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ABSTRACT The systems modeling technique is used for developing an abstract model to help analyze and
understand the functionality of a system. In this paper, we introduce a new approach for general-purpose
systems modeling called structure-behavior coalescence (SBC), which supports the integration of modeling
both structural and behavioral aspects of a system in a single diagram. Process algebra is utilized to describe
the interactions between the components of the system. SBC combines graphical notation and process algebra
to provide formalism and an intuitive representation in the development of the conceptual model. The SBC
model can clearly describe the interactions between system components and precisely specify the execution
order of an entire system via algebraic operations.

INDEX TERMS Systems modeling, process algebra, systems architecture, systems engineering.

I. INTRODUCTION
The need for systemsmodeling arises from the large and com-
plex nature of real-world systems. Systems modeling is for
conceptually developing and reasoning about the functions,
data, structure, and behavior of systems, where a system
model describes and represents all these various aspects in
graphical or textual ways.

Various modeling techniques and languages have been
developed for different purposes [1]–[6]. In the area of infor-
mation systems design, the entity-relationship (ER)model [1]
is a popular data modeling technique for specifying the rela-
tionships between entity types, and the Unified Modeling
Language (UML) [2]–[4] is used for the visualization of
object-oriented software designs.

General systems modeling languages include the Object-
Process Methodology (OPM) [6]–[9] and the Systems Mod-
eling Language (SysML) [4]–[6]. The OPM models both the
structure and behavior components of a system in a single dia-
gram. The SysML, which providesmultiple views of a system
with various diagrams, is an extension of the software-centric
UML for general systems engineering and is considered to be
more expressive for details [10].

The unification to a single diagram of OPM helps to
avoid the model multiplicity problem caused by separating
the object model (system structure) from the process model
(system behavior) [11]. OPM provides an equivalent tex-
tual description of the OPM system diagram. The diagram

provides an overall picture of the system, while the textual
description helps to understand the details of the system.
However, the textual description of OPM consists of human-
readable English sentences but is not executable and lacks
strict formalism, which means that automation of system
modeling and simulation is difficult in OPM.

We are in favor of integrating objects with processes into
a single diagram such as OPM and proposing the structure-
behavior coalescence (SBC) approach, which leverages the
mechanisms of process algebra [12]–[15]. SBC utilizes pro-
cess algebra to model the behavior of systems, and the
process algebra provides a mathematical structure for per-
forming computations on processes with operators based on
axioms [16]. Featuring process algebra, SBC enables the
equational reasoning of system behavior and the description
and specification of systems via algebra.

The main difference between SBC and OPM is that SBC
uses only one semantic notation, i.e., the interaction between
caller and callee, with process algebra to describe the execu-
tions of the system, whereas the OPM uses several seman-
tic entities to connect processes to processes, processes to
objects, and objects to objects with control flow and object
states and conditions to specify the execution order. Algebra
can be a representationally efficient way to reason about
systems since the operands can incorporate the information
of algebraic expressions and operations can be written in for-
mal expressions with the associative or commutative formal
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properties. SBC leverages process algebra to clearly describe
the interactions in systems with simple and intuitive algebraic
operations to reason about complex systems.

System behavior is composed of concurrent executions of
several processes, which influence each other by exchanging
messages. Process algebra is a diverse family of methods
for formally modeling concurrent systems with high-level
descriptions of synchronizations, communications, and inter-
actions between a collection of processes. The SBC pro-
cess algebra is based on the calculus of communicating
systems (CCS) process algebra [13] due to its simplicity
and intuitive representation of operations and the potential
of extending to π -calculus, which provides process mobil-
ity [14]. The system behavior described by process algebra
can be analyzed by equational reasoning and is executable
algebraically. SBC capitalizes on the process algebra to pro-
vide formalism in the system modeling; hence, the SBC
model is suited for high-level modeling as well as verification
and simulation of complex systems. Early prototyping is
possible for analyses by simulating the behavior under certain
circumstances, and the verification can determine whether
the system satisfies certain properties or displays the desired
behavior.

The rest of this paper is organized as follows: Section II
reviews the related studies. Section III develops the SBC
approach for systems modeling. In Section IV, we present
the application of SBC systemsmodeling and compare it with
that of OPM and SysML. Section V gives the conclusion and
discusses the limitations of SBC.

II. LITERATURE REVIEW
The notion of systems has been applied in various
fields, such as systems theory [17], systems analysis and
design [18], [19], and systems engineering [20], [21].

Systems thinking is the core principle of the systems engi-
neering. The systems analyses of systems models reflect the
systems thinking. Model-based systems engineering is the
use of a formal model to reason about a problem [22], [23].
System models can be utilized to describe existing systems,
to prescribe future systems, and to reason about or analyze a
system.

The OPM [7], [8] is a general-purpose systems modeling
language that integrates the structural and behavioral aspects
of a system into a single diagram. The OPM represents the
system as equivalent graphics and text. The graphical part,
called the Object-Process Diagram, visualizes the system
with notations of objects, states of objects, processes, and
links by plotting a single diagram. The equivalent textual
description, called the Object-Process Language, provides a
clear way to investigate the details of the system. In OPM,
the objects are static with optional quantitative or qualitative
properties to define the states of objects, and the processes are
dynamic, which can transform objects, for example, creating,
destroying, or changing the states of objects. The OPM has a
MATLAB extension that can be used to add computational
ability to the OPM conceptual model [24]. Two approaches

exist: the first is to represent the entire OPM model in
MATLAB code, while the second is to replace the compu-
tation parts of processes in the OPM with either MATLAB
functions or MATLAB Simulink models. These extensions
enhance the computational ability of the OPM conceptual
model. The integrated modeling approach of OPM helps
to mitigate the model multiplicity problem and prevents
the potential inconsistency that may occur in multi-diagram
environments [8], [11]. Multi-diagram approaches such as
SysML and UML utilize separate diagrams to describe dif-
ferent aspects of a system. A reader needs to simultaneously
refer to various diagrams and fuse the diagrams mentally to
comprehend the system and its operations. Our SBC method
is also a single-diagram approach and therefore, like OPM,
has the advantage of the inherent integration of structure
and behavior. However, in OPM models, the sequence of
executing processes is represented only implicitly by the
control flow. By contrast, the SBC utilizes process algebra to
explicitly and clearly specify the execution order of the entire
system.

UML [2], [3] is an Object Management Group standard
for the visualization, description, and modeling of object-
oriented software system development. UML consists of stan-
dardized graphical notations for creating an abstract model
of a system. UML uses a collection of diagrams to represent
different aspects of a system. The SysML is an extension of
a subset of UML 2.0 diagrams for general-purpose systems
engineering [4]–[6]. SysML has nine diagrams for represent-
ing different aspects of systems. The SysML diagrams are
categorized as structural or behavioral, and each category
has four diagrams to reflect the various aspects of a system.
The structural diagrams include the block definition diagram,
internal block diagram, package diagram, and parametric dia-
gram, and the behavioral diagrams include the use case dia-
gram, activity diagram, sequence diagram, and state machine
diagram. A special diagram in SysML is the requirement
diagram, which supplies the text-based requirements of a sys-
tem. The requirement diagram can be shown in a graphical,
tabular, or tree structure format. Because requirements can
appear in other diagrams to illustrate the relationships with
other modeling elements, the requirement diagram provides
a way to better integrate the system requirements with other
diagrams.

Since SysML is a multi-view approach based on UML,
there may be inconsistencies between different diagrams.
To ensure and check the consistency, a metamodel [25],
which defines the syntax of a modeling language, provides a
unifying framework for defining consistency rules to impose
constraints on components [5], [25], [26]. Consistency
rules are usually defined in the object constraint language
(OCL) [27] and the action language for foundational UML
(Alf) [28], [29] to check for conflicting syntax or semantics
between the diagrams. Our SBC adopts an OPM-like single
diagram approach to prevent the multi-diagram inconsis-
tencies, and the process algebra-based interactions in SBC
enforce strict formalism on the model.
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The Universal Systems Language (USL) [30] is a formal
modeling language for the design of software and complex
systems and can provide formal semantics to support SysML
specifications [31]. The USLwas developed based on axioms
of a general systems theory to provide formal foundations.
In the USL, a system is defined as function maps (FMaps)
representing dynamic actions and type maps (TMaps) repre-
senting static objects, with all maps being defined in terms of
three control structures: ‘‘join’’, ‘‘include’’, and ‘‘or’’. How-
ever, use of these primitive structures can be cumbersome
when designing the structures of complex systems. SBC uses
only one kind of semantic link, i.e., the interaction, to connect
components and represent processes, which is succinct and
intuitive, and the control flow of SBC is clearly specified by
the process algebra.

The Object-Process Network (OPN) [32] is an executable
modeling language for systems architecting. Algebraic oper-
ations are introduced into the single-diagram representation
of OPM to represent and manipulate the simulation models.
OPN enforces bipartite graph formalism, allowing only direct
connections from objects to processes and vice versa, which
helps to implement execution engines based on graphical
computing models. However, the Petri net-like connections
between objects and processes in OPN can be difficult in
conceptual modeling. By contrast, SBC utilizes simple but
intuitive process algebra to model the processes and connect
objects, precisely specifying the execution order and provid-
ing a clear and efficient representation for reasoning about a
complex system.

Process algebra offers algebraic rules for the specification
of processes and allows formal reasoning about and analy-
sis of the system behavior. In addition to the original goal
of describing concurrent systems, process algebra has also
been utilized to reason about cryptographic protocols [33],
business processes [34], and systems biology [35]. SBC
capitalizes on the expressiveness and equational reasoning
properties of process algebra to develop a system modeling
approach that clearly describes the interactions among system
components with simple algebraic operations.

III. THE STRUCTURE-BEHAVIOR
COALESCENCE APPROACH
In this section, we introduce the SBC approach and its ratio-
nale. We first describe the interactions, which convey both
the structural and behavioral information of the system. Then,
we describe the SBC process algebra through which the inter-
actions are formulated as equations in SBC process algebra.
Finally, we construct the SBC syntax and define the transition
semantics of the SBC process algebra. An example of SBC
modeling is presented in the next section.

A. OPERATION-BASED VALUE-PASSING INTERACTIONS
In SBC, all components are linked by interactions. The
interaction is the only semantic entity of the SBC approach
and is formalized as an operation-based method for passing
values.

FIGURE 1. A component may have several operations.

FIGURE 2. An operation may contain several input/output parameters.

The component is a physical or informatical entity. The
component can also be a department or personnel respon-
sible for specific functions. An operation equipped with a
component represents a procedure, a method, or a function of
the component. A component may be associated with several
operations, as shown in Fig. 1. An operation may contain
several input parameters (e.g., i1, i2) and output parameters
(e.g., o3, o4), as shown in Fig. 2. These input and out-
put parameters may represent matter, energy, data, informa-
tion or messages.

An operation formula is used to completely describe
an operation. An operation formula consists of the opera-
tion name, input parameters (e.g., i1, i2, . . . , im), and output
parameters (e.g., o1, o2, . . . , on).
To define the process algebra, we start with a set of

interactions whose purpose is to offer the basic form
of synchronization and communication between agents.
An interaction represents an indivisible and instantaneous
handshake or rendezvous between two agents [12]–[15].
In the operation-based value-passing interaction approach
shown in Fig. 3, the caller agent (either an external envi-
ronment actor or component) interacts with the callee agent
(component) through the operation call or operation return
interaction. The solid line indicates an operation call from
the caller to the callee, and the dashed line indicates
an operation return from the callee to the caller. In the
figure, getPastDueBalance(In studentId) is an
operation call formula and getPastDueBalance(Out
PastDueBalance) is an operation return formula. The
operation call formula and its corresponding operation return
formula can be merged into an operation formula.

The external environment uses a ‘‘type 1 interaction’’
to interact with a component. We formally describe an
operation-based value-passing type 1 interaction as a 4-tuple
Type 1 Interaction = <operation call or
return, actor, operation call or return
formula, callee component>, where operation
call or return represents an OPERATION CALL or
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FIGURE 3. Operation-based value-passing interactions.

FIGURE 4. Formal description of a type 1 interaction.

OPERATION RETURN tag, actor represents the name
of the external environment’s actor, operation call
or return formula represents an operation call or
operation return formula and callee component repre-
sents the name of the callee component, as shown in Fig. 4.

Two components use a ‘‘type 2 interaction’’ to inter-
act with each other. We formally describe an operation-
based value-passing type 2 interaction as a 4-tuple Type 2
Interaction = <operation call or return,
caller component, operation call or return
formula, callee component>, where operation
call or return represents an OPERATION CALL or
OPERATION RETURN tag, caller component repre-
sents the name of the caller component, operation call
or return formula represents an operation call or
operation return formula and callee component repre-
sents the name of the callee component, as shown in Fig. 5.

FIGURE 5. Formal description of a type 2 interaction.

B. MATHEMATICS OF THE SBC PROCESS ALGEBRA
A process consists of a sequence of interactions between
components of a system. Therefore, in addition to
the interactions, we need operators to constitute new
processes [12]–[15].

TABLE 1. Entities of SBC process algebra.

Wefirst define the entities used in the SBC process algebra.
We assume a possibly infinite set of operation call or opera-
tion return formulas. As shown in Table 1, we let G be the set
of type 1 interactions, ranged over by g.

We let V be the set of type 2 interactions, ranged over
by v. We let 1 be the set of type 1 or 2 interactions, ranged
over by a.

Process expressions describe processes in mathematical
notation. A process expression represents a state of the sys-
tem, incorporating both structure and behavior information.
A sequential process indicates state transitions, and processes
can be combined to make larger processes. We let 9 be the
set of process expressions, ranged over by E .

Process constants are used to name processes. For example,
A def
= E means that E is the body of the defined constant A.

We let 8 be the set of process constants, ranged over by A.
A process variable can be instantiated by a process. We let χ
be the set of process variables, ranged over by X .

Then, we introduce the operators of SBC process algebra
for constituting a new process. The operators include sequen-
tial composition of processes, summation of processes,
parallel composition of processes, recursive definition of a
process, and the null process, as described below.

1) SEQUENTIAL COMPOSITION OF PROCESSES
Sequential composition is known from other models of pro-
cess executions. Sometimes process executions must be tem-
porally ordered. For example, it might be appropriate to
describe algorithms such as execute the E1 process first and
then execute the E2 process later. Sequential composition can
be used for such purposes. The sequential composition of two
processes E1 and E2, generally written as E1 • E2, indicates
that the executions in E1 and E2 must proceed sequentially.

2) SUMMATION OF PROCESSES
The binary operator ‘‘+’’, summation, combines two pro-
cess expressions as alternatives; i.e., it represents the
choice between alternative process expressions. For example,
the process E1+E2 can proceed either as the process E1 or the
process E2. As soon as the first interaction occurs, the other
is discarded.

3) PARALLEL COMPOSITION OF PROCESSES
Parallel composition of two processes E1 and E2, written
as E1||E2, distinguishes the process algebra from sequential
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models of process executions. Parallel composition permits
the executions in E1 and E2 to proceed independently and
concurrently.

4) RECURSIVE DEFINITION OF A PROCESS
The operators presented so far depict only finite interactions
and are therefore insufficient for full computability, which
contains non-terminating (or looping) behavior. Recursion is
the operator that allows finite descriptions of infinite behav-
ior. For example, fix(X = E) is understood as the abbrevia-
tion of the recursive definition of an infinite behavior denoted
by the X process variable. Here, we utilize the fixed-point
combinator to give recursive definitions [36]. fix is a higher-
order function that returns the fixed point of the function.
fix(X = E) means that E is the expression of the recursive
process X .

5) NULL PROCESS
Process algebra usually also includes a null process, denoted
as STOP, which has no interaction point. This process is
completely inactive, and its unique intention is to act as the
inductive anchor on top of which some processes can be
generated.

C. TRANSITIONAL SEMANTICS OF THE
SBC PROCESS ALGEBRA
To give meaning to the SBC process algebra, we shall use the
following transition system

(9,1, {
a
−→: a ∈ 1})

which consists of a set 9 of process expressions, a set 1 of
transition type 1 or 2 interactions, and a transition relation
a
−→⊆ 9 ×9 for each a ∈ 1. The semantics for 9 consist of
the transition rules of each transition relation over 9. These
transition rules follow the structure of expressions.

FIGURE 6. Transition rules for SBC process algebra.

Fig. 6 gives the complete set of transition rules: Prefix,
Summation, Recursion and Constant.

The rule for Prefix can be read as follows: Under any
circumstances, we always infer a•E

a
−→ E , i.e., an expression

with an interaction prefixed to it will use this interaction to
accomplish the transition.

The rule for Summation can be read as follows: If any one
summand Ej of the sum

∑
i∈I Ei has an interaction, then the

whole sum also has that interaction. Finite Summation, which
is sufficient for many practical purposes, can be presented in
a more convenient form. If I = {1, 2}, then we obtain two
rules for E1 + E2 by setting j = 1, 2:

E1
a
−→ E ′1

E1 + E2
a
−→ E ′1

E2
a
−→ E ′2

E1 + E2
a
−→ E ′2

.

Additionally, we define STOP def
=

∑
i∈∅ Ei. Because I = ∅

in this case, there is no rule for the null process STOP, which
reflects the fact that STOP has no transitions.
The rule for Recursion can be read as follows: Any interac-

tion, which may be inferred for the fix expression expanded
once by substituting itself for its bound variable, can be
inferred for the fix expression itself.

The rule for Constant can be read as follows: Each constant
has the same transitions as its defining expression.

D. LANGUAGE CONSTRUCTS OF THE
SBC PROCESS ALGEBRA
We now define the SBC syntax for describing the whole
system in Backus-Naur form (BNF) [37]. BNF is a notation
technique for describing the syntax of languages used in
programming languages, document formats, communication
protocols, etc. In the SBC approach, the syntax of the process
algebra is defined with the following BNF grammar.

(1)<System>

::="fix("<Proces Variable>"="∑
i∈I

<IFDi>")"

(2)<IFD>::= <Type 1 Interaction>

{"•"<Type 1 or 2 Interaction>}

"•"<Process Variable>

(3)<Type 1 or 2 Interaction>

::=<Type 1 Interaction>|

<Type 2 Interaction>

Rule 1 states that the recursion (i.e., fix) of summa-
tion (i.e.,

∑
i∈I ) of one or more interaction flow diagrams

(i.e., IFDi) defines the SBC process expression of a system.
Rule 2 states that an interaction flow diagram is defined by
a type 1 interaction followed by zero or more type 1 or 2
interactions. Rule 3 states that a type 1 or 2 interaction is
either a type 1 interaction or a type 2 interaction.

In the SBC process algebra, the process of a system is
defined as fix(X =

∑
i∈I (IFDi •X )), and the process of IFDi

is defined as •j∈Jaij, where ai1 = gi1 for all i ∈ I . To combine
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FIGURE 7. SBC Backus-Naur form tree of a system.

these definitions, we use the SBC process algebra to formally
define a system as

fix(X = g11 • a12 • a13 • · · · • X + g21 • a22 • a23 • · · · • X

+ · · · + gM1 • aM2 • aM3 • · · · • aMN • X ).

We utilize the BNF tree to illustrate the syntactic struc-
ture of the entity sequence that constitutes the SBC process.
The SBC process algebra BNF tree of a system is shown
in Fig. 7.

The SBC process algebra consists of two parts. The first
part models the interactions that occur in the process of a
system, and the second part models the execution order of
the entire system. The interactions provide the basic form of
communication between agents in the SBC process algebra.
The agent may be an external environment actor or a compo-
nent. All the interactions of the SBC process of a system are
shown in Fig. 8.
Based on the SBC transitional semantics, whenever

E
a1
−→ · · ·

an
−→ E ′, we say that (a1 · · · an,E ′) is a derivative of

E . The derivatives of a process expression E can conveniently
be collected into the SBC transition graph of E . We use the
SBC transition graph to define the execution of the entire
system, as shown in Fig. 9. In the SBC transition graph,
a process expression is represented by a labeled circle, edges
are used to represent the ‘‘transition’’ between two process
expressions, and the starting process expression is usually
represented by an arrowwith no origin pointing to the process
expression.

FIGURE 8. Interactions of the SBC process of a system.

FIGURE 9. SBC transition graph of a system.

E. SIMULATION OF THE SBC PROCESS ALGEBRA
We implement the simulator of SBC models to execute the
SBC process algebra. The SBC simulation adopts a single-
queue interaction scheduling algorithm. Only one queen is
present in the SBC simulation, as shown in Fig. 10. When the
execution of an interaction flow diagram is ready, the to-be-
executed interactions, such as g11, a12, . . . , aMN , are added
one-by-one to the end of the SBC simulation queue. Ready-
Head points to the interaction at the head of the queue. The
SBC simulation scheduling algorithm picks only the to-be-
executed interaction at the head of that queue. When the
queue becomes empty, the idle routine is executed.

IV. THE APPLICATION OF SBC SYSTEMS MODELING
We illustrate the application of SBC systems modeling
with a vending machine example. A vending machine is an
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FIGURE 10. The SBC simulation.

automated machine that sells products to customers.
A customer inserts enough money for a product and selects
a specific product; then, the vending machine dispenses
the selected product and dispenses change if necessary.
A vending machine is a rather complex system with several
features. Customers interact with the coin receptacle and
buttons of the vending machine, and the vendor needs to refill
the vending products and change. To create a system model
of a vending machine, we begin by describing the operational
scenario of the vending machine.

The vending machine accepts coins or credit from the
customer in payment for their purchase. The vendingmachine
returns the customer’s payment if he or she decides not to
make a product selection. The vending machine accepts the
customer’s product selection. Once the customer makes a
selection, the vending machine dispenses the product to the
customer. To ensure that most vending products are available
for customers to purchase, the vendor regularly checks the
product store to see if any product needs to be refilled.
The vendor refills the product store as needed. The vendor
regularly checks and refills the coin store as needed to ensure
that there are deposited coins available for change.

All the interactions of the vending machine SBC process
are shown in Fig. 11. The SBC process algebra for modeling
the vending machine, E000, is defined as fix(X = g11 • v12 •
v13 • v14 •X + g21 • v22 • v23 • v24 • g25 • v14 •X + g31 • v32 •
v33 • v34 • g35 • v23 • v24 • g25 • v14 •X + g41 •X + g51 •X ).
The BNF tree of the vending machine SBC process algebra

is shown in Fig. 12, and the SBC transition graph is shown
in Fig. 13, which displays the execution order for the vending
machine. In the SBC transition graph of the vendingmachine,
processes E000, E001, E002, E003, E004, E005, E006, E007, E008,
E009, E010, E011, E012, E013, E014, E015, and E016 are defined
in Fig. 14.

We apply the SBC simulation algorithm to the SBC sys-
tems modeling of the vending machine. The scenario is as
follows:When the customer puts in a 25-cent coin and selects

FIGURE 11. Interactions of the vending machine SBC process.

FIGURE 12. SBC Backus-Naur form tree of the vending machine.

a product selling for 20 cents, the machine will dispense the
product and return 5 cents. The result of the SBC vending
machine simulation is shown in Fig. 15. The execution order
is the same as the transition sequence shown in the SBC
transition graph of the vendingmachine in Fig. 13, i.e., g11→
v12 → v13 → v14 → g31 → v32 → v33 → v34 → g35 →
v23 → v24 → g25 → v14, which validates the correctness of
the modeling.
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FIGURE 13. SBC transition graph of the vending machine.

FIGURE 14. Definition of processes of the vending machine.

A. COMPARISON OF SBC, OPM AND SYSML
MODELS OF THE VENDING MACHINE
To compare SBC with the most popular general-purpose
systemsmodeling approaches, we consider the object process
diagram (OPD) of the OPM systems modeling of the vending
machine shown in Fig. 16 and the internal block diagram,
activity diagram, and requirement diagram of SysML pre-
sented in Fig. 17, Fig. 18 and Fig. 19, respectively. SysML
consists of nine types of diagrams. Due to space limitations,

FIGURE 15. The result of the SBC vending machine simulation.

we show only three diagrams of the vending machine model.
The activity diagram,which displays thework flow of the sys-
tem, including the input, output, and control between actions,
is one of the four SysML behavioral diagrams. The internal
block diagram is one of the four SysML structural diagrams
and describes the internal structure of a system in terms of
ports, parts, and connectors [6].

In the OPM example of the vending machine, the objects
are denoted by rectangles, and the processes are denoted by
ellipses. The connecting line with a black circle at the end,
which starts at an object and ends at a process, is the agent
link with the corresponding reserved phrase ‘handles’. The
agent link denotes that the object is a human who enables
the process. The instrument link with the reserved phrase
‘requires’ is a connecting line from an object to a process
with a white circle at the end that indicates that a non-
human enables or controls the process. The arrows with white
triangular heads from processes to objects are the result links
with the corresponding reserved phrase ‘yields’. The result
link indicates that the process affects the object. A portions
of the equivalent textual descriptions, i.e., the object process
language (OPL), of the vending machine are presented for
the abovementioned three types of links: Customer handles
Accept Coin.Accept Coin yieldsCoin Receptacle.Deposit
Coin requires Coin Receptacle.

Comparison of the OPM systems modeling diagram of the
vending machine in Fig. 16 with that of the SBC in Fig. 11
shows that the conceptual structures of the OPM and SBC
models are similar. The main difference between the two
approaches is the link: the SBC approach uses only the
‘interaction’ to link the caller agent to the callee agent and
represents the processes as operation-based value-passing
interactions.

The OPM is able to concisely describe both the structural
relations and behavioral relations among the objects and
processes with the various types of links. The SBC describes
the interactions with process algebra. The vending machine
SBC process algebra is graphically shown in the SBC BNF
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FIGURE 16. OPM systems modeling of the vending machine.

FIGURE 17. SysML internal block diagram of the vending machine.

tree in Fig. 12 and the SBC transition graph in Fig. 13. The
SBC process algebra can clearly model the execution order of
the system, i.e., the sequence, selection, and repetition of the
processes. The SBC approach uses strict criteria to explicitly

and precisely define the execution order of the entire sys-
tem. By contrast, the OPM approach uses the control flow,
timeline, conditions, and object states to model the execution
order of the vending machine. By default, the timeline in
the OPM model flows from top to bottom. Accordingly,
the semantics of a process depicted above another process
indicates that the process on top takes place prior to the
one below it, unless the control flow indicates a different
order. Generally, the top-to-bottom process arrangement in
the OPM model denotes the default order of the execution.
Since the control flow permits control structures, such as
loops, the order of process execution in the OPMmodel deter-
mined by the control flow takes precedence over the order
indicated by the timeline. Processes at the same height in the
OPMcan occur alternatively or simultaneously. Thus,Accept
Coin, Return Payment Request, and Selection Request
in Fig. 16 are alternative processes.

The control flow mechanism of the OPM does not clearly
show the execution order of the processes. For example,
in the vending machine, if the customer inserts more coins
than required for the selected product, after completion of
the process Deliver Product, the process Return Coin will
occur. This flow is not explicitly shown in the OPMmodel of
the vending machine since the process Return Coin and the
corresponding subsequent processes are also carried out upon
completion of Return Payment Request and are depicted
in the timeline belonging to Return Payment Request. This
deviation of the timeline is indicated by internal events.

A large and complex system may have many components,
and a component may interact with several processes. It is
difficult to prearrange all the processes in the top-to-bottom
flow according to the execution order of processes. The other
deviation of the timeline is the loop behavior. When a series
of processes in response to a customer’s action is completed,
the control loops back to the customer. Since the OPM
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FIGURE 18. SysML activity diagram of the vending machine.

timeline approach cannot describe the flow of the loop explic-
itly, it is also indicated by internal events.

In contrast, the SBCmodel describes the execution order in
process expressions. The sequence of executing interactions
strictly follows the process expressions, as well as the loop
behavior, which is common in complex systems. By follow-
ing the SBC process algebra, SBC can visualize the execution
order in the transition graph; hence, the correctness of the
execution order in the simulation is easily verifiable. Clearly,
SBC outperforms the OPM in terms of accuracy and expres-
siveness in modeling the execution order of processes.

The SysML, like the OPM approach, also uses the con-
trol flow to indicate the execution order of the system.
The SysML activity diagram of the vendingmachine is shown
in Fig. 18, which describes the input, output, and control
among the sequence of actions. SysML has a rich set of
symbols to clearly define the sequence of workflows, and
the requirement diagram of the SysML model can appear

FIGURE 19. SysML requirement diagram of the vending machine.

on other types of SysML diagrams for better integration of
the system requirements with the elements of the model. The
parametric diagram of the SysML model, which is not shown
here, imposes property constraints.

Compared to SBC, the SysML model provides more
detailed underlying information regarding the system.
However, the presence of many different SysML diagrams
requires analysts to exert greater effort to read them and
is prone to inconsistency. For example, inconsistency exists
between the internal block diagram in Fig. 17 and the activity
diagram in Fig. 18. The block ‘‘cr: Coin Receptacle’’ has
the ‘‘Coin Value’’ data stream to the block ‘‘pvc: Product
Vending Controller’’ in the internal block diagram, but no
‘‘Coin Value’’ data stream exists in the activity diagram. The
separation of structures and behaviors leads to difficulties
in finding the inconsistencies between different diagrams,
especially for a large and complex system. Consistency
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checks are required through OCL or Alf to ensure that there
are no inconsistencies between the diagrams. The SBCmodel
is a single diagram, which could prevent potential inconsis-
tencies between different diagrams. Furthermore, in contrast
to the integration of SysML, which depends on a nonformal
text-based requirement diagram, SBC enforces strict formal-
ism on the integration based on process algebra.

V. CONCLUSIONS
In this paper, we propose the SBC systems modeling
approach that takes advantage of the mechanisms of process
algebra and integrates the structural and behavioral aspects
of systems into a single diagram. The SBC systems modeling
consists of two parts. The first part models the interactions
that occur in the processes of a system, and the second
part models the execution order of the system. The BNF is
utilized to describe the syntax of the SBC approach. The SBC
approach uses only one semantic entity, the interaction, to link
the caller agent to the callee agent and uses the transitional
semantic and transition graph for the execution specification
of the system. This specification explicitly and precisely
represents both the interactions between system components
and the execution order of the entire system.

So far, the SBC process algebra proposed in this paper can-
not model real-time systems, which is a limitation of the cur-
rent SBC approach. Real-time systems [38] describe software
and hardware systems subject to a ‘‘real-time constraint’’, for
example, from events to systems responses. Events may occur
at regular or irregular times, and the response must occur
at predictably exact times. Real-time systems need to guar-
antee timely responses within specified timing constraints.
To enable the SBC approach to model real-time systems,
we need to extend the SBC process algebra with a timing
mark or timing constraint specification, where a timing mark
is an expression for the time at which an event occurs and
a timing constraint is a semantic statement about the abso-
lute or relative value of time. This extension will be addressed
in our future work on the SBC approach.
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