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ABSTRACT Tracking 3D human motion from monocular video sequences has aroused great interest in
recent years. Among these human motion tracking methods, the particle filter is considered as an effective
approach. However, the current approaches based on particle filter still have some limitation such as many
particles are obviously not consistent with the observed image due to they are independent of the image
information. In this paper, we present an image-constrained particle filter approach to track 3D humanmotion
from monocular video clips with the assistance of a pre-captured motion library. We propose two novel
particle filtering criteria and design a hierarchical likelihood function. The top layer of the function consists
of the particle filtering criteria, and the bottom layer consists of the likelihood functions based on image
contours and edge features. We remove those particles that do not match the image significantly at the top
level, and the remaining particles are evaluated using the underlying likelihood function. The experimental
results show that our method can effectively improve the accuracy of motion tracking and constrain the
estimation of human body position.

INDEX TERMS 3D human motion tracking, image constraint, particle filter, monocular video.

I. INTRODUCTION
Human motion tracking from monocular video has received
increasing attention in recent years due to its applicabil-
ity to many areas, including intelligent surveillance system,
human-computer interaction, sports training, medical reha-
bilitation and special effects in movie. To precisely detect 3D
human motion, some researchers acquire motion parameters
from sensors attached on the human body. However, it needs
to build professional motion capture environment and the
equipment is hugely expensive for commercial use, therefore
it is unsuitable for most normal applications. Hence, most
people adopt the markerless human body tracking by video.
Although the human motion video is easy to obtain, getting
sufficient information from video dataset to compute the
parameters of bodymotion properly is also a difficult problem
in recent years. With the rapid development of machine learn-
ing technology, computer vision including 3D human motion
tracking makes a great progress. A large amount of research
has been devoted to the study of 3D human motion tracking,

but the goal of it is hard to achieve perfect result owing to
following reasons. For one thing, the large number of degrees
of freedom in human body configurations lead to heavy com-
putations of searching in high-dimensional state space. For
another, there are a series of factors remarkably influencing
tracking results need to be taken into account, such as loss of
depth information, complex image backgrounds, differences
in body shape and clothing, occlusion and self-occlusion
between the limbs and the torsos, limb confusion, etc.

In virtue of the particle filtering can deal with any form
of probability distribution, therefore since the publication
of the CONDENSATION algorithm [1], [2], this kind of
methods quickly become a mainstream in the field of human
motion tracking. Currently, in most of commonly-used parti-
cle filter-based approaches, the generation of particle sets is
independent of image information, leading to a large number
of particles of the set are obviously not consistent with the
observed image and wasting a lot of computing resources.
As a result, many current existing particle filter-based
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methods suffer from inaccurate human motion prediction and
sensitivity to complex and fast-changing motions.

In this paper, we propose a novel 3D human motion track-
ing technique from monocular video, namely the Image-
Constrained particle filter. It is based on the particle filter
framework but adds two selecting criteria, which can be
estimated by sample data. Based on this, we design a hierar-
chical particle likelihood function.When evaluating particles,
we first remove the particles that obviously do not match the
image according to the top-level criterion, and get a better
particle collectionwhich is in good agreement with the image.
Then only the particles who are selected can enter the next
layer of particle evaluation. Experiment results show that
our technique could effectively improve the accuracy of 3D
human motion tracking.

The structure of this paper is as follows: we review previ-
ous work in Section 2. In Section 3, we give a novel particle
selection strategy based on image constraints. On the basis,
we describe the entire 3D human motion tracking process
by applying our proposed Image-constrained particle filter
in Section 4. Section 5 shows experimental results. Finally,
we conclude this paper in Section 6.

II. RELATED WORKS
There have been a large number of previous research about
3D human motion tracking in the last twenty years. These
works can be divided into two categories: the top-downmeth-
ods and the bottom-up methods.

In the former kind of methods, the human motion is
estimated from image features. Some researchers estimate
human posture by geometric constraints. They utilize the
hinge structure and limb length constraints of the human body
to estimate the corresponding 3D joint coordinates according
to the position of the 2D joint point in the image. The repre-
sentative work is the 3D posture estimation method based on
hinge body proposed by Taylor [3], who uses the weak per-
spective projection as the camera model. Mori and Malik [4]
first localize joint positions in 2D and then lift them to 3D
using the geometric method of Taylor [3]. Chen and Chai [5]
simultaneously reconstructs 3D human motion from a small
set of 2D image features tracked from uncalibratedmonocular
video sequences. Wei and Chai [6] identifies a set of new
constraints in 2D image and uses them to eliminate the ambi-
guity of 3D pose reconstruction. Wei and Chai [7] formulates
the video-based motion modeling process in an image-based
keyframe animation framework. This type of methods extract
useful information from the image to synthesize the human
body pose. The process is morbid due to factors such as image
noise, limb occlusion, and lack of depth information. The
main difficulty is that the mapping from image features to
poses is one-to-many.

The other researchers retrieve similar posture from the
3D motion capture data. Howe [8] constructs a motion
tracking system Silo Tracking based on contour retrieval.
Shakhnarovich et al. [9] propose a human motion esti-
mation method based by virtue of motion database index.

The retrieve process of the two methods are all based
on the silhouette. The advantage is that it is not affected
by light and clothing color. But the ability to distinguish
is limited, different postures may get very similar con-
tours. Therefore, Poppe [10] adopts the K-Nearest Neigh-
bor (KNN) interpolation method to estimate human pos-
ture. And there are also propose that regress posture from
image features using functions to approximate human posture
in the image or video or fitting such functions by super-
vised or semi-supervised learning methods. Brand et al. [11]
use the Hidden Markov Model (HMM) to establish a statisti-
cal model for 3D human motion. Howe et al. [12] directly
train the mapping function from image sequence to pos-
ture sequence. Agarwal and Triggs uses the Relevance Vec-
tor Machine (RVM) [13] as posture regression model [14],
[15]. In [16], Agarwal proposes another regression scheme.
He uses a regression method similar to theMixture of Experts
(MoE) [17], [18]. In addition, the probability density propa-
gation model [19], [20] and Local regression model [21] are
applied to the human motion tracking. The above methods
based on retrieval and regression generally fail to restore the
spatial position of the human body because image features
(human contours, the texture features, etc.) typically contain
only the appearance information of the human body without
the positional information of the human body relative to the
environment. Moreover, these methods can only recover the
pose in the training sample and generally require a large
number of labeled samples.

In the latter kind of methods, the 3D humanmotion is often
optimized in a prediction-correction manner. These methods
minimize the cost of matching between the projection of
the posture and the observed image by adjusting the pos-
ture. The core of them is the optimization algorithm. Among
them the most famous approach is the particle filtering [22],
which is derived from the Bayesian theory and the Monte
Carlo method. It can solve the nonlinear problem such as
3D human motion tracking that the classical Kalman filter
cannot solve. In which the possible distributions of target’s
states are depicted by a group of weighted particles [23].
Liu and Payandeh [24] propose an approach for tracking
movements of a person based on the notion of a hierarchical
particle filter which incorporates two layers consisting of
coarse-to-fine tracking subsystems. Sidenbladh et al. [25]
has successfully used the particle filter to track human
motion in short monocular video clips (<100 frames). Since
the human body has a high dimension, a large number of
particles are required to effectively represent the posterior
distribution. Doucet [26] and Doucet et al. [27] use the
Rao-Blackwellisation (RB) technique [28] to reduce the
dimension of state space. Xu and Li [29] employ the Par-
tial Least Squares Regression [30] to learn the relationship
between the left and right limbs. Other scholars simplify
the number of particles by reducing the dimension of state
space. Sidenbladh et al. [31] and Urtasun et al. [32] use the
Principal Component Analysis (PCA) to reduce the dimen-
sion of motion segments. Urtasun transforms the pose space
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into a low-dimensional shape using the Gaussian Process
Latent Variable Model (GPLVM) and the Gaussian Process
Dynamical Model (GPDM) [33], [34] Hidden variable space,
then tracked in this space. Sminchisescu and Jepson use
the Laplacian Eigenmaps [20] and the Laplacian Eigenmaps
Latent Variable Models (LELVM) [35] to learn the map-
ping relationship from pose space to low-dimensional hidden
variable space. Li et al. [36] use a Mixture of Factor Ana-
lyzers to transform high-dimensional poses into a Globally
Coordinated Local Linear Models. Liu et al. [37] propose
an exemplar-based conditional particle filter (EC-PF) from
monocular camera by introducing a conditional term with
respect to exemplars and image data. Chang and Lin [38]
propose a novel progressive particle filter comprises three
principal techniques: hierarchical searching, multiple predic-
tions, and iterative mode-seeking. Bao et al. [39] present
a particle filter based human position estimation method
using a foot-mounted inertial and magnetic sensor module.
Du et al. [40] present a differential evolution-Markov chain
(DE-MC) particle filtering by taking the advantage of the
DE-MC algorithm’s ability to approximate complicated
distributions.

In these methods, the human pose is obtained by opti-
mizing the cost function between the projected contour and
the contour of the image. Since the dimension of the human
body posture is relatively high, the search process is in a
high-dimensional posture space. Moreover, the cost func-
tion is very complex, making the searching more difficult.
On the whole, the top-down approaches are capable of restor-
ing body position and orientation information and even can
restore arbitrary poses theoretically, due to they do not rely
on any training samples.

FIGURE 1. The phenomenon that the particles do not match the contour
of the image.(a) Some joints are projected outside the contour of the
image. (b) The projection of particles cannot cover the outline of the
human body.

III. PARTICLE SELECTION STRATEGY BASED
ON IMAGE CONSTRAINT
In the process of 3D human motion tracking based on the
particle filtering, there is often a mismatch between the par-
ticle and the contour of the image, resulting the joint points
obtained after the particle projection are outside the contour
of the human body (see Figure 1(a)). These mismatched
particles will affect the accuracy of posture estimation, so it
is necessary to distinguish these particles and delete them
from the particle collection. The common method of deletion

is to preserve only the particles that are projected entirely
inside the contour of the human body. But this will result
the projection contour is significantly smaller than the image
contour (see Figure 1(b)) and ultimately affect the accuracy
of human motion tracking. As a result, we design two novel
criteria for the particle selection.

A. PARTICLE SELECTING CRITERIA
Criterion I: Limb constraint - the limb projection is inside the
outline of the image.

Assuming that the contours of the human body have been
extracted relatively clearly, the 2D limbs obtained from all
particle projections must be located inside the contour of
the human body. Considering the influence of contour noise,
we performed a small expansion process on the contour of the
human body in the image. In order to simplify the calculation,
we separately sample the projections of the four limbs to
obtain discrete projection points, as shown the green points
in Figure 2. If all of these points are within the outline,
it indicates that these particle satisfies Criterion I, otherwise
they particle is will be deleted.

FIGURE 2. Limb constraint.

Criterion II: Joint constraint - the projections of the head
and foot joints are within the limits of the outline of the image.

Though using Criterion I can guarantee all joint projec-
tions are inside the outline of the image, the projection of
human body may shrink into a certain part of the image
contour, which results in the enlarged positional deviation
of the human body. Therefore, we need to limit the size of
the projection contour of human body so that it can cover the
image contour as far as possible. Due to the high complexity
of computing body projection contour, we use the human
body joint constraints to approximate this limitation. That is,
the projection of the head joint and the ankle joint must be
within the limits of the image contour. By this way, we can
obtain the effective particles, as shown in Figure 3.

B. LEARNING THE CRITERIA
ForCriterion I, we manually set up an expansion coefficient.
In our experiment, all contours are expanded by 5 pixels.
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FIGURE 3. Joint constraint.

The mathematical description of the Criterion I is expressed
as Equation 1.

Psil(I |x) ∝ δ(Proj(x) in Sil(I )) (1)

Here the Proj(x) is the projection of the main limbs of the
posture x, the Sil(I ) denotes the human contour in the image,
and the δ(x) is expressed as:

δ(x) =

{
1, x = ture
0, x = false

(2)

The value of the δ(x) is 1 when the limb projection of the
pose x is within the image contour, otherwise is 0.
For Criterion II, we extract the relative position of

the head and ankle joints in the image contour from the
training set.

In order to obtain the prior distribution, we project the 3D
human pose in the training set onto the 2D image plane and
calculate the relative position of the head and ankle joint in the
bounding box of the image contour. Since the feet are lifted
alternately with one part of a foot always on the ground during
walking, the ankle of the foot which touches the ground is
at the lower position of the feet, and the other foot moves
in a wide range. Therefore we use the coordinates of the
ankle joint at the lower position to denote the 2D position
distribution of the ankle.

To make the coordinates are independent of the size of the
human body contour, we normalize the coordinates of the two
joints into the bounding box of the human body contour and
the obtained coordinates are in the range of [0, 1]. Figure 4
shows the 2D coordinate distribution of the head and ankle
joints. From which, we can find that the variation range of
x-coordinate of the two joints is basically within [0.1, 0.9],
and the variation range of y-coordinate is extremely small.
Therefore, the y-coordinate can be used to constrain particles.
We define the prior distribution of the y-coordinate of the two
joints by Equation 3.{

Phead (y) ∝ δ(lhead ≤ y ≤ µhead )
Pfoot (y) ∝ δ(lfoot ≤ y ≤ µfoot )

(3)

FIGURE 4. 2D coordinate distribution of the head and ankle joints.

In Equation 3, we use training samples to estimate the
parameters lhead , µhead , lfoot , µfoot .

IV. 3D HUMAN MOTION TRACKING
In our method, we first prune some particles according to the
two criteria mentioned above before calculating the weight
of particles, only the remaining particles can be performed
the particle evaluation operation. The corresponding particle
likelihood function is described by Equation 4.

P(It |xt ) = exp(−aEsil−bEedge)Psil(It |xt )Pfoot (xt )Phead (xt )

(4)

It is a hierarchical likelihood function and can be divided
into two layers. The first layer is the selecting crite-
rion Psil(It |xt )Pfoot (xt )Phead (xt ), and the second one is the
likelihood function based on contour and edge features
exp(−aEsil − bEedge). We firstly perform the particle evalua-
tion on the first level and select the particles whose weight is
1 based on the evaluation results. Then these selected particles
are carried out the likelihood function estimation. The benefit
of this is those particles that do not meet the constraints can
be removed and the remaining particles have a chance to get
more complex evaluations.

A. PARTICLE EVALUATION FUNCTION
In this part, we design the particle evaluation function using
the image contours and edge features.

1) CONTOUR FEATURES
We use the background subtraction method to extract the
contour of human body in the video by means of the back-
ground subtraction method. The matching degree between
the projection contour and the image contour (Figure 5) is
represented by the bi-directional silhouette matching [41],
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FIGURE 5. Sketch of contour matching cost. (a) Contour of human body.
(b) Contour of model projection. (c) Sketch of contour matching cost.

which is calculated as follows:

Esil = (1− α)
B

B+ Y
+ α

R
R+ Y

(5)

In this formula, the R denotes the area of the body con-
tour in the image that is not covered by the projection con-
tour of the model (Figure 5), corresponding to the red part
in Figure 5(c); the B represents the area of the projection
contour of the model that is not covered by the image contour,
corresponding to the blue part in Figure 5(c); the Y is the area
of the overlap of two contours, corresponding to the yellow
part in Figure 5(c). The value of the Esil is 0 when the two
contours completely overlap, conversely its value is 1 when
there is no overlap between them.

Particularly, the R, B and Y are defined in Equation 6:

R =
∑
p

M f (p)(1−Mb(p))

B =
∑
p

Mb(p)(1−M f (p))

Y =
∑
p

M f (p)Mb(p))

(6)

where the M f and Mb respectively express the body contour
of the image (Figure 5(a)) and the projection contour of the
model (Figure 5(b)), the p denotes the pixel index of an image,
the α is an adjustment parameter and its value is 0.5 in our
experiment.

2) THE FEATURE OF EDGE
We use the Canny edge detection operator to extract the edge
of the image, and the resulting edge graph contains many
edges of the background (Figure 6(c)). Since the background
edges may interfere with the evaluation of particles, so we use
the human body contour (Figure 6(b)) to suppress them. Let
the f represent the foreground contour map, we expand the f
by about 5 pixels to get a new contour map g. We keep the
edge map corresponding to the foreground part of g, and get
the suppressed edge (Figure 6(c)). This edge map basically
contains the edges on the contour of the human body, and the
edges in the background are effectively suppressed.

The evaluation function of particle edge matching is com-
puted by the truncated chamfer distance (TCD) [42] between
the edge of image and the edge of model projection contour.
Suppose the points set of the model is represented as U =
{ui}ni=1 and that of the image is V = {vi}mi=1, then the Eedge is

FIGURE 6. Sketch map of human body contour edge extraction. (a) The
original image. (b) The contour map. (c) Canny edge map. (d) The edge
map after background suppression.

FIGURE 7. Sketch map of edge matching. (a) Map of distance transform
of image edge. (b) Sketch map of edge matching.

calculated as follows:

Eedge = tcd(U ,V ) =
1
n

∑
i

min
{
minj

∥∥ui − vj∥∥ , τ} (7)

where τ is a cut-off factor for reducing the influence of outer
point (outliers) and missing edges.

We use the Distance Transform (DT) to approximate the
TCD, then the Eedge can be rewritten as:

Eedge = tcd(U ,V ) =
1
n

n∑
i=1

min(DT (ui), τ ) (8)

Combining the two matching costs Esil and Eedge, the par-
ticle evaluation function can be defined as Equation 9.

w = P(I |x) = exp(−aEsil − bEedge) (9)

Here, the coefficients a, b are used to adjust the weights of
different items.

B. 3D HUMAN MODEL AND POSTURE
In this paper, we adopt a simplified 3D human body model,
which consists of 10 rigid bodies, as shown in Figure 8.
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FIGURE 8. 3D human body model.

The trunk, limbs and head of themodel are respectively repre-
sented by the elliptical cylinder, truncated cone and cylinder
and they are linked by 14 joints.

Let the x denote the 3D human posture. It is composed of
three parts and represented as:

x = (r, o, p) (10)

where, the r is the position of the human body, the o is
the rotation of the human body, and the p expresses the
coordinates of 14 joints in the local coordinate system of the
human body:

p = (p1, p2, · · · , p14) (11)

Assuming the r , o and p are independent of each other,
then theP(xt |xt−1) can be decomposed into three independent
dynamic models:

P(xt |xt−1) = P(rt |rt−1)P(ot |ot−1)P(pt |pt−1) (12)

It is proved as follows:

P(xt |xt−1) = P(rt |rt−1)P(ot |ot−1)P(pt |pt−1)

=
P(rt , ot , pt , rt−1, ot−1, pt−1)
P(rt−1),P(ot−1),P(pt−1)

=
P(rt , rt−1)P(ot , ot−1)P(pt , pt−1)

P(rt−1)P(ot−1)P(pt−1)
= P(rt |rt−1)P(ot |ot−1)P(pt |pt−1) (13)

Because the dimension of state vector x is very high, it need
a large number of particles to gain a better tracking result, thus
it is time-consuming to evaluate these particles. Essentially
the intrinsic dimension of human motion is relatively low,
so we use the principal component analysis (PCA) to reduce
the dimension of the p.

Given N training samples
{
pi = (pi,1, pi,2, · · · , pi,14)

}N
i=1,

we calculate the eigenvector of the sample covariance matrix
{vk}42k=1 and the corresponding eigenvalue {αk}42k=1. Suppose
the αk > αk+1 (k = 1 · · · 41), we select the first d eigenvec-
tors and project the pi onto these d eigenvectors, then the pi
can be represented as:

pi ∼= v0 +
d∑
k=1

gi,kvk (14)

where,

v0 =
1
N

N∑
i=1

pi (15)

We use the gi = (gi,1, gi,2, · · · , gi,d ) ∈ Rd to approximate
the pi. And we choose the d to make the subspace {vk}dk=1
retain more than 95 of the variance in the original space. For
walking motion, the range of D is [3, 10]. In order to make
the posture estimation more reasonable, we set the range of
the gi by Equation 16.

−3
√
am < gi,m < 3

√
am, m = 1 . . . d (16)

If the gi,m beyond this range, we set it as the nearest
boundary value. As a result, we can track the human posture
in a low dimensional subspace, then the Equation 12 can be
rewritten as:

P(xt |xt−1) = P(rt |rt−1)P(ot |ot−1)P(gt |gt−1) (17)

C. DYNAMIC PROCESS
1) THE DYNAMIC PROCESS OF THE BODY POSITION
Assuming the three components of 3D coordinates of the
human body are independent of each other during movement,
the dynamic process of human position can be defined as:

P(rt |rt−1) = P(rx,t |rx,t−1)P(ry,t |ry,t−1)P(rz,t |rz,t−1) (18)

where the rx,t , ry,t , rz,t respectively represent the x, y, z
component of the human body position in time t .
Figure 9(a) and Figure 9(b) show the acceleration distribu-

tion of the rx and ry, we can find that the acceleration in the
two directions can be described by the Gaussian distributions
with zero mean. Therefore, it is reasonable to assume that the
human motion in the direction X and Y (horizontal plane) is
uniform. As a result, we define the dynamic process of the
two directions as:{

P(rx,t |rx,t−1) = N (rx,t ; 2rx,t−1 − rx,t−2, σ 2
rx)

P(ry,t |ry,t−1) = N (ry,t ; 2ry,t−1 − ry,t−2, σ 2
ry)

(19)

where the σrx and the σry denote the standard deviation and
they can be estimated from training samples.
However, the above dynamic process defined as in Equa-

tion 19 is a second-order Gaussian autoregressive process,
which contradicts the hypothesis of particle filter. For this
reason, we transform the second-order process into a first-
order one [43] by replacing rx,t and ry,t with r̃x,t =

( rx,t
rx,t−1

)
VOLUME 7, 2019 10299
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FIGURE 9. Distribution law of human body position. (a) Distribution of X
direction’s acceleration. (b) Distribution of Y direction’s acceleration.
(c) Distribution of Z direction’s acceleration.

and r̃y,t =
( ry,t
ry,t−1

)
respectively, then the Equation 19 can be

rewritten as:
P(r̃x,t |r̃x,t−1)=N (r̃x,t ;

(
2 −1
1 0

)
r̃x,t−1,

(
σ 2
rx 0
0 1

)
)

P(r̃y,t |r̃y,t−1)=N (r̃y,t ;

(
2 −1
1 0

)
r̃y,t−1,

(
σ 2
ry 0
0 1

)
)

(20)

Since the human body does not move in the vertical direc-
tion, the rz,t oscillates in a small range, which is mainly
determined by body shapes. Figure 9 shows the velocity
distribution of the human body in the Z direction, we can
discovery that the position change in the Z direction can also
be represented by a Gaussian distribution with zero mean
(the red line in the Figure 9(c)), so we establish the dynamic
process of the rz,t as following:

P(rz,t |rz,t−1) = N ((rz,t ; rz,t−1), σ 2
rz) (21)

FIGURE 10. The distribution law of human body orientation.
(a) Distribution of X-orientation. (b) Distribution of Y-orientation.
(c) Distribution of Z-orientation. (d) Velocity distribution of Z-orientation.

FIGURE 11. The distribution law of human posture acceleration. (a) The
distribution of the acceleration of g1. (b) The distribution of the
acceleration of g2. (c) The distribution of the acceleration of g3. (d) The
distribution of the acceleration of g4. (e) The distribution of the
acceleration of g5. (f) The distribution of the acceleration of g6.

In which the standard deviation σ 2
rz is estimated from the

sample data.

2) DYNAMIC PROCESS OF HUMAN BODY ORIENTATION
We assume the three components ox,t , oy,t , oz,t of the rotation
ot are independent of each other during the movement, then

10300 VOLUME 7, 2019



X. Zhao et al.: Image-Constrained Particle Filter for 3D Human Motion Tracking

FIGURE 12. Comparison of the joint error. (a) C1. (b) C2. (c) C3.

we can define the dynamic process of the ot as:

P(ot |ot−1)=P(ox,t |ox,t−1)P(oy,t |oy,t−1)P(oz,t |oz,t−1) (22)

Figure 10 shows the distribution characteristics of the three
orientation components of the human motion. We can see
that the ox and oy vary in a narrow range, while the oz
varies significantly around the Z axis(the vertical direction).

FIGURE 13. Comparison of the position error. (a) C1. (b) C2. (c) C3.

We use the Gaussian distribution to describe the distri-
bution characteristics of the three components. Since the
human motion is a circular motion in space, the oz is uni-
formly distributed over the whole [−π, π] (Figure 10(c)),
but the velocity variation of the oz presents a single peak
distribution.
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FIGURE 14. Comparison of rotation error. (a) C1. (b) C2. (c) C3.

Based on the above analyses, the whole dynamic process
can be described as:

P(ox,t |ox,t−1) = N (ox,t ;µox , σ 2
ox)

P(oy,t |oy,t−1) = N (oy,t ;µoy, σ 2
oy)

P(oz,t |oz,t−1) = N (oz,t ;µoz + oz,t−1, σ 2
oz)

(23)

The parameters µox , µoy, µoz, σox , σoy, σoz are estimated
from the sample library.

FIGURE 15. Comparison of the mean of the joint error.

FIGURE 16. Comparison of the standard deviation of the joint error.

In addition, we can find the value of theµoz (velocity mean
of oz) is greater than 0 from Figure 10(d), this is because the
human body is moving in an anticlockwise direction, thus the
oz almost always incremental.

3) DYNAMIC PROCESS OF JOINT COORDINATES
Because the projection from 3D human joint coordinates pt
to a six dimensional subspace can retain more than 95% of
the variance, therefore the gt can be defined as:

gt = (g1,t , . . . , g6,t ) (24)

We analyze the distribution characteristics of acceleration
in the low dimensional space and discover that the accelera-
tion in all six dimensions presents a sharp unimodal distribu-
tion, as shown in Figure 11. Therefore, we use the Gaussian
distribution to depict the acceleration distribution of the six
dimensions. The mean values of the six accelerations are
almost all zero which indicates that the change of the gt
is nearly uniform, that is gt+1 − gt ≈ gt − gt−1. Hence,
the dynamic process of the gt can be represented by the
uniform motion.

Assuming all dimensions of the gt are independent,
the P(gt |gt−1) can be expressed by Equation 25.

P(gt |gt−1) =
6∏

k=1

P(gk,t |gk,t−1) (25)

Based on the assumption of the uniform motion,
the P(gk,t |gk,t−1) is defined as:

P(gk,t |gk,t−1) = N (gk,t ; 2gk,t−1 − gk,t−2, σ 2
gk ) (26)

where the σ 2
gk can be trained from samples.
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FIGURE 17. Comparison of the tracking results on C1.

FIGURE 18. Comparison of the tracking results on C2.

By combining all the analysis results, we get the dynamic
process model of human body posture. The model is
composed of multiple simple products of one-dimensional
Gaussian distribution, by which we can easily sample the
distribution.

V. RESULTS
A. DATA PREPARATION
We test our approach based on the HumanEvaI dataset pro-
vided by Brown University [41]. The HumanEvaI uses the
ViconPeak (motion capture device) to collect 3D human
motion data while gathering corresponding video data and
contains six different movements of four capture objects
(S1, S2, S3, S4). Except the object S4, the same action
of other object is acquired three times (Trial1-Trial3).
At the same time, the synchronized video data is collected
from seven different perspectives with three color cameras
(C1, C2, C3) and four grayscale cameras. The Trial1 includes
the synchronized video data and the 3D motion data, while
the Trial2 and Trial3 only contain the video data and the 3D
motion data respectively.

We track the gait motion in HumanEvaI, using Trial3 as
training data to estimate the parameters of the dynamic
model, and the Trial1 as test data.

B. EVALUATION INDEX
In this paper the human posture is represented as the posi-
tion of the root joint, the orientation of each joint and the

coordinates of each joint. We separately measure the error
of the three parts. Due to the coordinate of each joint is
represented by the offset relative to the root joint, thus the
calculated error does not include the human body position
error but includes the orientation error. In addition, the errors
of the position, rotation and joint are respectively expressed
by the Euclidean distance, the absolute value of the devia-
tion of the three angles and the average Euclidean distance
between joint coordinates.

C. EXPERIMENTAL RESULTS
1) IMAGE CONSTRAINT EFFECT
In this paper, we perform a comparison of the joint error,
human position error and z-axis orientation error based on
the three test videos. We can see that the three kinds of
errors have been greatly reduced by our particle selection
method (Figure 12, Figure 13 and Figure 14). The most
obvious effect of the algorithm is the human body position
is well limited (see Figure 13), and the difference between
the calculated position and the real position is no more than
50 cm. In addition, we can find the errors of human joints and
the standard deviations are significantly reduced after particle
selecting from Figure 15 and Figure 16.
We also perform a comparison of video tracking results

based on the dataset C1-C3, as shown in Figure 17-Figure 19.
The first line of the three figures presents the tracking result of
our approach, and the second line demonstrates the tracking
result of classical particle filter. We can see that the result of
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FIGURE 19. Comparison of the tracking results on C3.

FIGURE 20. Comparison of the mean of joint errors.

FIGURE 21. Comparison of the body position errors.

our method is much better than that of the classical particle
filter.

2) COMPARISON OF DIFFERENT CONSTRAINTS
To further verify the effectiveness of our proposed method,
we carry out the experiment on the video C1 including

different constraints and without constraints (see
Figure 20-Figure 22). Experiment results show that the
errors of the joint, position and orientation can be effectively
reduced by using the two constraints simultaneously, whereas
the position of human body cannot be limited by using the
limb constraint alone. This is because it causes the projection
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FIGURE 22. Comparison of the human orientation error.

TABLE 1. Mean and standard deviation of joint error.

TABLE 2. Mean and standard deviation of maximum joint error per frame.

FIGURE 23. Comparison of the mean error of each joint with the three
methods.

of the human body to be surrounded by the contour of the
image as much as possible, resulting in the estimated position
of the human body gradually away from the camera.

3) COMPARISON WITH OTHER METHOD
We compare the tracking results based on our Image-
Constrained particle filter with those obtained by imple-
menting the CONDENSATION and APSOPF methods. The
experiment is performed on the three video sequences C1,
C2, C3, Table 1 and Table 2 show the average error of the
joint coordinate and the average maximum error of all joints

FIGURE 24. Comparison of the standard deviation of each joint with the
three methods.

at each frame, respectively. As can be seen from these two
tables, our approach achieves even better performance than
the other two methods. We also compare the mean error
and standard deviation of each joint using the three tracking
methods. As shown in Figure 23 and Figure 24, the errors
of almost all joint coordinates obtained by our technique are
significantly lower than those of the other two methods.

VI. CONCLUSIONS
In this paper, we propose a novel particle selection strategy
based on the image constraints. It is composed of two novel
selecting criteria, which can be estimated by samples. Their
computational complexity is lower than that of particle evalu-
ation. Based on the strategy, we design a hierarchical particle
likelihood function.We first conduct the particle evaluation at
the top level. The particles that do not meet these two criteria
will be deleted, and the remaining particles will enter the next
level of likelihood function evaluation. After selecting, some
unreasonable particles can be avoided to participate in the
evaluation and reduce computation amount. More seriously,
these unreasonable particles are likely to gain higher weights
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in the particle evaluation stage, which will lead to a large
difference between the posterior distribution and the real dis-
tribution of the attitude represented by the particle set, leading
to a large deviation in 3D humanmotion estimation.Whereas,
this can be effectively reduced by our approach. Experiment
results show that our technique can effectively improve the
accuracy of 3D humanmotion tracking and constrain the esti-
mation of human body position at the same time. In the light
of the method of top-down, we put forward the concept of 3D
human motion tracking by the Image-Constrained particle
filter, on account of our method can estimate the human
body’s position in space and does not need the image samples
of the annotated posture.

However, our method has several disadvantages. Firstly,
both of the criteria depend on image contour, so the human
body contour in video is required to be extracted clearly.
In addition, we find that the number of particles after particle
selecting is sometimes very small, and thus it is difficult to
estimate the reliable posterior distribution. In view of this
situation, we need to re-sample the prior distribution until
there are enough particles to calculate the next likelihood
function.

With regard to future research, most of our attention will be
focused on extracting higher level information from images,
such as the position of human limbs, even the 2D human
posture.
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