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ABSTRACT To deal with the inconsistency of the minimum variance (MV) benchmark in evaluating
non-Gaussian disturbance systems, this paper proposed a new benchmark, which combined entropy with
output mean value. For a cascade control system, the new benchmark was constructed by analyzing the
weakness of the MV benchmark and the pure Renyi entropy benchmark. In order to estimate the more
accurate performance of the unknown system, an improved estimation of distribution algorithm based on
entropy criterion is given. It can identify the disturbance distribution and calculate the new index evaluation
value. Finally, different disturbance distributions were used to verify the consistency of the new index. The
experimental results show that the proposed index and algorithms are consistent and effective in evaluating
the performance of the unknown systems with non-Gaussian disturbance.

INDEX TERMS Cascade control system, Renyi entropy, performance assessment, non-Gaussian
disturbance, EDA.

I. INTRODUCTION
System performance assessment is an effective tool to build-
ing high quality control loops. It can give health assessment,
diagnostics, even the corresponding improvement meth-
ods [1]. In 1989, Harris proposed a system performance
evaluation index based on minimum variance. The minimum
variance control(MVC) laid the foundation for the research
and development of loop assessment. Later some scholars
applied the MVC method to feed-forward control loop [2],
unstable and non-minimum phase system [3], time-varying
system [4], and multiple-input multiple-output system [5].
However, the minimum variance control law has some seri-
ous shortcomings, such as the high-gain, wide-bandwidth,
and large control signal deviation. Thus Grimble proposed a
generalized minimum variance control(GMVC) benchmark
to evaluate system performance [6]. The GMVC achieves the
benchmark by adding the error and control weighted coeffi-
cient to the control loop, but the weight selection is difficult if
the system belongs to cascade control loop. The literature [7]
used a linear quadratic Gaussian(LQG) method to replace the
MVC algorithm. Because the LQG needs to calculate both
the input and output minimum variance, LQG benchmark can
illustrate the gap between the current performance and the

ideal performance. However, the CPA based on LQG is too
complex to realize in realistic industrial processes than the
traditional MVC benchmark.

Although the current loop evaluation indicators are rela-
tively mature in related fields, most loop evaluation methods
assume that the system noise is subject to Gaussian distribu-
tion. In actual industrial processes, the actual noise distribu-
tion does not satisfy this prerequisite due to the cross-impact
of different Gaussian interference or other factors. In order
to solve this problem, Guo and Wang [8] proposed a linear
matrix inequality based on convex optimization algorithm.
It can be applied to non-Gaussian system error detection and
control law design. However, it is unnecessary to calculate the
output probability distribution function frequently. Instead,
a minimum entropy strategy which can reflect the tracking
error for all moments is proposed [9], [10]. The literature [11]
gives a method to estimate the theoretical performance value
of the system by using the minimum entropy. The consistency
of this method is better than the minimum variance index, but
it cannot achieve the estimated value of model parameter and
the distribution of unknown noise. The literature [12], [13]
proposed a method to evaluate the performance of discrete
systems by using Renyi entropy. However, there are some
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defects in the calculation of entropy theoretical values [14],
he ignored the coefficient transformation of continuous
variables. Since then, the literature [15] proposed a system
performance evaluation index based on rational entropy for
continuous systems. However, this indicator is insensitive to
the mean shift.

In reality, control processes such as chemical process
and stream turbine process are often accompanied by non-
Gaussian disturbances. Sometimes the output will have a
mean shift because of non-system internal structure. Thus the
goal of this paper is to construct a new benchmark which can
reflect the mean shift of non-Gaussian system. It based on
the minimum entropy and system mean value. It can be used
for non-Gaussian cascade control systemwhich has unknown
models. In order to achieve this goal, in section 1, this paper
analyzes the shortcomings of the minimum variance index in
the cascade system, and then derives the minimum entropy
of cascade control system according to the feedback invariant
theory in section 2. This index uses the output mean to obtain
the improved minimum entropy benchmark. In section 3,
an improved distributed estimation algorithm is then pre-
sented to estimate the disturbance distribution and to calculate
a system performance index based on the new benchmark.
Finally, in section 4, a series of experiments are carried out to
illustrate the consistency of the new benchmark. In section 5,
the conclusion is given.

FIGURE 1. Cascade control system.

II. THE ANALYSIS OF MVC FOR CASCADE SYSTEM
Comparing with the single loop system, cascade control sys-
tem can significantly reduce the maximum deviation and
integral error. Thus cascade control strategy has been widely
used in industrial process. Considering a discrete cascade
control system with time delay which is shown in Fig-1,
where the primary and secondary loop can be expressed as,

C1(k) = G1C2(k)+ GL11a1(k)+ GL12a2(k) (1)

C2(k) = G2u2(k)+ GL21a1(k)+ GL22a2(k) (2)

In the above Equation,C1(k) andC2(k) are the process output
of the primary and secondary loops at sampling instant k ,
respectively. Gc1 and Gc2 are the controller of system loops;
u1(k), u2(k) are the output of outer and inner controllers;
G1,G2 are the transfer model of the primary and secondary
loops, respectively. If the q−1 is defined as the backward
shift operator, then G1,G2 can be written as G1 = G∗1q

−d1 ,
G2 = G∗2q

−d2 where d1, d2 are the time delay of two loops.
The unknown disturbance of inner and outer loops can be
defined as a1(k) and a2(k). They can be added to the primary
and secondary loops by the filter model GL11, GL12, GL21
and GL22.

Through the Diophantine equation, the above parameter
can be done the following replacement,

GL11 = Q11 + R11q−d1−d2 GL12 = Q12 + R12q−d1−d2

(3)

GL21 = Q21 + R21q−d2 GL22 = Q22 + R22q−d2 (4)

G∗1GL21 = S1 + T1q−d2 G∗1GL22 = S2 + T2q−d2 (5)

where the Q11 and Q12 are the polynomials with order of
d1+d2−1;Q21,Q22, S1, S2 are the polynomials with order of
d2−1; Rij,Tij(i, j = 1, 2) are the conversion equations which
meet the requirements of their respective equations. Thus the
Eq.(1) can be simplified by using the Eq.(1) to Eq.(3),

C1(k) = (Q11 + S1q−d1 )a1(k)+ (Q12 + S2q−d1 )a2(k)︸ ︷︷ ︸
D1

+ q−d1−d2(M1a1(k)+M2a2(k))︸ ︷︷ ︸
D2

(6)

where the M1 and M2, shown at the bottom of this page,
are the appropriate conversion equations; D1 is the feed-
back invariant variable and D2 is feedback dependent vari-
able. According to the theory of feedback invariant control,
the variance of outer output can be expressed as,

σ 2
C1
≥ var[(Q11 + S1q−d1 )︸ ︷︷ ︸

D3

a1(k)+ (Q12 + S2q−d1 )︸ ︷︷ ︸
D4

a2(k)]

= trace[(
d1+d2+1∑
i=0

NT
i Ni) ·

∑
a] (7)

where theNi(i = 0, 1, . . . , d1+d2−1) is the two-dimensional
vector consisting of the polynomialD3 andD4; the

∑
a is the

co-variance matrix of two noises. Thus there is no restriction
on whether the two noises have correlation. If M1 = 0,
M2 = 0, the equal sign in the formula (7) is established. The
optimal control law can be obtained under the MVC method.

M1 = q−d1−d2
[
(1+ G2Gc2 )R11 + C

∗

1R21 + T1 − Q11G∗1G
∗

2Gc1Gc2 − S1G
∗

2Gc2 (1+ G1Gc1 )

1+ G2Gc2 + G1G2Gc1Gc2

]
M2 = q−d1−d2

[
(1+ G2Gc2 )R12 + C

∗

1R22 + T2 − Q12G∗1G
∗

2Gc1Gc2 − S2G
∗

2Gc2 (1+ G1Gc1 )

1+ G2Gc2 + G1G2Gc1Gc2

]
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It can be written as,

ηmv =
σ 2
mv

σ 2
C1

(8)

where the σ 2
c1 is the actual variance of primary loop output;

σ 2
MV is the theoretical minimum variance.
Although the MVC benchmark can accurately evaluate the

performance of theGaussian system, there is an inconsistency
in evaluating the performance of non-Gaussian system. For
example, considering the following system,

C1(k) =
1

1− 0.9q−1
C2(k − 2)+

1
1− 0.8q−1

a1(k)

C2(k) =
1

1− 0.5q−1
u2(k − 1)+

1
1− 0.3q−1

a2(k)

GC1 =
0.48− 0.46q−1

1− q−1
GC2 = 0.7

(9)

Assume that the disturbances are subject to Gaussian distribu-
tion where a1, a2 ∼ N (0, 1) and the noises are independent,
we can achieve 1000 groups data from the main loop output.
Then the actual variance can be obtained as σ 2

c1 = 3.7432
and the minimum variance is σ 2

mv = 3.0496. According
to the Eq.(8), the MVC index is ηmv = 0.8147. From the
index we can find that the performance of system is well. But
considering the non-Gaussian disturbances where a1, a2 are
subject to β and Gaussian bi-modal distributions respectively,
their probability density functions can be given as,

aβ (α, β) ∼
0(α + β)
0(α)0(β)

xα−1(1− x)β−1 (10)

aB(r, µ1, σ1, µ2, σ2)

∼
r

√
2πσ1

e
(− (x−µ1)

2

2σ21
)
+

1− r
√
2πσ2

e
(− (x−µ2)

2

2σ22
)

(11)

We can make F(a) = a − mean(a) to adjust the mean of
disturbance a to zero. Then the disturbances satisfy a1 =
r1F(aβ ), a2 = r2F(aB) where r1, r2 are the constant. Thus
the normal probability plots can be shown as, Notes that if the
curves in the Normal probability plots deviate from straight
lines, the curves can be thought satisfy the non-Gaussian
properties. Then the system output can be shown in Fig.3,
It is obviously that main areas of two experiments are roughly
with [−1.4 1.4]. Although the fluctuation of second group is
smaller than first group, the index of two groups are ηmv,1 =
0.7156 and ηmv,2 = 0.6203. It means the results of MVC
index are inconsistent with the actual system performance.
Thus the MVC is no suitable for performance assessment of
non-Gaussian system.

III. IMPROVED RENYI ENTROPY
Since entropy is a functional of probability density func-
tion, including the statistical characteristics of whole output
sequence, entropy is an better optimal benchmark for per-
formance assessment of non-Gaussian system than minimum
variance.

FIGURE 2. Normal probability plots for two experiments.

FIGURE 3. Primary output of two experiments.

A. THE CALCULATION OF RENYI ENTROPY
Due to the calculation of entropy is based on the probabil-
ity distribution instead of the distance, the outlier has no
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significant impact on the result. In this paper, the second
order Renyi entropy is used to construct the system per-
formance benchmark. For refined discrete random variable
X = {x1, x2, . . . , xn}, the entropy can be expressed as,

H2(X ) = − ln
n∑
i=0

p2i (12)

where the pi is the probability of each parameter xi(i =

1, 2, . . . , n) and
n∑
i=0

pi = 1. When calculate the entropy

of discrete variables, the output value will be divided
into several non-overlapping regions. Then we can calcu-
late the respective probabilities of each interval regions by
counting the number of each interval to obtain the Renyi
entropy. Considering the cascade control system which is
shown in Fig.1, the Renyi entropy of the primary loop is
expressed as,

H2(C1) = H ((Q11 + S1q−d1 )a1(k)+ (Q12 + S2q−d1 )a2(k)

+ q−d1−d2(M1a1(k)+M2a2(k))) (13)

Similar to MVC method, the optimal control law can be
obtained when the feedback dependent variable is zero.
Thus,

Hme(C1) = H ((Q11 + S1q−d1 )a1(k)

+ (Q12 + S2q−d1 )a2(k)) (14)

In literature [10], [11], he used the criterion of informa-
tion theory to expand and decompose the polynomials of
feedback invariants. He ignored the expanded coefficients of
a1(k), a2(k) when calculated the minimum entropy. While it
has been proved that the entropy and coefficients are closely
related in literature [14], [15], so the pure benchmark of Renyi
entropy is,

ηme =
Hmv(C1)
H2(C1)

(15)

But according to the research, entropy is the index to describe
the shape of the distribution, the pure entropy cannot reflect
the shift of the outputmean value. Thus in this paper the Renyi
entropy benchmark is combined with the mean benchmark to
evaluate the performance of non-Gaussian system. The mean
benchmark is,

ηM =


{
1−
|mean(C1 − R)|

W
|mean(C1 − R)| < W

0 |mean(C1 − R)| ≥ W
(16)

where the W is the maximum allowed mean offset and R is
the relaxation variable which is used to control the deviation
amplitude when the W is given. Commonly, the R is set
to zero. If the mean offset exceeds this value, the system
performance is considered to be worst. ηM ∈ [0, 1], the closer
to 1 the system offset is, the better the control performance is.
Thus the improved benchmark for Renyi entropy is,

ηfinal = ηme × ηM (17)

TABLE 1. Configure of different disturbances.

TABLE 2. The result of four experiments.

B. THE ESTIMATED OF MODEL UNKNOWN SYSTEM
When the system model and disturbance are all known,
the minimum variance benchmark and minimum entropy
benchmark can be calculated easily. But for the model
unknown system, we need to identified their model and time
delay firstly. The traditional minimum mean square based
on the least square algorithm(LS) is not ideal. Considering
the property of entropy, in this paper, we use the minimum
entropy criterion rather than the minimum mean square to
calculate the benchmark. The Eq.(1) can be expressed as the
sliding auto-regressive model,

(1+ α(1)1 q−1 + α(1)2 q−2 + . . .+ α(1)n1 q
−n1 )C1(k)

= (β(1)1 q−1 + β(1)2 q−2 + . . .+ β(1)n1 q
−n2 )C2(k)

+ (1+ γ (1)
1 q−1 + γ (1)

2 q−2 + . . .+ γ (1)
n1 q
−n3 )a1(k)

(18)

where α(1)i β
(1)
i γ

(1)
i are the parameter which needs to be iden-

tified; nj(j = 1, 2, 3) is the order of the system polynomials,
it can be obtained by AIC criterion. Then we can define,

θ = [α(1)1 . . . α(1)n1 β
(1)
1 . . . β(1)n2 γ

(1)
1 . . . γ (1)

n3 ]T

(19)

hT = [−C1(k − 1) . . . − C1(k − n1) C2(k − 1) . . .

C2(k − n2)a1(k − 1) . . . a1(k − n3)]T (20)
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FIGURE 4. The estimation of primary loop disturbances for 4 sets of experiments.

where the vector hT can be obtained from the observed data
and a1 can be estimated. According to the Eq.(18), the resid-
ual can be shown as,

e(k) = C1(k)− hT (k)θ (21)

The goal of this method is to achieve,

θopt = argmin H2(e)θ ∈ �θ (22)

H2(e) = − ln
L∑
i=1

p̂2i (23)

where the residual sequence is e = {e1, e2, . . . , eL}, L is the
length of data. The �θ is the parameter space.

C. IMPROVED EDA ALGORITHM
Due to the H2(e) is not microscopic, it is impossible to
search the optimal parameters by using the gradient method.
Thus the estimated distribution algorithm(EDA) is adopted.
EDA is evolutionary algorithm based on the statistical theory.

The probability model is used to obtain the distribution of
the system solutions. It first presents a probabilistic model
for describing candidate solution distribution information in
search space by using the statistical learningmethod [1], [16].
Then it will use the new model to generate the new solution.
The poor fitness value will be replaced by those new solu-
tions. After several iterates, the algorithm will be end if the
criterion ismet. The optimal solutionwill be obtained. But the
search speed of traditional EDA algorithm is too slower, this
paper uses the Recursive Expanded Least Square (RELS) to
achieve the roughly estimation of model parameter θRELS and
the standard deviation of disturbance σRELS. The condition
for iterate termination is

mean((C1 − hT θ )2) < ε (ε > 0) (24)

Thus the improved EDA algorithm can be described as
following,
(1) Firstly, the l means the count of iterations. The

rough parameter model can be obtained by using
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FIGURE 5. The primary output of four experiments.

the RELS method, we choose R solutions A(l) =
{θ

(l)
1 , θ

(l)
2 , . . . , θ

(l)
R }, l = 0, where the A(l) is parameter

space.
(2) Calculate whether these R solutions satisfy the termina-

tion condition (24), then remove those solutions which
does not satisfy the condition and regenerate the new
solution until the number of them is not less than R.

(3) Calculate the residual sequence e(l)i = {e
(l)
i,1, e

(l)
i,2, . . . ,

e(l)i,L}, (i = 1, 2, . . . ,R) and the entropy H2(e
(l)
i ). Select

the N solutions (N ≤ R) with smallest residual entropy
as the optimal solutions of current iteration, expressed
as B(l) = {φ(l)1 , φ

(l)
2 , . . . , φ

(l)
N }.

(4) The new probability model can be established from
the B(l). Then regenerate R-N solutions and combine
them into B(l) to achieve the lth(l = l + 1) parameter
space A(l).

(5) Go to the step (2).

From the improved EDA algorithm, we can obtain the
optimal parameter model and the PDF of the disturbance.

Then the improved Renyi benchmark can be calculated by
suing the Eq.(12) to Eq.(15).

IV. SIMULATION
In order to illustrated the effectiveness of the proposed
method, the system in section1 is used based on theMATLAB
platform. In all following experiments, the parameters in
improved EDA were set to N = 80,R = 200. The Gaussian
model is used as the probability model for the new solutions.
It is expressed as,
f (θ (l+1)i,j ) =

1
√
2πσj

e−((θ
(l+1)
i,j −µj)2)/2σ 2j i = 1, 2, . . . ,N

µj =
1
R

R∑
i=1

θ
(l)
i,j σj =

1
R

R∑
i=1

(θ (l)i,j − µj)

(25)

where the θ (l)i,j is the jth parameter of the parameter vector θ (l)i .

The terminated condition is set as
∣∣∣H (l)

2 − H
(l−1)
2

∣∣∣ ≤ 0.001.
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To fully explain the accuracy of the simulation, we choose
four sets of experiments,

To verify the accuracy of the improved EDA algorithm,
the disturbances a1 of the above table-1 are compared with
the actual value and estimated value based on the least
square(LS) algorithm. The results are shown in Fig.4.

It can be seen from the four figures that the EDA algorithm
performs better than LS algorithm for both Gaussian distur-
bances and non-Gaussian disturbances. The main reason is
that the least square algorithm cannot reflect the statistical
characteristics of the whole system, so the result of LS algo-
rithm has large deviation.

To simulate the mean shift of the system output, a zero
offset of amplitude 1 is added to the system output of the third
experiment. The output plot is shown in Fig.5,

To illustrate the performance of system output, the intervals
are chosen as triple the standard deviation which is shown
as the horizontal lines in the Fig-5. The output intervals
of 4 experiments are 0.8831, 0.8092, 0.6503, 0.7353. The
following table-2 shows the theoretical values and estimated
values of MVC benchmark, minimum entropy benchmark
(the method which is proposed in literature [15]) and the
improved Renyi entropy benchmark which is proposed in this
paper.

From the table we can find that the theoretical value
of both minimum entropy and improved Renyi entropy is
very close to estimated value. It illustrates the effective-
ness of improved EDA algorithm. Moreover, compared with
other two benchmark, the improved Renyi entropy is more
accurate to reflect the mean shift. It reflect the fluctua-
tion of the system output. However, the MVC benchmark
and pure minimum entropy benchmark are slow to the
fluctuation of output. Thus we can say that the improved
entropy benchmark has better robust, accuracy and consis-
tency for non-Gaussian system. The improved EDA algo-
rithm perform well in estimating the parameter space and
disturbances.

V. CONCLUSION
In this paper, the routinely MVC method is reviewed and its
defects are illustrated by using the experiment in section 1.
The shortcomings of traditional Renyi entropy is illustrated
in Section 2. Considering the characteristic of entropy,
the improved benchmark based on the mean offset and
improved Renyi entropy is proposed. From the simulations
in section 4, the improved Renyi entropy can reflect the
current performance of a non-Gaussian system with mean
shift well. A serious of experiments with mixture distur-
bances validated the accuracy, robust and consistency of the
improved Renyi entropy benchmark. It lays the theoretical
foundation for practical engineering. But there still some
problems, such as the efficiency of the EDA algorithm is poor.
The next step is to improved the efficiency of the proposed
method.
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