i.e. small
number of sub-tasks or CPU cycles in one cluster).
On the other hand, big cluster tends to reduce commu-
nication error probability over wireless channel due to
less data transmission between the UE and EN. Consid-
ering the latency constraint, we start the algorithm from
scheduling big clusters. The big cluster will be split into
smaller clusters, only if the latency constraint cannot
be met. The clusters will be searched in the opposite
direction of sub-tasks execution.

A. TREE-STRUCTURED TASK GRAPH
In this subsection, we consider to solve the problem in a tree-
structured task graph, e.g. the task graph in Fig. 3, where
the out-degree of each vertex is equal to 1 except for that of
the first and last vertexes. The direct successor of vertex i is
denoted as i+.

1) SUB-TASKS CLUSTERING
To facilitate estimating latency, we define a cluster Ck as a
set that consists of the sub-task k and all its predecessors
in the task graph except for the first sub-task. For exam-
ple, in Fig. 3 we have C8 = {2, 3, 6, 7, 8} and C6 =
{2, 3, 6}. We also define cluster Cl is the sub-cluster of
Ck only if Cl ⊂ Ck and sub-task l is the direct pre-
decessor of sub-task k , e.g. C6 is one of the sub-clusters
of C8.

According to the design rationales discussed above,
the algorithm is started with scheduling big clusters.We use C
to denote the set of unscheduled clusters. Considering the last
sub-task has to be computed locally, C is initialized as the set
that consists of the sub-clusters of CV , e.g. initial C = {C8, C9}
in Fig. 3. Note that the clusters in C, e.g. C8 and C9, are
disconnected with each other, as each sub-task has only one
direct successor in the tree-structured task graph, except for
the first and last one. In other words, each cluster in C can be
scheduled independently.

Algorithm 2 Heuristic Algorithm for Tree Task Graph
1: Initialize C ← {Ck}, for ∀k ∈ PV ;
2: Initialize q̃n← 0, for ∀1 ≤ n ≤ N ;
3: Calculate wk in (15) for each Ck ∈ C
4: while 1 do
5: Cm← argmax

Ck
{wk}, Ck ∈ C;

6: if δ̃m > 0 then
7: Call ClusterScheduling(Cm);
8: else
9: P1 has no solution, F∗← 1, X ← 0(N+1)×V ;
10: Break;
11: end if
12: if C is empty then
13: F∗← Fol(X) in (10);
14: Break;
15: end if
16: end while
17: return F∗,X ;

2) CLUSTER ORDERING
We assume that the edge e(i, j) (e(i, j) ∈ E) is the input
edge of Ck , if i /∈ Ck and j ∈ Ck . The sum of data at all
the input edges is defined as the input data of Ck , denoted
as Bink . As shown in Fig. 3, the input data of C8 is Bin8 =
b1,2 + b1,3 + b1,7. Similarly, if i ∈ Ck and j /∈ Ck , e(i, j) is
defined as the output edge of Ck . The data size of the output
edge is defined as the output data of Ck , denoted as Boutk , e.g.
Bout8 = b8,10 for C8 in Fig. 3. Note that the input data of all
the clusters all comes from the first sub-task, and each cluster
only has one output edge.

Because there may be more than one clusters in C,
the scheduling order of clusters should be decided,
which affects the queuing latency of sub-tasks. Obviously,
we should first schedule the computation-dominant cluster
which have large number of CPU cycles to compute, but small
size of input/output data to transfer. Therefore, to decide
the order of scheduling clusters in C, we define the weight
of the cluster Ck as the ratio of the sum of the required
CPU cycles of Ck ,

∑
i∈Ck ci, to the sum of its input and output

data, Bink + B
out
k , i.e.

wk =

∑
i∈Ck ci

Bink + B
out
k

. (15)

The cluster with the maximal weight in the current C will
achieve the largest offloading gain, which is thus scheduled
first in each iteration as summarized in Algorithm 2.

3) CLUSTER SCHEDULING
For a given cluster Ck , we will allocate all the sub-tasks
in Ck to CPU n that can minimize its service failure proba-
bility within the latency constraint. However, if none of the
CPU candidates can satisfy the latency constraint, we allo-
cate sub-task k first, then Ck will be split into several
smaller clusters which are the sub-clusters of Ck . The sets of
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Algorithm 3 Procedure of ClusterScheduling(Ck )
1: Initialized F̃ol∗← 1;
2: for n← 0 to N do
3: Calculate T̃n,k in (16);
4: if T cmp0,1 + T̃n,k + q̃n ≤ δ̃k then

5: Update the elements of the n-th row in X̃ (k)
to 1, and

other elements to 0;
6: Calculate Fol(X̃ (k)

) in (10);
7: if Fol(X̃ (k)

) < F̃ol∗ then
8: F̃ol∗← Fol(X̃ (k)

);
9: n∗← n;
10: end if
11: end if
12: end for
13: if F̃ol∗ < 1 then
14: Update X with xn∗,i← 1, for ∀i ∈ Ck ;
15: Update q̃n∗ with q̃n∗ ← q̃n∗ + T̃n∗,k ;
16: else
17: n∗ = argmin

n

(
T cmpn,k + T

cmm
nm,ksk

)
, ∀n ∈ N ;

18: Update X with xn∗,k ← 1;
19: Generate and add Cp into C for ∀p ∈ Pk ;
20: Calculate δ̃p in (18) for ∀p ∈ Pk ;
21: Calculate wp in (15), for ∀p ∈ Pk
22: end if
23: Remove Ck from C;
24: return X, C, q̃n∗ .

unscheduled cluster C will be subsequently updated by
removing the scheduled cluster and adding smaller new clus-
ters. For instance, C8 will be removed from the initial C
in Fig. 3, i.e. C = {C9}, if sub-tasks in C8 are allocated. If none
of the CPU candidates can satisfy the latency constraint,
sub-task 8 will be allocated first, and C will be updated to
C = {C6, C7, C9}.
To estimate whether Ck can meet the latency con-

straint or not, we assume a latency constraint δ̃k as the latest
time instant to complete transmitting the output data of Ck ,
as the example shown in Fig. 4. It means, if Ck is assigned to
CPU n, the sum of the following latency should not exceed δ̃k :
i) latency of computing the first sub-task, i.e. T cmp0,1 ; ii) latency
of completing Ck , i.e. T̃n,k ; iii) the relevant queuing latency at
CPU n and at the uplink and downlink, i.e. q̃n.
Specifically, completing the cluster Ck includes computing

its sub-tasks at CPU n and transmitting its input and output
data, of which latency is

T̃n,k=

comp. sub-tasks︷ ︸︸ ︷∑
i∈Ck

T cmpn,i +

trans. input︷ ︸︸ ︷∑
i∈Ck

T cmm0n,1i +

trans. output︷ ︸︸ ︷
T cmmnm,kk+ , (16)

where k+ denotes the direct successor of sub-task k ,
m denotes the CPU to compute sub-task k+.

Regarding the queuing latency q̃n(1 ≤ n ≤ N ), to simplify
the algorithm,we initialize q̃n = 0, and calculate q̃n by adding

FIGURE 4. Example of cluster scheduling: the blue sub-tasks have been
allocated.

the latency of processing clusters that are previously assigned
to CPU n. For instance, if C8 has been assigned to CPU 1,
the q̃1 will be updated to q̃1 = q̃1 + T̃1,8 which is used for
estimating the queuing latency of the next cluster allocated
to CPU 1.

In this way, we can check that if allocating the cluster Ck to
CPU n can meet the latency constraint δ̃k or not. All the CPUs
that satisfies T cmp0,1 + T̃n,k + q̃n ≤ δ̃k will be found, where the
one minimizing the service failure probability is the optimal
allocation for Ck . If T cmp0,1 + T̃n,k + q̃n > δ̃k for all the
CPU candidates, we allocate the sub-task k in Ck only to the
CPU that minimizes sub-task k’s processing latency, i.e.

ñ = argmin
n

(
T cmpn,k + T

cmm
nm,kk+

)
, (17)

where k+ denotes the direct successor of sub-task k ,
m denotes the CPU to compute sub-task k+. After that,
Ck will be removed from C. The newly split sub-clusters of
Ck will be added into C. As the sub-task k has been assigned
to CPU ñ, the latency constraint of each Ck ’s sub-cluster Cp
can be obtained by

δ̃p = δ̃k −
(
T cmpñ,k + T

cmm
ñm,kk+

)
. (18)

For clarity, Fig. 4 provides an example to illustrate the rela-
tionship among clusters’ latency constraints, δ̃k , and latency
of completing clusters, T̃n,k , at time axis.
The algorithm ends when all the sub-tasks in the task graph

are allocated. Moreover, if the case that δ̃k ≤ 0 occurs,
the problem P1 is considered as no solution, which means
F = 1. The procedure of cluster allocation is summarized
in Algorithm 3, where X̃ (k)

is the matrix to indicate the
allocation of sub-tasks in the sub-cluster Ck . Finally, the
UE will process the AR task following the optimal solution,
i.e. X , obtained by the heuristic algorithm.
We provide the complexity analysis for the proposed

heuristic algorithm as follows. We assume the maximal num-
ber of the direct predecessors of a sub-task in task graph
is L, which results in the complexity of O(L) to calculate
the sub-clusters’ weights in initial C. The maximal num-
ber of the loop iterations is (V − 2) in Algorithm 1. For
each iteration, it takes L times to find the sub-cluster with
the maximal weight. After that, ClusterScheduling(Ck ) in
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FIGURE 5. Task graph of face recognition and its simplified
tree-structured graph.

Algorithm 2 is called, with the complexityO((N+1)(V−2)).
Finally, the overall complexity of Algorithm 1 is O(L) +
O((V − 2)(L + (N + 1)(V − 2))). Due to L ≤ V − 2,
the complexity of the heuristic algorithm in the worst case
is O

(
(N + 1)(V − 2)2

)
, which is much lower than that of

IPSO-based algorithm when Gnum � 1 and Pnum � 1, i.e.
GnumPnum � (N + 1).

B. A GENERAL TASK GRAPH
In this subsection, we describe how Algorithm 2 can be
applied to solve the problemP1 in a general task graph, where
each vertex may have more than one direct successors.

Based on the observation in [8], the task graphs of
many applications can be decomposed into several tree-
structured graphs which start from a unique sub-task and
split into multiple parallel sub-tasks. To this regard, the orig-
inal task graph can be simplified into a tree-structured
graph via merging the sub-task with its direct successors.
For example, the task graph of a face recognition appli-
cation [28] in Fig. 5 consists of two parallel sub graphs
{2, 4, 5, 7, 8, 11} and {6, 9, 10, 12, 13, 14, 15}. A simplified
tree-structured task graph can be obtained when the sub-tasks
in these two sub graphs are merged into two virtual sub-
tasks (VSTs), respectively. Furthermore, we notice that the
VST-1 {2, 4, 5, 7, 8, 11} can be regarded as a tree structured
graph aswell, since the out-degree of sub-tasks (except for the
sub-task 2) in VST-1 is one. Regarding the VST-2 in Fig. 5,
it is composed of a tree graph {12, 13, 14, 15} and other one-
out-degree sub-tasks, which can be simplified into a tree-
structured graph following the above-mentioned steps.

Therefore, we can solve the problem P1 in a general
task graph by scheduling the simplified task graph with
Algorithm 2. If it cannot meet the latency constraint by
scheduling the simplified graph, considering the two ratio-
nales at the beginning of this section, we continue to schedule
the task graph of VSTs in the above-mentioned way, until
the latency constraint can be satisfied or there is no VST in
the graph any more. For instance, in Fig. 5, we schedule the
simplified graph using Algorithm 2 at first. If the latency of
allocation results T is larger than the latency constraint δ,
i.e. T − δ > 0, we can continue to schedule the task graph
of the VST, e.g. VST-1, and re-schedule the sub-tasks in
VST-1 using Algorithm 2. The reason lies in that, at the
first round of schedule, the sub-tasks in VST-1 are allocated
to the same CPU. If we re-allocate the parallel sub-tasks
in VST-1 to different CPUs at the next round, the latency
may be decreased, due to the increasing of the computation
parallelism.

To re-schedule the sub-tasks in the VST, the latency con-
straint of the VST should be redefined. We assume that, at the
previous round, the VST J and its direct successor J+ are
allocated to the CPU n and CPU m, respectively. Note that,
at the current schedule round, the first sub-task of the VST J ,
e.g. sub-task 2 in VST-1 of Fig. 5, is mandatory to be executed
at CPU n. The latency constraint of the VST J to re-schedule
is defined as

δJ =
∑
i∈J

(
T cmpn,i + T

cmm
nm,iJ+

)
︸ ︷︷ ︸
Current latency of VST

− (T − δ)︸ ︷︷ ︸
Exceeded
latency

, (19)

where T − δ > 0. The first item of (19) means the latency
of processing the VST J with the allocation of the previous
round, and the second item T −δ means the exceeded latency
of the current allocation to the latency constraint for the whole
task.

Moreover, to handle the allocation of the general task
graph, Algorithm 2 has to make a modification of its termi-
nal condition. Instead of terminating the algorithm with any
δ̃m > 0, the main loop in the Algorithm 2 will not break
until all of the sub-tasks are allocated. In this way, the latency
constraint of the VST can be calculated via (19).

VI. NUMERICAL RESULTS AND DISCUSSIONS
In this section, the performances of the proposed algorithms
are analyzed. The effects of the system environment param-
eters on the service failure probability (SFP) are studied
first in a tree-structured task graph. Sequentially, we analyze
how the characteristics of the task graph affect the algorithm
performances. Finally, we take one of important components
in AR service as an example, i.e. the face recognition appli-
cation in Fig. 5, to evaluate the algorithm performances in the
general task graph.

The configurations of the transmission links are based on
the LTE system [29]. The SNR over wireless channel is
obtained by a uniform distribution, ranging from 0 dB to
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TABLE 1. Default simulation parameters.

30 dB. At different SNRs, the MCS is dynamically adjusted
according to the targeted BLER. The SNR-MCS mapping is
achieved by the link abstraction model proposed by [30]. Var-
ious MCSs are considered combining different modulations
(QPSK, 16QAM, 64QAM) and varying coding rates ranging
from 1/9 to 9/10.

The task graph used in the simulation is randomly gener-
ated [31], which is determined by the main characteristics as
follows. i) The number of the vertexes V in the graph. ii) Out-
degree of each vertex except for the first and last vertexes,
which is set as 1 for the tree structured graph. iii) Graph shape,
which can be defined as the average width-to-height ratio of
the graph and denoted by β. It is a characteristic that presents
the parallelism degree of the task call graph. If β � 1,the
generated task graph has high parallelism; if β � 1, low-
parallelism graph is obtained. iv) Communication to compu-
tation ratio (CCR), which is to show the computation intensity
of the task [32]:

CCR =

∑
(i,j)∈E bij/ (r̄ × |E |)∑
i∈V ci/ (f0 × V )

, (20)

where r̄ denotes the average data rate over wireless channel
between UE and ENs, and |E | is the number of edges in
the graph. We assume the required number of CPU cycles
for each sub-task are selected from a Gaussian distribu-
tion with mean value of 50 × 106 cycles and variance
of 100 [33]. The computational intensive task will have a very
low CCR.

We summarize the default simulation parameters in Table 1.
The numerical results in this section are based on
5000 Monte Carlo simulations. We compare the performance
of IPSO-based algorithm and Heuristic algorithm against
1) a naive offloading scheme, i.e. Full Offloading (FO)
scheme, which computes all the offloadable sub-tasks at one
CPU that minimizes SFP; 2) one of the representative existing
algorithms, i.e. the revised partial critical path (PCP) based
scheme in [5], which fails to consider the computing resource
contention of parallel sub-tasks of an EN. The PCP-based
scheme estimates the possible starting instant of each sub-
task and add the sub-tasks with the latest starting instant into
the critical path. Then the object function of sub-tasks on the
critical path is greedily minimized. The number of particles
and generations in IPSO-based algorithm is set to Pnum = 20
and Gnum = 100, respectively.

FIGURE 6. Impact of targeted BLER on service failure probability.

A. IMPACT OF TARGETED BLER
Fig. 6 shows the cumulative distribution function (CDF)
curves of SFP over samples with random computing rates
of ENs and SNR on wireless channel. In each simulation,
the same task graph with 20 vertexes is used and the number
of ENs is 3. We define α(α > 0) as the ratio of the latency
constraint to the latency of computing the task at UE. The
larger α means to allow the task to be completed in a longer
time. Note that the latency constraint in problem P1 cannot be
met, i.e. service timeout occurs, if i) the algorithm provides
non-feasible solution for problem P1; ii) the algorithm cannot
provide a solution, but the feasible solution of problem P1
exists; iii) problem P1 has no solution. For those cases,
the service could be regarded as timeout, which means F = 1
according to the definition in (11).

From the figure, we can obtain the probability of an algo-
rithm fulfilling the targeted SFP. For instance, when BLER5

is 10−7 and α = 0.6, with the targeted SFP increasing,
the probability of all the schemes fulfilling the target rises
first. Using Full Offloading scheme, about 48% of the cases
can achieve the targeted SFP of 4 × 10−4, which cannot
rise any more even though we continue to increase the tol-
erable SFP. The reason is that the scheme always fails to
provide feasible solutions to meet the latency constraint in
some cases. It means the minimal timeout probability of Full
Offloading scheme is 52%. The PCP-based scheme can fulfill
the targeted SFP of 4× 10−4 with probability of about 60%,
since it ignores the computing resource contention of the
parallel sus-tasks, and models the latency imprecisely. Com-
pared with that, Heuristic algorithm has 98% probability to
obtain SFP below 5×10−4, which is significantly better than
that of Full Offloading scheme and PCP-based scheme. The
difference of performance between IPSO-based algorithm
and Heuristic algorithm is trivial. However, it is not feasible
to use the IPSO-based algorithm in real-time process, since
its complexity is much higher than that of Heuristic algo-
rithm (approximate 500:1) in terms of the aforementioned

5According to the 3GPP standard [34], the targeted BLER is normally
defined as 0.1, which cannot fulfill the requirement of packet error rate of
AR service (at level of 10−5), thus the BLER of 10−7 or 10−6 is selected in
our simulation
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FIGURE 7. Impact of the number of ENs on service failure probability in
terms of latency constraint: (a) α = 0.6; (b) α = 0.8.

configurations. The task is actually failed if the offloading
decision cannot be made within the delay constraint.

When the targeted BLER is 10−6, the lowest SFP that
the schemes can obtain rises to 6.4 × 10−4, since in this
scenario the communication error probability dominates the
SFP. However, with larger targeted BLER, higher order MCS
can be used on wireless channel to improve the data rate,
which contributes to shorten the communication latency. As a
result, if the targeted SFP is larger than 8 × 10−4, the prob-
ability of Full Offloading scheme fulfilling the target rises
to around 60%, which has the same performance as the
PCP-based scheme. Heuristic algorithm and IPSO-based
algorithm have similar performance, which can achieve
SFP below 10−3 with 99% probability.
If we relax the latency constraint from α = 0.6 to

α = 0.8, the performance of all the schemes is improved, but
the differences of performance between the proposed algo-
rithms and Full Offloading schemes are reduced. It means
that the proposed algorithms are more effective in the case
that latency constraint is more stringent.

B. IMPACT OF THE NUMBER OF ENS
Fig. 7 is presented to show the impact of the number of ENs
in the network on the SFP performance. The targeted BLER
is set to 10−7. Fig. 7a and 7b are simulated in terms of

FIGURE 8. Impact of the number of sub-tasks on service failure
probability.

the latency constraint α = 0.6 and α = 0.8, respectively.
In each simulation, the same tree-structured task graph are
used. As shown in Fig. 7, the SFP performance is improved
with the number of ENs increasing. In Fig. 7a, when α = 0.6,
the performance of IPSO-based algorithm is slightly better
than that of Heuristic algorithm. Both algorithms can achieve
more than 99% probability to fulfill SFP below 6 × 10−4

for N = 3. However, using Full Offloading scheme and
PCP-based scheme, about 50% and 60% of the cases can
fulfill the targeted SFP of 5×10−4, respectively, even though
the UE is allowed to access 3 ENs.

In Fig. 7b, the latency constraint ratio is relaxed from
0.6 to 0.8. The probabilities of all the schemes fulfilling the
targeted SFP are improved. Heuristic algorithm has similar
performance as IPSO-based algorithm. They can fulfill SFP
below 5× 10−4 with more than 98% probability for the case
N = 3 and N = 2, of which the performance gain to Full
Offloading scheme and PCP-based scheme is less than 5%.

C. IMPACT OF THE NUMBER OF SUB-TASKS
In Fig. 8, we illustrate the CDF curves to present how the
number of sub-tasks affects the SFP performance. In each
simulation, a tree-structured task graph is generated randomly
for a given β and CCR. The random graphs with different
number of vertexes have the same total required CPU cycles,
which means that it takes the same time to locally com-
plete the tasks with different number of sub-tasks V . The
latency constraint ratio α is set to 0.6, and the number of EN
candidates is 3. Each EN has the same computing rate and
data rate on wireless channel, where fn = 5 × 109cycles/s,
and ruln = rdln = 25Mbps for ∀1 ≤ n ≤ N . From
the figure, the reliability performances of the schemes are
improved with the number of the sub-tasks growing. The
reason lies that the CPU cycles required by the first and last
sub-tasks decrease with the number of sub-tasks growing,
when the total CPU cycles of the task is fixed. In other words,
more computation load can be offloaded to the edge. Full
Offloading scheme will have higher probability to complete
the taskwithin the latency constraint via computation offload-
ing. Moreover, the parallelism among sub-tasks may increase
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FIGURE 9. Simplified diagram of graphs with different shapes:
when β is 1, the average layer of the generated graph is

√
V−2
β

.

as well, which tends to shorten the computation latency.
We can observe that the Heuristic algorithm and IPSO-based
algorithm have similar performance when V = 20 and 15,
where they have more than 99% probability to fulfill SFP
below 4.5 × 10−4 and 5 × 10−4, respectively. If V = 10,
the probability of IPSO-based algorithm fulfilling 5.4×10−4

is slightly higher than that of Heuristic algorithm, at the
price of higher complexity. For the PCP-based scheme, its
SFP performance highly depends on the critical path selec-
tion, which is determined by the latency estimation. Since
PCP-based scheme fails to consider the limited computing
resource at ENs, the errors of the latency estimation lead to
even worse SFP performance than that of Full Offloading
scheme when the task graph varies. Furthermore, the feasible
solutions of Full Offloading scheme and PCP-based scheme
can be rarely obtained to fulfill any targeted SFP for V = 10.

D. IMPACT OF THE TASK GRAPH SHAPE
Fig. 10 presents the CDF curves of the schemes with different
shapes of task graphs. All the random samples of the tree-
structured task graphs over simulations have the same number
of vertexes and CCR. The settings of ENs in the network
are the same as the last subsection. The latency constraint
ratios α in Fig. 10a and 10b are 0.6 and 0.8, respectively.
In both cases, the SFP performances of all the schemes are
improved with β decreasing. It is because that the decrease
of β leads to out-degree of the first sub-task and in-degree of
the last sub-task decreasing, as shown in Fig. 9. It means the
parallelism of the task graph decreases, and less data tends
to be transmitted on wireless channel, which results in lower
communication error probability. Meanwhile, the queuing
latency on wireless channel may reduce as well. As a result,
in Fig. 10a, Heuristic algorithm can achieve SFP below
4×10−4 with almost 100% probability for the case β = 0.25,
while it obtains SFP below 5 × 10−4 with probability less
than 98% for the case β = 1. The IPSO-based algorithm
has similar performance of reliability as Heuristic algorithm.
Compared with that, when the β is 0.5, Full Offloading
scheme only has around 60% probability to obtain SFP below
4.5×10−4, which cannot rise any more with the targeted SFP
increasing, while PCP-based scheme has no more than 50%
probability to obtain targeted SFP of 7 × 10−4. For the case
β = 1, Full Offloading scheme and PCP-based scheme rarely
have feasible solution to the problem.

FIGURE 10. Impact of shape of task graph on service failure probability in
terms of latency constraint: (a) α = 0.6; (b) α = 0.8.

When the latency constraint is relaxed to α = 0.8, for
all the algorithms the maximal probability fulfilling a certain
targeted SFP increases.

E. IMPACT OF COMMUNICATION TO COMPUTATION
RATIO
The impact of communication to computation ratio (CCR)
on SFP performance is shown in Fig. 11. For a given β
and the number of sub-tasks, the task graph in each simu-
lation is randomly generated. The latency constraint ratios α
in Fig. 11a and 11b are 0.6 and 0.8, respectively. According
to the definition, the task graph with a smaller CCR means
the task is more computationally intensive. To compute the
task with the given CPU cycles, the smaller CCR is, the less
data is required to be transferred, which may lead to low
communication error probability on wireless channel. As a
result, the SFP performance is improved with the decreasing
of CCR. Specifically, as shown in Fig. 11a, Heuristic algo-
rithm and IPSO-based algorithm have similar performance
when CCR is equal to 0.5 and 1. For the case CCR = 2,
Heuristic algorithm has 80% probability to fulfill SFP below
5 × 10−4, while the probability of IPSO-based algorithm
achieves 99%. Compared with that, Full Offloading cannot
solve the problem P1 at all when the computation intensity
is low (CCR = 2). It can achieve SFP below 4.5 × 10−4
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FIGURE 11. Impact of CCR of task graph on service failure probability in
terms of latency constraint: (a) α = 0.6; (b) α = 0.8.

with 60% probability, when the CCR is 1. The variation of
CCR has little impact on the SFP of PCP-based scheme.

For α = 0.8, the timeout probabilities of all the schemes
are lower than that in the case α = 0.6. The probability of
Full Offloading scheme fulfilling the targeted 4.5×10−4 SFP
rises to about 98% for CCR = 1. However, for CCR = 2, Full
Offloading scheme can only fulfill SFP below 4.5×10−4 with
the probability lower than 20%.Moreover, compared with the
case α = 0.6, the probability of Heuristic algorithm fulfilling
5× 10−4 SFP rises to 90% when α = 0.8 and CCR = 2.

F. PERFORMANCE COMPARISONS IN FACE RECOGNITION
In this subsection, the task graph of face recognition applica-
tion in Fig. 5 is taken as an example to evaluate the perfor-
mances of the proposed algorithms.

Fig. 12 compares CDF curves of SFP among schemes in
terms of different targeted BLER and latency constraints.
Each curve is based on 5000 samples with random EN set-
tings. The UE is allowed to access 3 ENs simultaneously.
When the required latency is α = 0.6, SFP performance
of Heuristic algorithm is significantly better than that of
Full Offloading scheme. For the case the targeted BLER
is 10−7, Full Offloading scheme can fulfill the targeted SFP of
4×10−4 with about 30% probability, while the probability of
Heuristic algorithm fulfilling 5 × 10−4 SFP is around 90%.

FIGURE 12. Performance comparisons in a face recognition application
with various targeted BLER.

FIGURE 13. Performance comparisons in a face recognition application
with various number of ENs.

If the targeted BLER reduces to 10−6, the minimal timeout
probability of above three schemes does not have obvious
improvement. Note that the solid curve of PCP-based scheme
for α = 0.6 could hardly be shown in the figure. It means
that PCP-based scheme cannot provide feasible solution to
problem P1 at all when the latency constraint is α = 0.6.

When the latency constraint is relaxed from α = 0.6 to
α = 0.8. The reliability of both Heuristic algorithm and
Full Offloading scheme is improved and approximate to that
of IPSO-based algorithm. PCP-based scheme fulfills SFP
below 1.2 × 10−3 with more than 90% probability if BLER
is 10−6, which is lower than that of Full Offloading scheme.
Furthermore, the lowest SFP that PCP-based scheme can
achieve is higher than other three schemes. It means that,
when the targeted SFP is relatively low, PCP-based scheme
can hardly provide feasible solution. For instance, it cannot
fulfill the targeted SFP of 5 × 10−4 at all if BLER is 10−7

and α = 0.8, while other three schemes can fulfill SFP below
5× 10−4 with the probability of more than 95%.

Assume the targeted BLER is 10−7 and the latency con-
straint is α = 0.6, the impact of the number of ENs on SFP
performance in the face recognition application is presented
in Fig. 13. The reliability of schemes is improved with the
number of ENs increasing. When N = 3, the probability of
Heuristic algorithm fulfilling 4.5×10−4 SFP is around 90%.
The reliability of Heuristic algorithm scheme is much better
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than that of Full Offloading which achieves 4.5× 10−4 SFP
with 30% probability if N = 3. The PCP-based scheme
cannot provide feasible solution at all to the problem when
α = 0.6.

VII. CONCLUSION
In this paper, we systematically model the reliability and
latency of the code-partitioning offloading for MEC-enabled
AR service, and design the IPSO-based algorithm andHeuris-
tic algorithm to minimize the service failure probability of
computation offloading subject to the latency constraint. The
numerical results show that the Heuristic algorithm achieves
performance close to that of the IPSO-based algorithm with
much lower computational complexity. Compared with the
state-of-the-art algorithms, the Heuristic algorithm signifi-
cantly improves the probability to fulfill the targeted service
failure probability in various network conditions. Further-
more, the proposed algorithm is applicable to diverse uRLLC
use cases in uRLLC besides AR service, since the compu-
tation tasks in many use cases can be modeled by directed
acyclic graphs. Future research direction includes how to effi-
ciently allocate communication and computation resources
in the MEC-based network for multiple MDs with heteroge-
neous services and requirements. The non-orthogonal multi-
ple access (NOMA) assisted MEC paradigm is a promising
method to further shorten the access latency and relieve the
resource contention among users.
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