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ABSTRACT The detection of insulators with cluttered backgrounds in aerial images is a challenging task for
an automatic transmission line inspection system. In this paper, we propose an effective and reliable insulator
detection method based on a deep learning technique for aerial images. In the proposed deep detection
approach, the single shot multibox detector (SSD), a powerful deep meta-architecture, is incorporated with a
strategy of two-stage fine-tuning. The SSD-based model can realize automatic multi-level feature extractor
from aerial images instead of manually extracting features. Inspired by transfer learning, a two-stage fine-
tuning strategy is implemented using separate training sets. In the first stage, the basic insulator model
is obtained by fine-tuning the COCO model with aerial images, including different types of insulators
and various backgrounds. In the second stage, the basic model is fine-tuned by the training sets of the
specific insulator types and specific situations to be detected. After the two-stage fine-tuning, the well-trained
SSD model can directly and accurately identify the insulator by feeding the aerial images. The results show
that both the porcelain insulator and composite insulator can be quickly and accurately identified in the
aerial images with complex background. The proposed approach can enhance the accuracy, efficiency, and
robustness significantly.

INDEX TERMS Insulator detection, deep learning, single shot multibox detector (SSD), fine-tuning.

I. INTRODUCTION
Transmission line inspection plays an essential role in a
power transmission system to ensure the safety and uninter-
rupted reliable operation of power service. In transmission
line, the insulator is a widely used equipment with the dual
function of electrical insulation and mechanical support. The
condition monitoring of the insulators becomes one of the
most important and difficult task during the inspection of
the transmission line [1]. The earlier detection of the defects
of insulators can reduce power cuts and prevent the huge
economic losses and bad customer care in power transmission
system. It is necessary to inspect the insulators of trans-
mission line and confirm that their performance meets the
specification requirements.

Instead of traditional manual patrol, transmission line
inspection by unmanned aerial vehicles (UAVs) is employed
to realize more automatic and efficient inspection [2], [3].
During the UAV inspection, a large number of aerial images
and videos of insulators as the photographic records will
be generated and can be used to prepare for the operation
and maintenance (OM) thereby reducing operational cost.
In order to achieve automatic inspection and intelligent
diagnosis, the key prerequisite is accurately detecting the
insulators from the aerial images for further inspection tasks
including fault diagnosis, camera tracking, data management,
etc. However, the aerial images from UAVs contain the
cluttered backgrounds and various types of insulators. The
external disturbing factors, such as the changing visual angle,
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different lighting, and partial occlusion, make it more difficult
to detect the insulators. Owing to the wide view of UAVs,
the original non-processing aerial images are high-resolution
and larger than the nature scene images. Hence, the insulator
detection in aerial images is a challenging task.

To identify the insulators in aerial images, the exist-
ing detection methods mainly extract the features of aerial
images by means of image processing. The color, shape
and texture features are commonly used to distinguish the
insulators from the complex background. Zhang et al. [4]
adopted a connected component analysis method in hue-
saturation-intensity color space for tempered glass insulator
identification. Reddy et al. [5], [6] applied discrete orthog-
onal S-transform (DOST) with adaptive neuron-fuzzy infer-
ence system (ANFIS) to find the locations of the insulators
and ascertain the condition of the insulators using extracted
color features. The DOST-SVM method is developed to
distinguish proper bounding boxes containing the insulators
by applying support vector machine and k-means cluster-
ing. The color feature based methods are sensitive to the
complex background and need a well-adjusted threshold
parameter.

Several insulator detection methods based on the uti-
lization of the shape and texture feature information have
been developed. Based on the statistical properties of the
insulator shape feature, Li et al. [7] presented the profile
projection method and trained a support vector machine
classifier for insulator location. Oberweger et al. [8] intro-
duced a circular descriptor based method by extracting the
difference of Gaussians (DoG) key-points and clustering
them through k-nearest neighbor (KNN). Liao and An [9]
proposed the multiscale-multifeature (MSMF) descriptor for
shape feature extraction and find several spatial orders fea-
tures to improve the robustness. Zhao et al. [10] pro-
posed an insulator detection approach based on orientation
angle detection and binary shape prior knowledge which
can handle different orientation angles in complex aerial
image. Wu et al. [11], [12] used semi-local operator to
extract the semi-local texture distribution and performed
image segmentation by global minimum active contour to
extract the insulator from aerial images. Wang et al. [13]
presented a method merged the color, shape and texture
of insulator, local binary pattern and color component
analysis are utilized to filter the candidate regions which
obtained by parallel line features extracting. However, the
detection method based on the image feature extraction gen-
erally require hand-crafted feature extractors, and the perfor-
mance greatly depends on the complexity of background and
result of image processing. In addition, few studies consider
the trade-off between the detection accuracy and speed in
the insulator detection process. When processing the high-
resolution aerial images, it is time-consuming to find the
location of insulators.

Deep learning is emerging as a leading machine learn-
ing technique in the imaging recognition and computer
vision domains. Unlike other machine learning methods with

the shallow architectures, deep learning is composed of
multiple layers of neural network that provides a different
level of abstraction to enhance the learning ability on large
and complex data [14]. Among various deep learning tech-
niques, the convolutional neural network (CNN) is the most
popular deep learning network and proven to be a powerful
tool for image processing. More recently, many CNN-based
methods have achieved great success in object detection, such
as Faster R-CNN [15], R-FCN [16], SSD [17]. But little work
focuses on applying the CNN to detect the insulators in aerial
images.

In this paper, we attempt to explore deep learning based
method to detect insulators in the aerial images for power
transmission line inspection system. A deep insulator detec-
tion architecture is developed based on the single shot multi-
box detector (SSD) and fine-tuning strategy. The single
shot multibox detector (SSD), proposed by Liu et al. [17],
is one of popular deep CNN framework for object detection.
Unlike traditional guideless hand-crafted feature extractors,
SSD based method can automatically and efficiently extract
multi-level features from aerial image.

Due to the regional differences and data confidentiality of
power transmission line inspection, each inspection region is
relatively independent and few training data are available.
Each electricity company of the inspection region would
favor training a single-scene model that utilizes its local data
for high accuracy detection rather than producing a multi-
scenes model with feature dispersion problem. For training a
single-scene model, the fine-tuning is usually applied based
on the COCO dataset. However, there is no images of power
system domain in the COCO dataset, thus, the knowledge
transfer between COCO dataset and specific insulator dataset
meets with the challenges of domain gap and data size gap.
In order to solve the issues of insufficient training data and
domain gap, a two-stage fine-tuning process is presented.
In the first stage, the basic insulator model is obtained by
fine-tuning the COCOmodel with the aerial images including
insulators with extensive characteristics. Then in the second
stage, the basic model is fine-tuned by the specific small-
size training data related to the insulator detection of target
scene. The two-stage fine-tuning strategy can enhance the
detection accuracy and robustness of the detection model.
Additionally, the basic insulator model can be applied as
a common base pre-trained model for insulator detection
in power transmission line inspection. For other scenarios
of inspection region, the electricity company only needs
to perform the second fine-tuning stage without repeating
the first stage. In other words, there is no extra workload
for electricity company once the basic insulator model is
well-trained.

The rest of this paper is organized as follows. We describe
the proposed framework of insulator detection in Section II.
The experimental results on the different tasks are pre-
sented in Section III. In section IV, we draw conclusions
from the results and also discuss about our future work
plans.
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FIGURE 1. Schematic diagram of the deep learning based insulator detection approach. SSD: single shot multibox detector, COCO: a large-scale image
dataset from Microsoft.

II. METHODOLOGY
A. FRAMEWORK OF INSULATOR DETECTION
The schematic diagram of the proposed insulator detection
method in aerial images for transmission line inspection
is illustrated in Fig. 1. The deep learning based architec-
ture is consist of three parts: aerial image preprocessing,
SSD model training process, and real-time insulator detec-
tion. First, the aerial images are collected from the UAVs
for transmission line inspection. Two different datasets are
defined and will be used in the fine-tuning stages. The orig-
inal aerial images are transformed to the standard data for-
mat for model training after preprocessing such as resizing,
cropping, labeling, etc. In training process, SSD is utilized
to train the detection model by feeding the images. Different
from other deep learning algorithms, we apply a two-stage
fine-tuning procedure to enhance the detection accuracy and
robustness. Once the specific insulator model is well-trained,
it can be directly used to realize the insulator detection from
the aerial images taken by UAVs for transmission line inspec-
tion system.

B. IMAGE PREPROCESSING
The aerial images are captured by UAVs. In the proposed
method, there are two kinds of training sets: basic insulator
dataset and specific insulator dataset. The training data for
the first fine-tuning stage is defined as basic dataset. The
basic dataset is composed of the aerial images collected

FIGURE 2. Samples of basic insulator dataset including the aerial images
of various types of insulators with complex backgrounds.

from different transmission line inspection regions. Owing
to the different geographic environments and different volt-
age levels of transmission line inspection, the aerial images
in basic dataset contain various types of insulators with
various complex backgrounds. The backgrounds not only
have unique environments in the electricity domain, but also
have diverse transmission line components besides insulators.
As shown in Fig. 2, the types of insulators include the porce-
lain insulator, composite insulator, and glass insulator. And
the scenes of backgrounds are main factors to distinguish
different inspection regions in aerial images that involve
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FIGURE 3. Samples of specific insulator dataset including the aerial
images of (a) porcelain insulator with forest backgrounds (b) porcelain
insulator with building backgrounds (c) composite insulators with
building backgrounds (d) composite insulator with building backgrounds.

forest, building, desert, etc. The specific dataset is a relatively
small-scale training set that is used to fine-tune the basic
insulator model. The aerial images in specific dataset only
contain the particular types of scenes and the specific types of
insulators to be detected, as shown in Fig. 3. As a way of data
augmentation, the images in insulator specific dataset need to
be flipped (horizontally and vertically) and cropped to fight
with the over-fitting problem. The graphical image annotation
tool ‘‘LabelImg’’ is applied to label the aerial images. The
annotations of images are imageID, class of object, path of
image, coordinates of boxes. All the images are converted
into TFRecord file format, which is a simple record-oriented
binary format commonly used in TensorFlow.

C. TWO-STAGE FINE-TUNING
In order to solve the issues of data insufficiency and domain
gap in the traditional one-stage fine-tuning, the proposed
approach presents a two-stage fine-tuning procedure to train
the insulator detection model. In the application of transmis-
sion line inspection, the electricity company is only responsi-
ble for the inspection task in the local area and prefers the
single-scene model to the multi-scenes model, due to the
feature dispersion problem in multi-scenes model.

Generally, the deep learning model requires a large quan-
tity of labeled training samples to train a deep convolutional
architecture. However, when using the local data to train a
single-scene model, it is difficult to guarantee that the avail-
able training data is sufficient, owing to the organizational
independence and data confidentiality of each regional power
grid. But by simply using the data augmentation method such

as flipping and cropping, the over-fitting problem caused by
insufficient data cannot be resolved very well and the detec-
tion performance fails to meet the high accuracy requirement.
In common, the transfer learning technique is utilized to
combat with the data insufficiency by fine-tuning the deep
learning model with COCO dataset. Transfer learning tries
to transfer the knowledge learned from the old task called
‘‘source task’’ to the new task called ‘‘target task’’. In the field
of insulator detection, the traditional one-stage fine-tuning
transfers the knowledge from COCO dataset to insulator
dataset. However, the COCO dataset does not have images
of electricity domain and the quantity of insulator dataset is
minimal compared to the COCO dataset. Therefore, the one-
stage fine-tuning for insulator detection exists huge domain
gap and data size gap that affect the model performance.

For addressing the issues mentioned above, this paper
introduces a two-stage fine-tuning strategy that inserts
a transitional task with basic insulator dataset between
the source task with COCO dataset and the target task
with specific insulator dataset. The implementation of the
two-stage fine-tuning strategy is a generic-to-specific,
coarse-to-fine approach, as shown in Fig. 1.

In the first fine-tuning stage, the COCO model and the
basic insulator dataset are applied. The COCO model is
trained using the MS COCO dataset, containing more than
200000 images and 80 object categories [18]. We use the
COCO model to initialize the model parameters in order
to improve the contextual richness of the basic insulator
model [19], [20]. But in the COCO dataset, there are no
relevant images in the electric power field. Hence, the basic
insulator dataset, which contains images depicting diverse
types of insulators and diverse backgrounds, is gathered to
provide a widespread general features for insulator detec-
tion. Combing the COCO model and basic insulator dataset,
the basic insulator model is built as a coarse model for sub-
sequent training.

The second fine-tuning stage aims to train the specific
model for insulator detection in specific inspection region
that has its distinctive insulator types and scenes. In this
procedure, the specific insulator dataset is utilized. Different
from the basic insulator dataset, the specific insulator dataset
only contains the aerial images relating to the specific trans-
mission line. Through inputting the specific insulator dataset,
the parameters of basic insulator model are fine-tuned and
more meaningful features of insulators are learned. Com-
pared with the traditional procedure of insulator detection,
the two-stage fine-tuningwill not increase the workload to the
electricity company. As shown in Fig. 4, the proposedmethod
can be easily extended to apply to additional scenarios. If the
inspection task is changed to a different region, the training
procedure only needs to replace the specific insulator dataset
according to the specific scene, while the basic insulator
model remains the same. This means that the basic model
can be repeatedly used without redoing the first fine-tuning
stage. This way can greatly reduce the training cost and
meanwhile improve the flexibility of the training process for
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FIGURE 4. Two-stage fine-tuning for different application regions.

insulator detection model. Additionally, through two-stage
fine-tuning strategy, the accuracy and robustness of model
can be enhanced when training data is insufficient. Once the
final specific insulator model is well-trained, it can be used
to identify the insulator in aerial images for transmission line
inspection system.

D. SINGLE SHOT MULTIBOX DETECTOR
The SSD handles the problem of object detection in real-time
application with high accuracy. This approach is based on a
feed-forward convolutional network that generates a fixed-
size collection of bounding boxes and scores for the presence
of an object class in each box by using the small convolutional
filter with the size of 3×3, and then utilizes Non Maxi-
mum Suppression (NMS) to produce the final detections.
The detection speed of SSD is faster than the previous state-
of-the-art for single shot detectors. Furthermore, SSD has a
contribution that it can deal with the multiple scales of input
images which is useful in insulator detection. The SSD net-
work architecture is shown in Fig. 5. The framework mainly
consists of two parts: base network, auxiliary structure.

1) BASE NETWORK
The Base Network is a standard architecture used for high
quality image classification which is truncated before the
classification layers. The VGG-16 network is chosen as the
base network in [17]. Depending on the application scenar-
ios, the base network can be replaced by appropriate CNN
architecture for classification. In this paper, the base network

of SSD is MobileNet. MobileNet is an efficient CNN which
only has 4.2 million parameters compared with VGG16
(138 million parameters) that can be used at the mobile
end [21]. When testing on the ImageNet benchmark [22],
MobileNet(70.6%) is nearly as accurate as VGG16(71.5%)
while being 32 times smaller. MobileNet is easy to transplant
in embedded device which means the proposed method has
the potential for real-time detection in UAV. [23].

2) AUXILIARY NETWORK
The SSD adds auxiliary structure after the base network to
produce detections with the following key features:

A set of convolutional feature layers is appended to the end
of the truncated base network. These layers decrease in size
progressively in order to predict the object at multiple scales.
The receptive field of lower convolutional layer is small, and
it is bigger in higher layer. The network has the ability to
detect the object of multiple scales and improve the accuracy
of recognition.

Each feature map corresponds to a fixed set of default
bounding boxes. The default boxes can be seen as the initial
detections of the object in input image and then firstly filtered
by confidence which computed by CNN. After that, NMS is
utilized for final filtration and then output the detection
results. Assume that there are M (M=6 in this paper) feature
maps for prediction. The scale of the default boxes for each
feature map is computed as:

sk = smin +
smax − smin

M − 1
(k − 1), k ∈ [1,M ] (1)
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FIGURE 5. Network architecture of SSD. The model adds several feature layers to the end of a base network based on CNN. These feature layers
predict the offsets to default boxes (Def.boxes) of different scales and aspect ratios and their associated confidences. A m × n feature map after
convolution can generate m × n × b detections per class where b is the number of Def.boxes for each feature map cell (A m × n feature map has
m × n cells).

FIGURE 6. Example of default box generation for one cell from a feature
map.

where smin = 0.2 and smax = 0.95, meaning the lowest
layer has a scale of 0.2 and the highest layer has a scale
of 0.95. The width of default box is skW

√
ar and the height is

skH/
√
ar where ar is the aspect ratio and (W ,H ) is the size

of input. In practice, one can design a special distribution of
default boxes by changing the size and number of the box
for each feature map. An example of default box genera-
tion is shown in Fig. 6, the size of input image is W × H ,
the feature map has m × n cells. If ar ∈ {1, 2, 1/2}, then
there are three default boxes(width, height) generated for
each cell. For each default box, it predicts both the shape
offsets(cx, cy,w, h) of location and the confidences for C
object categories (c1, c2, . . . , cp, cbackground ). Specifically,
each cell corresponds to b default boxes, every default box
computes C class scores and the 4 offsets relative to the
original default box shape. This result in a total of (C+4)bmn
outputs for a m × n feature map. The class number C is 3
in this paper: porcelain insulator, composite insulator and
background.

Once the default boxes are determined, the loss function
and back propagation can be applied end to end. The defini-
tion of the loss function is as follows. Suppose xpij = {0, 1}

is an indicator for matching the i-th default box to the
j-th ground truth box of category p. When xpij = 1
meaning the Intersection-over-Union (IoU) described in (2)
between default box and ground truth box is higher than a
threshold(0.5).

IoU =
DefaultBox ∩ GroundTruthBox
DefaultBox ∪ GroundTruthBox

(2)

The overall objective loss function is a weighted sum of the
localization loss (loc) and the confidence loss (conf):

L (x, c, l, g) =
1
N

(
Lconf (x, c)+ αLloc (x, l, g)

)
(3)

where N is the number of matched default boxes.

Lconf (x, c) = −
N∑

i∈Pos

xpij log
(
ĉpi
)
−

∑
i∈Neg

log
(
ĉ0i
)

(4)

ĉpi =
exp

(
cpi
)∑

p exp
(
cpi
) (5)

The confidence loss is the Softmax loss over multiple classes
confidences (c). The c0i refers to the background class corre-
sponding to negative default boxes that do not have object.
And the cpi refers to the object class corresponding to positive
default boxes that have object with category p.

Lloc (x, l, g) =
N∑

i∈Pos

∑
m∈Box

xkijsmoothL1
(
lmi − ĝ

m
j

)
(6)

ĝcxj =
(
gcxj − d

cx
i

)
/dwi ĝcyj =

(
gcyj − d

cy
i

)
/dhi
(7)

ĝwj = log

(
gwj
dwi

)
ĝhj = log

(
ghj
dhi

)
(8)
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TABLE 1. Description of training datasets.

The localization loss is the Smooth L1 [24] loss between the
predicted box (l) and the ground truth box (g) parameters
when the default bounding box defined as d . The 4 shape
offsets m ∈ {cx, cy,w, h} are defined as the center (cx, cy)
of the bounding box and its width (w) and height (h). Once
the gradient is computed with backpropagation, an opti-
mizer which called RMSProp is utilized to update the model
parameters. The RMSProp [25] utilizes a moving average of
squared gradients to normalize the gradients, and modulates
the learning rate of each weight based on the magnitudes of
its gradients.

III. EXPERIMENTAL RESULTS
In this section, in order to evaluate the performance of the pro-
posed approach, two insulator detection models are trained
and used to identify both the porcelain insulator (PI) and
the composite insulator (CI) in aerial images. The complex
backgrounds are considered, including forest and building
scenes. Then, we present the advantages of the two-stage fine-
tuning strategy by carrying out the training process under
different conditions. Finally, a comparison is made between
the results of the proposed method and the other existing
methods.

A. DATA PREPARATION
In this paper, all the aerial images are provided by China
Power Grid from the UAVs for power transmission line
inspection. The DJI Phantom 4 Professional is used in trans-
mission line inspection. DJI Phantom 4 is equipped with a
4K video camera that has a 1/2.3" CMOS sensor, 94-degree
field of view, 12.4megapixel (4000×3000 pixels). Therefore,
all the original aerial images are 4000 × 3000 pixels. For
training, three datasets are used in the experiments, as shown
in Table 1. Basic insulator dataset contains 6700 images that
collected from different transmission line inspection regions.
The basic insulator dataset is used to train the basic insulator
model in the first fine-tuning stage. The sizes of specific insu-
lator dataset I and specific insulator dataset II are 450 and 455,
respectively. The specific insulator dataset I contains images
of porcelain and composite insulator in forest scenes. In the
application of transmission line inspection, the forest scenes
are corresponding to mountainous regions. Different from
specific insulator dataset I, specific insulator dataset II is used
to train the model for insulator detection in building scenes
corresponding to urban regions. For each model, 200 aerial
images are used as a testing set. Among them, 100 aerial
images are PI images, and the others are CI images. After
pre-processing, a single ground-truth box is labeled in each
aerial image.

B. IMPLEMENTATION
The proposed approach is implemented in TensorFlow [26]
with Object Detection API [27]. It is running on a com-
puter equipped with Intel Core i7-6850K CPU, a NVIDIA
GeForce GTX 1080 Ti GPU, and 32GB of RAM memory
under Ubuntu 16.04 LTS. In order to verify the embedded
potential, we also test the proposed method on an embedded
device so-called JETSON TX2 with ARM A57/2 and HMP
Denver 2/2 CPU, a NVIDIA Pascal GPU, and 8GB of RAM
memory under JetPack 3.1 system. The TX2 can be loaded on
aUAV. To realize real-time inspection at the present, the aerial
images are transmitted to the computer from UAVs in real
time by the OcuSync system of DJI.

The parameters of the proposed method are set as
follows: aspect ratios in default box generator ar ∈

{1, 2, 3, 1/2, 1/3}, smin = 0.2, and smax = 0.95. In the NMS
phase, each class can retain 100 detections. The score thresh-
old is 0.01, the IoU threshold is 0.6 and confidence threshold
is 0.4. Here, the Root Mean Square Prop (RMSProp) [25]
is used to train the model. The initial learning rate is 0.004,
momentum is 0.9, and batch size is 24. To prevent overfit-
ting and save the time-consuming in some hyper-parameter
tuning, Batch Normalization (BN) is applied after convo-
lutional layers, and before non-linearities layers [28]. Max
training step is set to be 20000. In first and second fine-tuning
stages, all layers of the deep learning model are fine-tuned.
To evaluate the detection performance, four widely used met-
rics are applied, including precision, recall, precision-recall
curve (PRC), and average precision (AP).

C. DETECTION RESULTS
1) INSULATOR DETECTION IN FOREST SCENES
First, we use the basic insulator dataset and the specific
insulator dataset I to train the first SSD model using the
proposed method. The well-trained model can detect both
PI and CI from a forest scene in aerial images. The testing
dataset is compose of 100 aerial images of CI and 100 aerial
images of PI in forest scenes. Fig. 7 shows the APs of
PI detection and CI detection at different training steps. Dur-
ing the entire 20000 training steps, the tests were conducted at
every 2000 steps. It can be seen that for PI and CI detection,
the APs reach 92.12% and 82.06% after 10 thousand steps,
respectively. At the 20000th step, the AP for PI detection
is 94.12% and the AP for CI detection is 86.70%. In addition,
the average running time per step is 0.4 s.

The testing performance criteria are listed in Table 2. For
the detection of PI, it achieves an excellent performance
with the precision of 93.75% and the recall of 90%. For
the detection of CI, the precision and recall are 85.29% and
87%, respectively. The precision and recall of CI detection
are slightly worse than that of PI detection. Because the task
of the CI detection is more difficult and complicated than
PI detection owing to the low-contrast color of the caps and
the narrow shapes of composite insulators in the images. The
corresponding precision-recall curves are shown in Fig. 8.
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TABLE 2. Performance results of insulator detection in forest scenes.

FIGURE 7. Average precision vs. the number of training steps.
(a) Porcelain insulator detection. (b) Composite insulator detection.

From the precision-recall curves, it can be seen that our
detector remains high precision of 95%when the recall varies
from 0 to 85% in Fig. 8 (a), and 0 to 73% in Fig. 8 (b).
It indicates that the proposed method yields a good trade-
off between precision and recall with high AP. The average
computation time for a single image is ∼ 23 ms on PC and
∼ 63 ms on TX2.

Fig. 9 and Fig. 10 illustrate some testing results of aerial
images in the forest scenes. In the images, the proposed
method can automatically generate a green box to denote
the localization of PI and a blue box to denote the local-
ization of CI. From Fig. 9, the porcelain insulators have a
distinct color from the backgrounds of forests and can be
easily identified in case (a) and case (b), but in case (c) and
case (d) the porcelain insulators also can be correctly located
in the cluttered backgrounds with a mix of forests, power
line towers and the roads. In Fig. 10, the composite insulators
are quite difficult to be distinguished from the backgrounds.
Especially in case (d), the color of composite insulators is
similar with the trees and the illumination contrast is low.
It can be seen that the proposed method can successfully
detect the composite insulator in the cluttered and compli-
cated background.

FIGURE 8. Precision-recall curve. (a) Porcelain insulator detection.
(b) Composite insulator detection.

2) INSULATOR DETECTION IN BUILDING SCENES
To further verify the proposed method, we train the second
specific insulator model to detect PI and CI in building
scenes. In this training process, we reuse the same basic insu-
lator model mentioned above, without repeating the first fine-
tuning stage. In second fine-tuning stage, the basic insulator
model is fine-tuned with the specific insulator dataset II.

The testing results are listed in Table 3 and the precision-
recall curves are shown in Fig. 11. For the detection of PI,
the precision is 91.67%, the recall is 88%, and the corre-
sponding AP is 90.51%. For the detection of CI, the pre-
cision is 85%, the recall is 85%, and the corresponding
AP is 87.29%.

The detection images are illustrated in Fig. 12 and Fig. 13.
Comparedwith the forest scenes, the difference is not obvious
between the characteristics of the two types of insulators and
the backgrounds. The results show that the proposed model
can yield good performance and accurately detect both the
porcelain insulators and composite insulators from the com-
plex building backgrounds. In addition, it demonstrates that
the proposed method is applicable to detect different types of
insulators for different scenes in a flexible way. The proposed
method can easily extend to other types of insulators or other
scenes by reusing the obtained basic insulator model.We only
need to replace the specific insulator dataset and perform
the second fine-tuning stage, which can save considerable
computation time and improve the training efficiency.

D. ADVANTAGES OF TWO-STAGE FINE-TUNING STRATEGY
To demonstrate the importance of the two-stage fine-tuning
strategy, a comparison was carried out by training the
SSD model under four cases. In case 1 so-called one-stage
fine-tuning with basic dataset, the model is trained with
the COCO model and the basic insulator dataset. Actually,
the model of case 1 is the basic insulator model. The training
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FIGURE 9. Detection examples for porcelain insulator in forest scenes.

FIGURE 10. Detection examples for composite insulator in forest scenes.

TABLE 3. Performance results of insulator detection in building scenes.

FIGURE 11. Precision-recall curve. (a) Porcelain insulator detection.
(b) Composite insulator detection.

set of case 2 so-called one-stage fine-tuning with joint dataset
consists of both the basic insulator dataset and the specific
insulator dataset I. The model of case 2 is directly trained
with the COCO model and the joint dataset. In case 3 so-
called one-stage fine-tuning with specific dataset, we only
use the COCO model and specific insulator dataset I to train
the model. Case 4 is the proposed model using the proposed
two-stage fine-tuning strategy. The same testing set was used.

The obtained results are given in Table 4 and Fig. 14. As can
be observed, the result of case 1 is an invalid model with low
AP due to the big difference between the basic dataset and
the test images of specific scenes. Case 2 still results in poor
detection performance. The images in basic insulator dataset
are diverse and may not represent the specific features, while
the specific insulator dataset in the joint dataset has a low
ratio owing to its small size. The results of case 3 have made
some progress but still cannot meet the requirements of engi-
neering application. The undesirable performance of case 3
is owing to the domain gap between the COCO dataset and
the specific insulator dataset. Compared the case 3 with the
proposed model, the proposed model gets higher precisions
and recalls than those of case 3. Due to the great complexity
of the detection of CI, AP is 64.25% when the transitional
stage is not inserted. The AP of the proposed model exceeds
that of case 3 by 22.45%. From the precision-recall curves,
it can be observed that the precision of model without two-
stage fine-tuning leads to high fluctuation when the recall
increases. The results clearly reveal that the two-stage fine-
tuning strategy can greatly enhance the accuracy and the
robustness for insulator detection.
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TABLE 4. Performance comparison of four training cases.

FIGURE 12. Detection examples for porcelain insulator in building scenes.

FIGURE 13. Detection examples for composite insulator in building scenes.

FIGURE 14. Precision-recall curves of four different training cases.
(a) Porcelain insulator detection. (b) Composite insulator detection.

To test the effect of the size of the training data, the models
were trained with the specific insulator dataset I by vary-
ing the sample size from 100 to 450. The precision-recall
curves of training sets with different sample sizes are shown

in Fig. 15. It can be seen that only 100 training images still
can yield the AP of 89.16% and 74.21% for PI and CI,
respectively. Although training set is insufficient, the total
performance of the proposed method is robust and stable at
a relatively high accuracy level. With two-stage fine-tuning
strategy, the proposed method can effectively solve the small
sample size problem of insulator detection.

E. COMPARISON WITH OTHER METHODS
The proposed SSD based approach is compared with the
previously reported detection approaches in [8], [9], and [12]
in terms of the precision and recall. We also compare the
performance with other two object detection architectures:
Faster-RCNN [15], [29] and R-FCN [16], [30]. The Faster-
RCNN and R-FCN network were trained in a usual way
with the same specific dataset. Table 5 summarizes the
comparison results. It shows that our SSD based approach
achieves a competitive precision and recall compared to the
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TABLE 5. Comparison with other methods.

FIGURE 15. Precision-recall curves of different training data size.
(a) Porcelain insulator detection. (b) Composite insulator detection.

previous work. Most previous methods focused on detecting
the porcelain insulator and glass insulator, but not considered
the composite insulator owing to the difficulty of locating
this type of insulator in complicated backgrounds. Another
advantage of our approach is that the multi-level features can
be automatically extracted, and it can liberate human labor
from manually extracting different features. The benefit is
greatly attractive to the applications of UAV inspection of
power transmission line. Compared with Faster-RCNN and
R-FCN, the proposed model outperforms Faster-RCNN and
R-FCN for both porcelain insulator and composite insulator.
The proposed method gives a good trade-off between preci-
sion and recall and improves the robustness of the detector.

Once the model is well-trained, we can apply the model
to the automatic autonomous UAV transmission line inspec-
tion system. The insulator detection method is one of main
components and necessary precondition for smart insula-
tor inspection. According to the application scenarios, the
SSD model is utilized as a detection module embedded into
the inspection system. In addition, applications of the detec-
tion model also can be processed on mobile and embedded
devices such as TX2. Combined with the embedded device
of UAV, the insulator can automatically be segmented and
local enlarged to obtain more details of the insulator in the
aerial images captured from the UAV in real-time. Based on
the results of detection model, further inspection tasks such
as status classifications of insulator will be performed.

IV. CONCLUSION
In this paper, we explore a novel insulator detection approach
based on the deep convolutional neural networks for aerial

images of UAVs in the power transmission line inspection.
The SSD is utilized to implement the automatic feature learn-
ing process on the aerial image set. Instead of the ineffi-
cient and guideless hand-crafted feature extractors, the model
trained by SSD can extract high-level features and improve
the detection speed. To address the issues of insufficient
training aerial images and domain gap, we introduce the two-
stage fine-tuning strategy in the SSD training procedure. We
first use the COCOmodel and the basic insulator dataset with
general features of electricity domain to obtain the basic insu-
lator model. Then, the second fine-tuning stage is employed
to fine-tune the parameters of basic insulator model using
the specific insulator dataset with more specific features of
insulators. Once the final detection model is trained, it can be
directly used to identify porcelain and composite insulators
for aerial image. The results show that the porcelain and
composite insulators can be accurately and quickly detected
with the AP of 94.12% and 86.70% in the aerial images with
forest backgrounds, respectively. Even in the complicated
building backgrounds, AP of 90.51% for porcelain insulator
and 87.29% for composite insulator can be achieved. The
computation time is 23ms on PC and 63 ms on embedded
device for a single image. The two-stage fine-tuning strategy
can greatly enhance the generalization and robustness of the
detection model. Compared with previously reported results,
the SSD based method can realize automatic multi-level fea-
ture extraction and meanwhile give a competitive precision
and recall. The proposed technique shows the potential in the
real-time insulator detection for aerial images. Future work is
needed to extend the technique to detect the fault of broken
insulators for the further application of UAVs inspection of
power transmission line.
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