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ABSTRACT Document-level sentiment analysis aims to predict the overall ratings of texts (e.g., reviews)
written by users for items. Most current works model this problem as a supervised learning task, i.e., classifi-
cation or regression. Recent studies argue that user preferences and item characteristics also have significant
influences on ratings that are modeled by learning user-item-specific text embeddings based on neural
networks. However, these studies only use the explicit influence observed in the texts and fail to model
the implicit influence that cannot be observed in the texts. To this end, in this paper, we propose a multi-
objective, collaborative, and attentive framework called MOCA for document-level sentiment analysis. Our
MOCA has three important characteristics: 1) attentive model for explicit influence; MOCA applies a
bidirectional recurrent neural network with attention mechanism to learn user-item-specific text embeddings
for exploiting the explicit influence the of users and items; 2) collaborative model for implicit influence;
MOCA devises a new neural collaborative filtering model based on multilayer perceptron to capture the
implicit influence that is implied in the highly personalized interactions between the users and items; and
3) multi-objective optimization; MOCA models this problem as both classification and regression tasks and
simultaneously optimizes the two objectives to reinforce one another. The experimental results show that
our MOCA significantly outperforms other state-of-the-art techniques on three real-world datasets collected
from IMDB and Yelp.

INDEX TERMS Document-level sentiment analysis, semantic learning, attentivemodel, neural collaborative
filtering, multi-objective optimization.

I. INTRODUCTION
Sentiment analysis, also called opinion mining, aims to
analyze people’s sentiments, opinions, evaluations, attitudes
and emotions towards entities according to their generated
texts [1], [2]. With the rapid growth of e-commerce sites
and social networks, people are used to writing texts (e.g.,
reviews, posts, comments or tips) to share their opinions
on products, services, events, or topics. The sentiments
expressed in the texts are potentially useful for downstream
applications, e.g., recommender systems, financial services,
and political elections. As such, sentiment analysis attracts
increasing attention of researchers and becomes one of the
most active research areas in natural language processing.

Sentiment analysis can be investigated at various levels
of granularity, namely, document-level, sentence-level, and
aspect-level. In this work, we study the problem of document-
level sentiment analysis, the goal of which is to predict

the overall rating of a text (e.g., a review) written by a
user for an item. Most existing studies apply supervised
machine learning algorithms to model this problem as a
classification or regression task by extracting features from
texts and treating ratings as labels [3]. Early works often
use bag-of-words vectors as text features [4], [5] or with
additional sentiment lexicons [6]–[8]. Recent works employ
deep neural networks to learn distributed text embeddings
(i.e., low-dimensional and continuous text representations)
without any feature engineering and complete competitive
performance [9]–[11].

These works only utilize the text information but ignore the
important influence of the user and item information, i.e., the
user who writes the text and the item which is evaluated in
the text. In reality, the user and item information signifi-
cantly influences the rating of the user giving to the item.
In general, the influence can be divided into two types
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based on whether it can be observed in natural languages.
(1)Explicit influence.This type of influence can be observed
in the user-item-specific words of texts. For example, users
often express the same opinion with user-specific words that
depend on their preferences, habits, and experiences; each
item has a set of item-specific evaluating words that rely on
the item’s characteristics. (2) Implicit influence. This type of
influence cannot be observed in textual words, but is implied
in the interactions between users and items. For instance,
a lenient user often gives a higher rating than a critical user
even if they post the same review for an item. Similarly, some
itemsmay receive higher ratings than others even though they
have the same reviews.

There are also a few studies that consider the explicit influ-
ence for sentiment analysis. For example, Tang et al. [12]
utilize user information to catch user-specific word embed-
dings and then extend the work to incorporate both user and
item information to capture user-item-specific word embed-
dings via convolutional neural networks (CNNs) [13]. The
recent works [14]–[16] achieve better performance by apply-
ing recurrent neural networks (RNNs) with the attention
mechanism [17] to weigh the user-item-specific words to
generate the text embedding. However, the current studies
have at least two major limitations: (1) Unable to model
implicit influence. Although these studies [12]–[16] inten-
sively model the explicit influence by learning user-item-
specific word or text embeddings, they are unable to model
the implicit influence which is not reflected in the texts.
Actually, the implicit influence is implied in the highly per-
sonalized interaction behaviors of users on items and has been
extensively investigated in the research area of recommender
systems. (2) Single objective optimization. The current
research works [12]–[16] model document-level sentiment
analysis as one single task, i.e., the classification or regression
task. They may suffer from over-fitting training data and trap-
ping in local optimal solutions due to optimizing the single
objective. A better way is to develop a multi-task learning
framework to optimize multiply objectives and enable these
objectives to complement each other.

To alleviate the two above-mentioned limitations, this
paper proposes a Multi-Objective, Collaborative and
Attentive framework (MOCA) for document-level senti-
ment analysis. MOCA contains three key characteristics:
(1) Attentive model for explicit influence. In line with the
current state-of-the-art studies,MOCA applies a bidirectional
RNN for learning embeddings and hidden states of each
word in a text and exploits the attention mechanism for
choosing important words for the user and item associated
with the text, so as to capture the user-item-specific text
embedding. (2)Collaborative model for implicit influence.
MOCA models the interactions between users and items
by collaborative filtering techniques which are widely used
in recommender systems. In particular, MOCA devises a
new neural collaborative filtering (NCF) model based on
multilayer perceptron, in order to catch the highly person-
alized interactions of users on items. (3) Multi-objective

optimization. MOCA considers the document-level senti-
ment analysis as both classification and regression tasks to
mutually reinforce each other. It optimizes the two objectives
at the same time by minimizing the sum of classification and
regression losses.

The main contributions of this study are listed below:

• To the best of our knowledge, this is the first study
to differentiate and exploit both explicit and implicit
influences of users and items on ratings for sentiment
analysis.

• We devise a new NCF model to learn the implicit influ-
ence, i.e., the interactions between users and items. This
is also the first study to explore NCF techniques for
sentiment analysis.

• We fuse both classification and regression tasks into one
unified framework and optimize two objectives simulta-
neously to improve the performance of rating prediction.

• We conduct extensive experiments to evaluate the per-
formance of MOCA using three review datasets col-
lected from IMDB and Yelp. Experimental results show
that MOCA achieves significantly superior performance
compared to other state-of-the-art techniques.

II. RELATED WORK
This section briefly reviews the advanced techniques for
document-level sentiment analysis, including traditional
methods, deep neural methods, and methods using user and
item information.

A. TRADITIONAL METHODS
The traditional methods apply supervised machine learning
algorithms by extracting features from texts and treating
ratings as labels. They concentrate on designing effective
textual features, since the performance of a rating predictor
heavily relies on the choice of features of texts. For example,
the work [4] applies bag-of-words vectors as text features for
support vector machines, while other studies extract bag-of-
opinions features for ridge regression [5] or naive Bayes clas-
sifier [18], where an opinion consists of a root word, modifier
words, and negation words. Further, somemethods apply sen-
timent lexicons to extract bag-of-sentiments features [6]–[8],
while other methods cluster words into topics and repre-
sent texts as topic features [19]. However, all these methods
essentially employ a bag-of-words model to represent textual
features and hence ignore word orders in texts. As a result,
they fail to fully extract semantic information from texts and
their improvement on sentiment analysis is very limited even
though they use sentiment lexicons or topics.

B. DEEP NEURAL METHODS
Deep neural networks are utilized for sentiment analysis due
to its great ability of text embedding learning without any
feature engineering. For instance, the work [9] uses stacked
denoising autoencoder in sentiment classification for the first
time. The research works [10], [13], [20] employ CNNs to
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learn text embeddings by taking word orders into account,
in which CNNs first embed each word into a vector, then
apply convolution operation over word embedding sequences
with a given window size to capture semantic information
of a word in the context, and finally take max or average
pooling operation on semantic information to get seman-
tic text embeddings. The studies [11], [14]–[16] catch text
embeddings based on RNNs which learn word meanings
depending on contextual words and are inherently suitable
for learning semantics from sequential texts. Moreover, all
these studies [11], [14]–[16] exploit the RNNwith long short-
term memory (LSTM) [21] that is developed to enhance
the ability of primitive RNNs to model long sequences,
since primitive RNNs often suffer from the gradients van-
ishing and exploding problem in long sequences. In partic-
ular, the studies [11], [14], [16] build two-level hierarchical
LSTMs to model texts as embeddings, in which the word-
level LSTM learns sentence embeddings over word embed-
ding sequences while the sentence-level LSTM generates text
embeddings from sentence embedding sequences. In addi-
tion, Socher et al. [22], Li et al. [23], Bhatia et al. [24], and
Tai textitet al. [25] present recursive neural networks to learn
sentence embeddings. However, these recursive neural net-
works depend on expansive parsing trees of sentences and are
not developed for text embeddings, so they are not suitable for
document-level sentiment analysis.

C. METHODS USING USER AND ITEM INFORMATION
Since ratings are influenced by the preferences of users
and characteristics of items, this information is also used
in sentiment analysis. Diao et al. [26] and Li et al. [27]
perform topic modeling on users and items. More sophisti-
catedly, the works [12], [13] model user-item-specific word
embeddings in CNNs by modifying original word vectors
with user and item information, in which each user (or item)
has a continuous vector representation for capturing user-
sentiment (or item-sentiment) consistencies and a continuous
matrix representation for capturing user-text (or item-text)
consistencies. Another work [20] catches review embeddings
by CNNs over word sequences, learns the representations of
a user or item by RNNs over the temporal order of review
embeddings of the user or item, and concatenates the user
and item representations with review embeddings as fea-
tures for training a support vector machine. Recently, a few
studies leverage the attention mechanism [17] to adaptively
choose important words from texts for users and/or items. For
example, the research [15] applies deep memory networks to
learn the embedding of a text by taking the weighted sum
of other text embeddings of the same user or item. Both
studies [14], [16] exploit hierarchical LSTMs to generate
two-level embeddings for sentences and texts, in which the
user and item information is utilized to derive the importance
weight of each word in a sentence (or the importance weight
of each sentence in a text) in order to better capture semantic
meanings in the sentence (or text). The difference is that
the study [14] models user attentions and item attentions at

the same hierarchical LSTMs whereas the study [16] models
them separately.

Nonetheless, these studies [12]–[16] only utilize the
explicit influence observed in the texts and cannot model
the implicit influence implied in the interactions between
users and items. Actually, the implicit influence is widely
used to predict the preferences of users on new items without
any texts of the users for these new items in recommender
systems [28], [29]. Although the historical text information
has also been applied in recommender systems [30], it is often
employed to learn user and/or item representations in order to
recommend new items for users rather than directly capture
text embeddings for sentiment analysis. It is not desirable
to simply adopt these recommendation methods [28]–[30]
for sentiment analysis, because the two research problems
are essentially different. The research problem on sentiment
analysis aims to predict the overall rating of a given text,
whereas the research problem on recommendation intends to
suggest new items for a user and there are not any available
texts for the user on the new items, because the user has never
interacted with these new items. Note that it is not mean-
ingful to recommend old items for users. Further, existing
studies [12]–[16] model sentiment analysis as one single task
and may suffer from over-fitting training data. This paper
proposes a new framework to alleviate these two limitations.

III. THE PROPOSED MOCA
In this section, we define the research problem, followed by
the architecture of MOCA. Then we detail the four compo-
nents of MOCA: semantic learning, attentive model, neural
collaborative filtering, and multi-objective optimization.

A. PROBLEM STATEMENT
For the sake of clarity, we generally use lowercases for
elements in sets, and calligraphic uppercases for sets, bold
lowercases for vectors, and bold uppercases for matrices.
Definition 1 (Word and Text Embeddings): A text y is a

sequence of l words (x1, . . . , xl) coming from a fixed vocab-
ulary X , where each word is embedded as a vector x ∈ RD1 ,
and the text is embedded as a vector y ∈ R2D2 . D1 and 2D2
are the dimension of the embedding vector. For presentation,
we use 2D2 as dimension due to the bidirectional RNN.
Definition 2 (User and Item Representations): User u ∈

U and item v ∈ V are represented as a vector u ∈ RD3

and v ∈ RD3 respectively, where D3 is the dimension of the
representation vector.
Definition 3 (Explicit Influence of User and Item Informa-

tion): Explicit influence can be observed in the user-item-
specific words of texts. To model explicit influence for sen-
timent analysis, we concentrate on predicting the rating of a
given text y with associated user u and item v information.
Definition 4 (Implicit Influence of User and Item Informa-

tion): Implicit influence cannot be observed in texts but is
implied in the interactions between users and items. Tomodel
implicit influence for sentiment analysis, we focus on
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FIGURE 1. The architecture of MOCA with four components: semantic learning, attentive
model, neural collaborative filtering (NCF), and multi-objective optimization (MOO).

predicting the rating of a user u on a new item v without the
text of the user for the new item.
Definition 5 (Research Problem): Given a text y consist-

ing of words (x1, . . . , xl) written by a user u for an item v,
the goal is to predict the overall rating of text y, by taking
full advantage of semantic meanings of text y (i.e., explicit
influence) and personalized interactions between user u and
item v (i.e., implicit influence).

B. ARCHITECTURE
The architecture of the proposed MOCA is depicted in
FIGURE 1. It consists of four components: semantic learning,
attentive model, neural collaborative filtering (NCF), and
multi-objective optimization (MOO) from bottom to top.
(1) Semantic learning. This component aims to extract
semantic meanings from texts by two steps: (i) It converts
each word into an embedding vector xi in a latent seman-
tic space and enables to compare two different words, e.g.,
calculating their semantic similarity or distance on sentiment
words, which benefits for the follow-up analysis on texts.
(ii) A bidirectional recurrent neural network (BRNN) [31] is
adopted to capture the semantic meanings of a text consisting
of the word sequence (x1, . . . , xl) in both forward and back-
ward directions. The BRNN generates the hidden state hi for
each word which represents the real meaning of the word in
the current context.
(2) Attentive model. This component learns a text’s embed-
ding y from the hidden states (h1, . . . ,hl) of all words in the

text. A simple and common method views all words equally
important and takes the average of their states as the text
embedding y. However, a better method is to calculate the
weighted sum of these states based on the attention mecha-
nism [17]. Specifically, this component exploits the attentions
of user u and item v to discover important words for them,
because different users have different preferences on words
for expressing their opinions, while different items also have
different suitable words for evaluating them.
(3) Neural collaborative filtering (NCF). This component
intends to predict the rating of a text written by user u for item
v. Besides the text embedding y from the attentive model,
the component also takes into account user u’s preferences
and item v’s characteristics, which may not be reflected in
the text and greatly influence the rating. This component
devises a new NCF method to model the user representation
u, item representation v, and their interactions, since users
show personalized preferences on items.
(4) Multi-objective optimization (MOO). This component
models the document-level sentiment analysis as both clas-
sification and regression tasks in one unified framework,
by minimizing the classification and regression losses on
the rating prediction at the same time. The multi-objective
optimization enables the two tasks to reinforce one another.

C. SEMANTIC LEARNING FROM TEXT INFORMATION
To capture the semantic meanings of words in a text, we adopt
the BRNN [31] that learns the real meaning of each word
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FIGURE 2. User-item based attentive model: user representation u, item
representation v, and LSTM hidden state h.

in the text and generates the hidden state for the word by
taking its context into account, i.e., looking neighbor words
forwardly and backwardly. Moreover, the BRNN is mounted
with the long short-term memory (LSTM) [21] that utilizes
forget gate, input gate, output gate and memory cell to control
the passing of information at each position along the sequence
and thus the long-range dependencies in the sequence can be
caught.

BRNN symmetrically models the semantics of words in
both the forward and backward directions. Following, we take
the forward direction as the example. The forward LSTM
processes the word embedding sequence (x1, . . . , xl) from
x1 to xl sequentially. At each position, given current word
embedding xt ∈ RD1 , forward cell state −→c t−1 ∈ RD2 and
hidden state

−→
h t−1 ∈ RD2 , the current hidden state

−→
h t ∈ RD2

is generated by

−→
f t = σ

(
−→
Wf [xt ,

−→
h t−1]+

−→
b f

)
, (1)

−→
i t = σ

(
−→
Wi[xt ,

−→
h t−1]+

−→
b i

)
, (2)

−→o t = σ
(
−→
Wo[xt ,

−→
h t−1]+

−→
b o

)
, (3)

−→
ĉ t = tanh

(
−→
Wc[xt ,

−→
h t−1]+

−→
b c

)
, (4)

−→c t =
−→
f t �

−→c t−1 +
−→
i t �

−→
ĉ t , (5)

−→
h t =

−→o t � tanh
(−→c t

)
, (6)

where σ is the sigmoid function, � stands for element-wise
multiplication, all W ∈ RD2×(D1+D2) and b ∈ RD2 are the
model parameters, and [xt ,

−→
h t−1] is the concatenation of two

vectors xt and
−→
h t−1.

Symmetrically, the backward LSTM processes the word
embedding sequence (x1, . . . , xl) from xl to x1. Given current
word embedding xt , backward cell state ←−c t+1 and hidden
state

←−
h t+1, the current hidden state

←−
h t can be concisely

written as
←−
h t = LSTMbackward(xt ,

←−c t+1,
←−
h t+1). (7)

Finally, the forward and backward states of each word are
concatenated into:

ht = [
−→
h t ,
←−
h t ]. (8)

The concatenated state ht ∈ R2D2 represents the latent and
real meaning of the t-th word in the text and will be used to
learn the text embedding based on the attentive model.

D. ATTENTIVE MODEL FOR EXPLICIT INFLUENCE
Traditional methods usually take the average of all word hid-
den states (h1, . . . ,hl) as the text embedding y ∈ R2D2 . How-
ever, these methods ignore the effect of the intrinsic meanings
of words and the contexts of texts, i.e., the associated user
and item. Therefore, this study applies an attentive model to
learn the semantics of a text by considering the attentions of
users and items over words, as depicted in FIGURE 2. The
attentive model defines the text embedding as the weighted
sum of these states, given by

y =
∑l

t=1
αtht , (9)

where weight αt measures the importance of the t-th word for
the current user u ∈ RD3 and item v ∈ RD3 , and is normalized
by the softmax function:

αt = softmax(e(u,ht , v)), (10)

where e(·) is a score function that aims to discover the pre-
ferred words for the user uwhowrites the text and the suitable
words that evaluate the item v, rather than view all words
equally important. It is usually defined by a two-layer neural
network:

e(u,ht , v) = wᵀ
a tanh (Wa[u,ht , v]+ ba), (11)

in which Wa ∈ RD4×(2D2+2D3), ba ∈ RD4 , and wa ∈ RD4 are
the attentive model parameters, ᵀ denotes transpose, and D4
is the dimension of the attentive model.
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FIGURE 3. Neural collaborative filtering: user representation u, item representation v,
and text embedding y.

E. NCF FOR IMPLICIT INFLUENCE
The attentive model focuses on utilizing the explicit influ-
ence, i.e., learning the user-item-specific text embedding y
for sentiment analysis. However, not all user preferences and
item characteristics can be observed in the text. The implicit
interactions between users and items are highly personal-
ized and may not be captured by the attentive model. Thus,
we devise a new NCF which integrates user representation u,
item representation v and text embedding y into a multilayer
perceptron for rating prediction, as depicted in FIGURE 3.

First, the NCF takes as inputs the concatenation of u and v
at the first layer, and outputs zm at the m-th layer:

z1 = φ(W1[u, v]+ b1),

z2 = φ(W2z1 + b2),

· · ·

zm = φ(Wmzm−1 + bm), (12)

where the output of one layer serves as the input of the
next layer, and each layer is able to discover certain implicit
structures on the interactions between user u and item v.
Then, the NCF combines zm with y to get the output zm+n:

zm+1 = φ(Wm+1[zm, y]+ bm+1),

zm+2 = φ(Wm+2zm+1 + bm+2),

· · ·

zm+n = φ(Wm+nzm+n−1 + bm+n), (13)

where zm+n incorporates both explicit and implicit influ-
ences. Further, the output zm+n is fed into the classification
layer to derive the score s for each class (e.g., five classes
from one to five stars):

s = φ(Wm+n+1zm+n + bm+n+1). (14)

Finally, the score s is fed into the regression layer to predict
a real-valued rating r̂ :

r̂ = φ(wᵀ
m+n+2s+ bm+n+2). (15)

The activation function φ can be set to sigmoid σ , hyper-
bolic tangent (tanh), or rectifier (relu). All W, w and b are
the NCF model parameters, and their dimension depends on

the number of neurons of the layers with which they connect.
It is a good practice to design the network structure to follow
a tower pattern, where each successive layer has a smaller
number of neurons than its previous layer. In this paper,
we set the number of neurons to

⌈
2−j+2D3

⌉
(1 ≤ j ≤ m)

and
⌈(⌈

2−m+2D3
⌉
+ 2D2

)
2−j+m+1

⌉
(m + 1 ≤ j ≤ m + n)

for the j-th layer, in which 2D2 is the dimension of text
embedding y, andD3 is the dimension of user representation u
and item representation v, as presented in Definitions 1 and 2.
The classification layer has the same number of neurons as
classes, while the regression contains only one neuron for
predicting a scalar value.

F. MULTI-OBJECTIVE OPTIMIZATION
In this study, the document-level sentiment analysis is mod-
eled as both classification and regression tasks. Thus, it is
required to minimize the losses of classification and regres-
sion at the same time.
For classification, the score s in Equation (14) is normal-

ized into the probability distribution r̂ through the softmax
function:

r̂ = softmax(s). (16)

Then the cross entropy function is applied to calculate the
classification loss, given by

L1 = −
∑C

j=1
r(j) log(r̂(j)), (17)

where C is the number of classes, (j) denotes the j-th element,
and r is the ground-truth rating class distribution. Note that r
is an one-hot binary vector representation of the scalar rating
r , by setting the element for the true class to 1 and all other
elements to 0. For regression, given the ground-truth rating r
and the predicted rating r̂ in Equation (15), the square error
is considered as the regression loss:

L2 = (r − r̂)2. (18)

It is worth emphasizing that Equations (14) and (15) com-
pute the loss for only one rating. Given a set of ratings R,
we minimize the weighted sum of classification and regres-
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TABLE 1. Statistics of the three datasets.

sion losses, given by

min
�

1
|R|

∑
r∈R

(λL1 + (1− λ)L2), (19)

where � denotes all model parameters learned via the
stochastic gradient descent algorithm [32]; λ ∈ [0, 1] controls
the weight of two losses and enables both classification and
regression tasks to reinforce each other.

IV. EXPERIMENTS
In this section, we conduct extensive experiments on three
real-world datasets to evaluate the effectiveness of our
MOCA and analyze experimental results by comparing
MOCA with the state-ofthe-art models.

A. EXPERIMENTAL SETTINGS
1) DATASETS
We use three real-world datasets which are collected from
IMDB and Yelp Dataset Challenge in 2013 and 2014 [13].
TABLE 1 summarizes the statistics of the three datasets. Each
dataset is already split into three parts: 80% for training,
10% for validation, and the remaining 10% for testing. The
three datasets are the benchmark for evaluating the task of
document-level sentiment analysis with the effect of users and
items [14]–[16], [20].

2) EVALUATED MODELS
We compare our MOCA with the following models for
document-level sentiment analysis.

1) Trigram trains a support vector machine (SVM) with
unigrams, bigrams and trigrams as features.

2) TextFeature trains an SVMwith word and character n-
grams, sentiment lexicon, negation features, and cluster
features [8].

3) UPF extracts user-leniency and product features [33]
and then concatenates them with the features in Tri-
gram and TextFeature.

4) AvgWordvec + SVM averages word embeddings in a
text to obtain the text embedding for training an SVM.

5) SSWE + SVM learns sentiment-specific word embed-
dings and uses max/min/average pooling to generate
text embeddings for training an SVM [34].

6) Paragraph Vector implements the distributed memory
model of paragraph vectors for document-level senti-
ment classification [35].

7) RNTN + Recurrent represents sentences with recur-
sive neural tensor networks [22], generates text embed-
dings with recurrent neural networks, and averages
hidden vectors as features for sentiment classification.

8) JMARS is a recommendation algorithm that uses the
information of users and aspects with collaborative
filtering and topic modeling [26].

9) UPNN utilizes user and product information to cap-
ture user-item-specific word embeddings for sentiment
classification via CNNs [13].

10) CNN + RNN + SVM learns user and item repre-
sentations by RNNs over the temporal order of text
embeddings fromCNNs and concatenates the represen-
tations with text embeddings as features for training an
SVM [20].

11) UPDMN applies deep memory networks to learn the
embedding of a text by taking the weighted sum of
other text embeddings of the same user or item and
feeds the text embedding into the softmax layer for
sentiment classification [15].

12) NSC + UPA is a neural sentiment classification with
user production attention in the hierarchical word-level
and sentence-level RNNs [14].

13) HUAPA models user attentions and item attentions
separately in the hierarchical word-level and sentence-
level RNNs [16].

We report the results of thesemethods in [13]–[16] and [20]
since we use exactly the same datasets.

3) PERFORMANCE METRICS
We adopt standard Accuracy to measure the overall sentiment
classification performance and RMSE to measure the diver-
gences between ground truth rj and prediction r̂j:

Accuracy = T/N , (20)

RMSE =

√∑N
j=1 (rj − r̂j)

2

N
, (21)

whereN is the number of reviews in the testing set and T is the
number of reviews with correct predicted sentiment labels.
Note that ourMOCA evaluates Accuracy on the classification
task and RMSE on the regression task.

4) TRAINING SETTINGS
We tokenize texts into words with NLTK1 and implement our
MOCA based on Google’s TensorFlow2 which is an open
source software library for deep learning. TABLE 2 lists
the hyperparameter settings of MOCA in the experiments.
We pre-train the 256-dimensional word embeddings (D1 =
256) on each dataset with CBOW [36]. The word embeddings

1https://www.nltk.org
2https://www.tensorflow.org
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TABLE 2. Hyperparameter settings.

TABLE 3. The results of document-level sentiment classification on the
three datasets. Accuracy (Acc., higher is better) and RMSE (lower is better)
are the evaluation metrics. The best results are in bold.

are fixed when training other model parameters. The dimen-
sion of hidden states in LSTM is set to 128 (D2 = 128), so a
bidirectional LSTM gives 256-dimensional text embeddings.
The dimension of user and item representations is set to 256
(D3 = 256) and the representations are randomly initialized
with the uniform distribution (−0.01, 0.01). The dimension
of the attentive model is also set to 256 (D4 = 256). In NCF,
the layer sizes m and n are set to 3 and the activation function
φ is set to rectifier (relu). For multi-objective optimization,
the loss weight λ is set to 0.7 by default. We use stochastic
gradient descent algorithm [32] with exponential moving
average to update parameters and set initial learning rate to
0.02 and batch size to 64 when training. Finally, we select
the best model parameters based on the performance on the
validation set and evaluate the parameters on the testing set.
We do not use any regularization to improve the performance
of our model.

B. EXPERIMENTAL RESULTS
1) MODEL COMPARISONS
TABLE 3 depicts the results of all evaluated models which
are divided into two groups: the models only using the

TABLE 4. Effect of model components on Accuracy (Acc., higher is better)
and RMSE (lower is better). AM denotes Attentive Model for explicit
influence and NCF denotes Neural Collaborative Filtering for implicit
influence.

text information, and the models incorporating both the text
information and the user and item information. Obviously,
the second group performs better than the first group. For
example, Trigram + UPF and TextFeature + UPF obtain at
least 1.1% improvement on RMSE across the three datasets,
compared to Trigram and TextFeatur, respectively. These
comparisons indicate that the user and item information is
helpful for document-level sentiment analysis. The results of
the first group have been discussed in detail from [13]–[16]
and [20]. Thus, we concentrate on analyzing the results of the
models in the second group.

We can conclude the following four important findings:
(1) Our MOCA achieves the best performance in terms of
accuracy and RMSE across all the three datasets by multi-
task learning with both explicit and implicit influences of
users and items. As opposed to the second best performance
given by HUAPA, MOCA boosts accuracy from 3% to 5%
and reduces RMSE from 5% to 10%. These results demon-
strate the effectiveness of MOCA for modeling the user
and item information, i.e., learning user-item-specific text
embeddings and capturing personalized user-item interac-
tions. (2)UPDMN,NSC+ UPA andHUAPA are competitive,
because they all apply the attention mechanism to catch user-
item-specific text embeddings for sentiment classification.
However, they fail to model the personalized interactions of
users on items and cannot use the implicit influence. (3) Both
UPNN and CNN + RNN + SVM result in worse accuracy
and RMSE in comparison with UPDMN, NSC + UPA and
HUAPA, since they do not apply the attention mechanism to
discover the user-item-specificwords. (4) JMARS is evaluated
in terms of RMSE because it outputs real-valued ratings.
JMARS reports much higher RMSE, although it adopts col-
laborative filtering for the user and item information. JMARS
is a recommendation algorithm and applies conventional col-
laborative filtering rather than NCF developed in this paper.
This proves that it is not desirable to simply borrow recom-
mendation models for sentiment analysis.

2) ANALYSIS ON COMPONENTS
TABLE 4 shows the effect of the components of MOCA
on accuracy and RMSE over three datasets. BRNN is the
baseline of semantic learning by taking the average of all
word hidden states as the text embedding and feeding it into
the classification layer for accuracy or the regression layer for

10934 VOLUME 7, 2019



J.-D. Zhang, C.-Y. Chow: Multi-Objective, Collaborative, and Attentive Sentiment Analysis

FIGURE 4. Effect of loss weights on multi-objective optimization. Higher Accuracy or lower RMSE is better.
(a) Accuracy (b) RMSE.

RMSE. By integrating BRNN with attentive model (AM) for
the explicit influence of user-item-specific words or neural
collaborative filtering (NCF) for the implicit influence of user
interactions on items, the performance is improved signifi-
cantly. The improvement of NCF is larger than that of AM on
the IMDB and Yelp 2014 datasets, but reverse on the Yelp
2013 dataset. Moreover, by fusing AM and NCF together,
BRNN + AM + NCF reduces RMSE further. Finally, with
multi-objective optimization,MOCA achieves the best results
on the three datasets, which shows that all components are
necessary and play important roles.

3) ANALYSIS ON LOSS WEIGHTS
FIGURE 4 depicts the effect of varying loss weights λ in
Equation (19) from 0.1 to 0.9 onmulti-objective optimization.
As λ for the classification task increases (i.e., the loss weight
for the regression task decreases), both accuracy and RMSE
become better at first and then get worse on all the datasets.
This trend of accuracy and RMSE is the same, which verifies
that the classification and regression tasks form mutually
beneficial cooperation rather than excluding one another in
our proposed framework. In other words, the multi-objective
optimization is a cooperative game in which both objectives
obtain optimal rewards at the equilibrium state, instead of the
zero-sum game where one objective gets revenue at the cost
of the other one.

V. CONCLUSION
In this paper, we proposed a new framework called MOCA
for document-level sentiment analysis. First, MOCA applies
BRNN with the attentive model to catch user-item-specific
text embeddings for utilizing the explicit influence of users
and items. Then, MOCA develops a new NCF model to
exploit the user’s and item’s implicit influence that is implied
in the personalized interactions between them. Finally,
MOCA models the sentiment analysis as two tasks and

optimizes both classification and regression objectives simul-
taneously to reinforce one another. Experimental results show
that MOCA achieves the best performance compared to other
state-of-the-art methods on the three real-world datasets for
IMDB and Yelp.
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