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ABSTRACT Process planning can be deemed as an important component in manufacturing systems.
It bridges the gap between designing and manufacturing by specifying the manufacturing requirements and
details to convert a part from raw materials to the finished form. For the purpose of low carbon emission,
this paper pays attention to both technical performance measures and environmental impact criteria. In this
problem, a part may have more than one process plans and only one process plan can finally be adopted.
Due to the non-deterministic polynomial-hardness, it is rather difficult to conduct operation selection,
machine determination, operation sequencing, and energy consumption reduction simultaneously with
various constraints from technical requirements or the shop floor status. A novel position-basedmixed integer
linear programming model is developed to reduce total production time and the total energy consumption.
The energy consumption coefficient matrix is proposed to evaluate the energy consumption in process
planning. Because of the complexity in solving the model, this research proposes dynamic programming-
like heuristic algorithm to tackle this problem. The weighted sum method is applied in multi-objective
optimization and three typical instances with operation flexibility, sequencing flexibility, and processing
flexibility are used to test the proposed algorithm. According to the results, both the total production time and
the energy consumption criteria are optimized; in the best case, the energy consumption after optimization
takes only 21.2% of the one before optimization. On average, about 40.9% of the total energy consumption
can be reduced after optimization. Computational results also show that the proposed algorithm is generally
better than the genetic algorithm. This research gives a novel perspective to reduce energy consumption in
the process planning stage.

INDEX TERMS Energy consumption reduction, dynamic programming, green process planning, heuristic
algorithms, operations selection & sequencing, production time minimization.

I. INTRODUCTION
Process planning is an important component in a manufac-
turing system because it bridges the gap between designing
and manufacturing to convert a part from raw material to the
finished form [1]. The technical requirements for manufac-
turing procedures on the basis of the corresponding design
schemes or blueprints will be specified in process planning
stage. Usually, a part is formed by some features and each

feature corresponds to at least one operation. A part will
not be finished unless all the features(operations) have been
processed. In this research, process planning determines the
necessary operations with a feasible operation sequence, and
it also assigns each operation to an available machine to finish
the part, such that corresponding criteria, e.g. the machining
cost and the machining time, can be optimized and more
importantly the decision making as well as knowledge man-

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7381

https://orcid.org/0000-0001-5992-2163
https://orcid.org/0000-0001-6107-0510


L. Jin, C. Zhang: Process Planning Optimization With Energy Consumption Reduction From a Novel Perspective

agement in manufacturing processes can be improved [2].
The process planning problem have been paid more research
attentions for decades because it is quite a challenging prob-
lem in determining the most suitable machining resources,
e.g. machines, tools and operation permutations, among all
the alternative ones. Such flexibilities in machining resources
as well as the organization of machining procedures increase
the difficulty of the problem at both manufacturing systems
level and operations level [3]. Therefore, lots of investigations
on process planning optimizations have been performed and
some fruitful results are observed. For instance, Hu et al. [4]
suggested an ant colony algorithm in process planning to
ensure feasible operation permutations. In general, exist-
ing publications regarding process planning optimization put
more emphasis on obtaining an optimal process plan of a part
with the minimum machining cost or the shortest machining
time [5].

Admittedly, the machining cost and the machining time
are two crucial criteria in process planning optimization;
nevertheless, environment friendliness is assuming ever
greater prominence with industry and government entities;
sustainability is becoming a big concern in manufacturing
sectors [6]. The shortcomings of existing research stem from
the lack of concerns of environmental friendliness [7]–[9],
e.g. carbon emission reduction, and relative research regard-
ing low carbon emission or energy saving in process planning
is rather limited. In fact, environmental problems grow grim-
mer by the day in industrial sectors: the massive consumption
of coal-fired electricity in manufacturing sectors indirectly
contributes the carbon emission, and hence this causes global
warming and has raised worldwide concerns [10], [11].
Since manufacturing processes have already become a major
source of energy consumption, energy consumption (carbon
emission) reduction has received high publicity. Many coun-
tries issued critical environmental regulations to enforce
enterprises to take carbon emission reduction as a manda-
tory action. Achieving low carbon emission and decoupling
the manufacturing sector from high emissions is highly
desired [12]. Therefore, only the economical criteria, e.g.
total production time or machining cost minimization, in pro-
cess planning optimization can no longer meet the actual
low carbon emission requirements in manufacturing sectors
today. Duflou et al. [13] have pointed out that both product
manufacturing and design decisions control intensity of the
energy and resource consumed. The desire of energy saving
in manufacturing is the driving force of this research: to
produce more and fast with less energy consumption. Since
process planning relates closely with actual manufacturing
activities [14], different with existing research papers, in this
research we take a step of exploration to realize energy
consumption reduction (and also carbon emission reduction)
in process planning stage from a novel perspective .

Existing literature [6] reveals that the arrangement of fea-
tures to be processed in a part will affect the total energy
consumption during manufacturing, and there is no system-
atic research or approaches proposed to realize energy saving

in process planning stage. Besides the traditional process
planning optimization, this research therefore tries to develop
a quantification method to evaluate the energy consumption
in different feature (operation) permutations for the opti-
mization of both the total production time and the energy
consumption. In this research, the proposed energy consump-
tion coefficient matrix (ECCM) enables the quantification
of the energy consumption of features in different operation
permutations; The outstanding feature of this research is that
we construct a general optimization framework to facilitate
energy consumption reduction in process planning optimiza-
tion based on the energy consumption coefficient matrix.
In addition, a novel position based mixed integer linear pro-
gramming (MILP) model of process planning problems with
energy consumption reduction is proposed; due to the charac-
teristics of the problem, we develop a dynamic programming-
like heuristic algorithm to addressed the problem, and both
the total production time as well as the energy consump-
tion are optimized in a weighted sum manner. Besides the
promising results, the novelty of this research consists of the
following points:
• This research presents a novel perspective to realize car-
bon emission reduction in process planning. Especially,
the ECCM is established to model the influence on
energy consumption induced by different feature (opera-
tion) permutations. This method has not been considered
by other researchers.

• A novel position basedMILPmodeling method is devel-
oped to accommodate tabular based process planning
problems for energy consumption reduction.

• ADP-like heuristic algorithm is proposed. Process plan-
ning problems (instances) that once were solved by
meta-heuristics can now be optimized by the proposed
method with more promising results.

II. RELATED WORKS
A considerable amount of attempts have been paid in both
academia and engineering practice to determine the optimal
process plan from all the alternative ones of a part; never-
theless, since meta-heuristics are the effective approaches to
address NP-hard problems in engineering [15], [16], close
attentions have been paid mainly to evolutional and meta-
heuristic based approaches in process planning optimization.
For instance, Lian et al. [17] proposed an imperialist com-
petitive algorithm (ICA) in process planning optimization to
minimize total weighted sum of manufacturing costs includ-
ing machine cost, tool cost, machine change cost, set-up
change cost and tool change cost. Shin et al. [18] presented
a multi-objective symbiotic evolutionary algorithm for the
process planning problem, where flexible process plans are
presented using network graphs. Manupati et al. [19] sug-
gested a near optimal process plan selection method in the
context of network based manufacturing system, and a ter-
ritory defining evolutionary algorithm based multi-objective
optimization technique is developed. Liu et al. [20] gives an
ant colony optimization (ACO) algorithm to reduce the total
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cost in machining process. In recent years, novel evolution-
ary or meta-heuristic algorithms have received wide applica-
tions. Hu et al. [4] developed a hybrid ant colony algorithm to
facilitate a feasible operation sequencing in process planning
optimization with the objective of total weighted production
cost reduction. More meta-heuristic algorithm based process
planning optimization methods can be found in other existing
publications. Due to limited space, interested readers can
refer to Li et al.’s work [21] and Kumar’s research [22] for
more information.

Apart from the literature reviewed above, other solution
approaches, such as integer programming approaches, have
also been investigated although such methods are seldom
been applied in the discussed problem. An integer program-
ming model is established recently in [23] to reduce the total
production time and detailed optimal machining parameters
can be obtained. Nevertheless, massive 0-1 variables are
significant barriers in solving integer programming mod-
els. Since the process planning optimization stems from
multistage manufacturing processes, interactions between
sequentially performed operations should be considered dur-
ing the optimization process [3]; therefore, the dynamic
programming (DP) based approach is another method to
address process planning problems. Dynamic programming
is a sequential interrelated decision and optimization method;
it usually cuts a large unwieldy problem into a series of
small and tractable problems in a recursive manner. Park and
Khoshnevis [5] introduced a computer aided process plan-
ning (CAPP) system for product design. In their approach,
operation (feature) sequencing is achieved using a heuristic
algorithm while machine determination is performed using
a dynamic programming technique, and these two proce-
dures are performed in two sequential levels. Since the two
procedures are performed separately, the critical deficiency
is that optimal operation (feature) sequence cannot ensure
optimal or near optimal machines that are determined for cer-
tain operations in the dynamic programming stage. Besides,
the machine change cost induced by machine tool change in
two sequential operations (features) was not considered in
their research. Nevertheless, such cost is quite important in
real-life shop floor environment because frequent machine
changes between operations will affect raw material storages
as well as increase machine workload burden.

According to the literature reviewed above, most of
the research papers focus on traditional process planning
problems; nevertheless, with the awareness of the impor-
tance of environmental friendliness, researchers are show-
ing their interests on carbon emission reduction or energy
saving in manufacturing activities [24]–[30]. For instance,
Ding et al. [30] suggested an effective multi-objective
NEH algorithm as well as a modified multi-objective iter-
ated greedy algorithm to achieve low carbon emission and
makespan minimization in a permutation flow shop; their
methods enriched and developed the well-known NEH algo-
rithm. Apart from heuristic based approaches, meta-heuristic
based algorithms are more popular in solving such problems.

Liu et al. [31] adopted an NSGA-II algorithm for carbon
emission reduction; their experimental results show that the
cutting speed is more important than the feed rate in carbon
emission reduction. Bhanot et al. [32] developed an inte-
grated sustainability assessment framework for the turning
process; two machining scenarios, e.g. dry and wet turning,
have been investigated from both economic and environ-
mental perspectives; it shows that dry turning may perform
better at specific conditions. In order to determine energy-
efficient flow shop scheduling schemes, Fang et al. [33]
presents a mathematical model for the flow shop scheduling
problem to optimize peak power load, energy consumption
and associated carbon footprint; however, the computation is
quite time consuming. Meanwhile, single machine schedul-
ing problems with both total earliness/tardiness and energy
consumption reduction have bee considered byYin et al. [26],
they use local multi-objective evolutionary algorithm to
tackle this problem. Meng et al. [34] investigated an energy-
conscious hybrid flow shop scheduling problem with unre-
lated parallel machines and an improved genetic algorithm is
developed.

Most of the aforementioned publications, nevertheless,
mainly concentrate on either energy-efficient scheduling
problems or energy saving methods for a specific machin-
ing procedure instead of paying attentions to carbon reduc-
tion or energy-awareness at the process planning stage.
In fact, carbon emission awareness can also be considered at
the process planning stage although such research is limited.
For example, Tao et al. [35] hybridizes the artificial bee
colony (ABC) algorithm and Tabu search (TS) algorithm;
they applied the hybrid algorithm for both energy consump-
tion and processing time reduction in process planning opti-
mization. In Zhang et al.’s work [36], the authors developed
an ant colony optimization based algorithm to reduce energy
consumption in a flexible manufacturing system by introduc-
ing energy consumption evaluation criteria and three energy
efficiency indicators. Yi et al. [37] pointed out that deter-
minations of processing methods, machines, cutting tools,
sequence of process stages, etc. in process planning have
significant impact on carbon emission in manufacture proce-
dures; therefore, they used a coefficient multiplied evaluation
method as well as a non-dominated sorting genetic algorithm
to seek an acceptable solution.

Based on our observations, the process planning optimiza-
tion with carbon emission reduction or energy consumption
awareness can be divided into two levels: the micro level
and the macro level. In the micro level, detailed methods
for carbon emission or energy consumption evaluation for
a general process (a stage or a feature) will be developed
based on the mechanical or electrical theory; after that,
the carbon emission or energy consumption can thus be
quantified. The other level, however, concentrates mainly
on the optimization method, e.g. optimal operation(feature)
sequence, to achieve a reasonable solution that can strike a
balance between the economical criterion and the energy-
conscious criterion. Yin et al. [6] in 2014 introduced a novel
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method to evaluate the energy consumption for each feature
in process planning, and they found that different feasi-
ble feature (or operation) sequences can induce significant
impact on carbon emission (energy consumption); therefore,
Yin et al. developed a carbon emission function at first and
in the second level the genetic algorithm based solution
method was proposed to obtain a comparatively ’’green’’
and economical process plan. In their research, the proposed
carbon emission function gives the clue to evaluate carbon
emission in process planning; however, there lacks a more
general framework to reduce both the total production time
as well as energy consumption in process planning based on
the carbon emission value obtained in the first level.

In this research, we consider both the economical and the
energy-awareness related criteria in multi-objective process
planning optimization. Since different feature sequences will
induce discrepant energy consumption situations, inspired
by Yin et al.’s energy consumption evaluation method [6],
we propose a more general method to reduce energy con-
sumption in process planning stage using an energy con-
sumption coefficient matrix. A novel mixed integer linear
programming model is first established for the considered
problem with the criteria of total production time and the
sum of energy consumption coefficients (total energy con-
sumption). Different with the problemwhere only the optimal
sequencing is considered [38], the machine determination
and the operation sequencing are performed simultaneously
in the developed model as well as the proposed search
mechanism. Instead of the abused meta-heuristics, this paper
presents a novel way for process planning optimization
by using a dynamic programming-like search procedure to
obtain near optimal solutions. This paper therefore proceeds
as follows. The problem description, energy consumption
representation, and the mixed integer linear programming
model will be presented in the next section. Section IV gives
the dynamic programming like solution approach and the
corresponding experiments will be reported in Section V.
Conclusionswill be presented in the last section to finalize the
paper.

III. MATHEMATICAL MODELING
A. PROBLEM DESCRIPTION
As shown in Table 1, the process planning problem can be
expressed in a tabular form [21], where machining details
with requirements are specified. Usually, a part has several
features and each feature contains one or more operations.
A feature sometimes may contain two or more alternative
operation sets and only one set of operations is required
to complete the feature. Each feature (operation) can be
performed by one of the available machines with corre-
sponding processing times. Moreover, different feature per-
mutations are allowed as long as the features follow a
feasible precedence relationship specified in the table. The
complexity involved in process planning stems from three
kinds of flexibilities: operation flexibility (OF), sequencing
flexibility (SF) and processing flexibility (PF). For the case
in Table 1, it can be found that feature 2 can be completed
either by performing operation set O2 and O3 or operation
set O4 and O5; this represents the processing flexibility in
process planning; in the first operation set of feature F2,
operation O2 can be processed by machine M5, M6 or M8
with processing times 16, 12 and 13 respectively, and this
reflects the operation flexibility. Moreover, the sequencing
flexibility allows feature F2 to be arranged at any position in
a feature processing sequence provided it is processed before
feature F3. Sometimes, a certain feature may include a fine
machining procedure to meet the technological requirements;
in such a case, additional features(operations) can be added to
facilitate such requirements. The optimization of this problem
should treat the following issues properly:
• The feature(operation) sequence in each plan should
follow a feasible precedence relationship such that a part
can be processed accurately.

• Each operation should be assigned a propermachine tool
such that total transmission time between machines can
be minimized.

• Since different feature sequences have significant
impact on carbon emission (energy consumption),
the feature(operation) sequence in an optimal process

TABLE 1. Flexible process planning representation of a part.
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TABLE 2. Energy consumption and carbon emission of two process plans [6].

plan should also achieve optimal or near optimal carbon
emission or energy consumption.

B. ENERGY CONSUMPTION EVALUATION
Carbon emission inmanufacturing can usually be divided into
three categories [39]: fossil fuel emission (Scope 1), the car-
bon emission from indirect energy consumption (Scope 2),
and the indirect carbon emission from supply chain (Scope 3).
Following Yin et al.’s work [6], we mainly consider elec-
trical energy consumption as the major source of carbon
emission in this paper. Yin et al. have pointed out that the
carbon emission or energy consumption will change with
the machining sequence of features (operations) in a process
plan. For the part shown in Fig. 1, it contains two features: a
hole and some planes, and therefore it has two exchangeable
operations: drilling and milling. Beyond one’s expectation,
the carbon emission values differ greatly in two process
plans when the processing order of drilling and milling is
changed according to table 2. If drilling is scheduled before
milling, the total energy consumption is 4250J; however the
value drops to 2810J when the two operations are exchanged.
In other words, the latter process planning scheme can save
about 1/3 of the energy consumed in former scheme. Clearly,
a proper feature processing sequence can bring benefits to the
total carbon emission.

FIGURE 1. An example part [6].

Obviously, if any two features have no precedence rela-
tionships, we can determine a more ‘‘green’’ precedence
relationship for the two features. Therefore, after evaluating
the energy consumption of any two features that have no
precedence relationship as the case in Table 2 based on the
Yin et al.’s energy consumption evaluation method, a normal-
ized matrix called the energy consumption coefficient matrix
(ECCM) can be introduced to calculate total energy con-
sumption. For instance, the corresponding ECCM of the part

in Fig. 1 can be expressed as λ =
[

0 1
0.66 0

]
and this means

that if process plan ‘‘Drilling → Milling’’ consumes ‘‘1’’
unit energy, the process plan ‘‘Milling → Drilling’’ con-
sumes only ‘‘0.66’’ unit energy. More generally, a nonzero
element λij in an ECCM λ stands for the normalized energy
consumption degree if feature j is processed immediately
after feature i. With the ECCM, the total energy consumption
can be evaluated easily.

C. MODELING THE PROBLEM
In this section, a novel MILP model is developed with the
purpose of total production time reduction and total energy
consumption reduction. According to existing publications,
the proposed position based MILP model for process plan-
ning optimization, where corresponding data are described in
a tabular form (Table 1, for example), has not been considered
before. In the established MILP model, a position based
modeling strategy is developed to accommodate operation
permutations and hence the total transmission time between
machines can be calculated. By introducing proper con-
straints, proper operation selection, manufacturing resource
determination and operation sequencing in process planning
can be achieved simultaneously. In the following, some sets,
subscriptions are first introduced.

SUBSCRIPTS & NOTATIONS
i, i′ features, 1 ≤ i, i′ ≤ |F |,
j, j′ operation sets, 1 ≤ j, j′ ≤ |Si|,
k, k ′ operations,
l, l ′ machines,
r positions,
h places, where a feature can be assigned,

1 ≤ h ≤ |F |

SETS & PARAMETERS
F the set of total features,
R the set of positions,
OP the set of all the operations,
Mk the set of available machine tools of operation Ok ,
Si the operation set that contained in the ith feature

(for example, feature F2 in Table 1 has two oper-
ation sets: ’O2 − O3’ and ’O4 − O5’ and Features
F5 and F9 also have two two operation sets each;
sometimes, there is only one operation set for a
feature),

OSij the set of operations in the jth operation set of
feature i,

Pk,k ′ =1, if operationOk is processed directly beforeOk ′
according to the table (e.g. Table 1);=0, otherwise,
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Qk,k ′ =1, if operation Ok is processed directly or
indirectly before Ok ′ based on the data in the table
(for example, we have Q1,6 = 1 and Q2,3 = 1
according to Table 1); =0, otherwise,

tkl the machining time of operation k on machine l,
MTl,l′ the machine transmission time from machine l to

machine l ′,
λi,i′ the normalized energy consumption degree if fea-

ture i′ is processed immediately after feature i.
FPi,i′ =1, if feature i is processed before feature i′; =0,

otherwise,
H an integer in the range [1, |F |],
A a very large positive integer,

VARIABLES
Xij =1, if the jth operation set of the ith feature is

selected; =0, otherwise,
Ok =1, if operation k is selected; =0, otherwise,
Ykl =1, if operation k is processed on machine l; =0,

otherwise,
uk,k ′ =1, if operation k is processed before operation

k ′, where operations k and k ′ has no precedence
relationship (that is, Qk,k ′ = Qk ′,k = 0); =0,
otherwise,

MTTr the transmission time between two machines of
two operations in positions r and r+1 respectively,
1 ≤ r ≤ (|R| − 1),

Trk =1, if operation k is located at the r th position;=0,
otherwise,

Vih =1, if feature i is arranged in h-th place; =0,
otherwise,

Wh the energy consumption coefficient of two features
that are assigned in the h-th and (h+ 1)-th place,

Z1 total production time,
Z2 total energy consumption (the sum of energy con-

sumption coefficients of the features),

OBJECTIVES
The first objective is to minimize total production time, and
it contains the sum of machining time of operations and the
total transmission time between operations.

min Z1 =
∑
k∈OP

∑
l∈Mk

Ykl tkl +
|R|−1∑
r=1

MTTr (1)

In the second objective, the sum of the energy consumption
coefficients is calculated and minimized.

min Z2 =
|F |−1∑
h=1

Wh (2)

CONSTRAINTS
For each feature, exactly one operation set should selected.∑

j∈Si

Xij = 1, ∀ i ∈ F (3)

Since for some features that have more than one operation
sets, only one operation set is selected; some operations are
bound to be redundant. Then, constraint sets 4 are introduced
to identify the selected operations.

Ok = Xij, ∀k ∈ OSij, ∀i ∈ F,∀j ∈ Si (4)

Naturally, each selected operation should determine
exactly one machine such that the machining process can be
completed. ∑

l∈Mk

Ykl = Ok , ∀k ∈ OP (5)

Due to the processing flexibility, some operations are not
selected; thus, it is quite difficult to sequence the selected
operations and this makes it impossible to calculate the total
transmission time between machines. In this paper, a posi-
tion based modeling strategy is developed; in such modeling
strategy, the selected operations together with corresponding
machines are sequenced in a series of stationary positions
(locations). A variable Trk is introduced to decide toward
which position an operation can be located. First, a position r
can hold only one operation at most, and we have constraint
set 6 as follows ∑

k∈OP

Trk ≤ 1, ∀r ∈ R (6)

Second, if two selected operations has a certain precedence
relationship, e.g. Qk,k ′ = 1, their positions should be deter-
mined: the position that holds operation Ok should appear
before the one hold Ok ′ . In constraint set 7, the constraint
is relaxed unless Qk,k ′ = 1 and both of the two operations
(Ok ,Ok ′ ) is selected. Before this, however, the parameter
Qk,k ′ needs to be determined. As discussed above, the param-
eterPk,k ′ specifies the direct precedence relationship between
operations. Nevertheless, there are other direct precedence
relationships; for instance, P2,3 = 1 for operationsO2 andO3
in the first operation set of feature 2 in Table 1. The
parameter Qk,k ′ is thus introduced to specify the precedence
relationship between any two operations: if Qk,k ′ = 1
or Qk ′,k = 1, then Ok (Ok ′ ) will be processed before Ok ′ (Ok );
further, Ok,k ′ = Ok ′,k = 0 denotes there is no prece-
dence relationship between two operations and additional
constraints will be introduced. The parameter Qk,k ′ can be
obtained by Algorithm 1.

For the operations that have no precedence relationships,
constraint set 7 is powerless to deal such issue. In such a
case, only the operations that satisfy Qk,k ′ = Qk ′,k = 0 will
be considered; constraint sets 8 and 9 are thus introduced
to force one of the 0-1 variables uk,k ′ and uk ′,k to take
value 1. Two terms A(Qk,k ′ + Qk ′,k ) and A(2 − Ok − Ok ′ )
are added in the constraints to hedge against the operations
that already has a precedence relationship between each other
and the unselected operations (if Qk,k ′ = 1 or Qk ′,k = 1 the
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Algorithm 1 Determine Parameters Qk,k ′

for k := 1 to |OP| do
for k ′ := 1 to |OP| do
if (k 6= k ′)and(Pk,k ′ = 1) then
Qk,k ′ :=1

end if
end for

end for
for k := 1 to |OP| do
for k ′ := 1 to |OP| do
for k ′′ := 1 to |OP| do
if (k 6= k ′)and(k ′ 6= k ′′)and(k 6= k ′′)and(Qk,k ′ =
1)and(Qk ′,k ′′ = 1) then
Qk,k ′′ :=1

end if
end for

end for
end for

constraint is relaxed).

Trk ≥ Trk ′ − A (1− Qkk ′)− A (2− Ok − Ok ′) ,

∀r ∈ R, ∀k, k ′ ∈ OP (7)

uk,k ′ + uk ′,k ≥ 1− A
(
Qk,k ′ + Qk ′,k

)
− A (2− Ok − Ok ′) ,

∀k, k ′ ∈ OP, k 6= k ′ (8)

uk,k ′ + uk ′,k ≤ 1+A
(
Qk,k ′ + Qk ′,k

)
+A (2− Ok − Ok ′) ,

∀k, k ′ ∈ OP, k 6= k ′ (9)

Similar to the case in constraint set 7, we have the following
constraints:

Trk ≥ Trk ′ − A
(
1− uk,k ′

)
− A

(
Qk,k ′ + Qk ′,k

)
−A (2− Ok − Ok ′) , ∀r ∈ R, ∀k, k

′
∈ OP (10)

For a selected operation Ok , it is bound to be assigned to a
position: ∑

r∈R

Trk = Ok , ∀k ∈ OP (11)

After selected operations are all assigned to positions,
the transmission time between machines is still unable to
be calculated because there may have one or more vacant
position(s) and it is quite difficult to evaluate transmission
time between machines in this case. The following constraint
set is developed to facilitate the transmission time calculation
by edging out the vacant position(s) between two occupied
positions. ∑

k∈OP

Trk ≥
∑
k∈OP

Tr+1,k , ∀r ∈ R (12)

The principle of inequality set 12 is easy: suppose there is a
vacant position r between two occupied positions r − 1 and
r + 1, it then follows that

∑
k∈OP Trk = 0 (a given position r

will not be occupied by any operation) and
∑

k∈OP Tr+1,k =
1; therefore, the inequality

∑
k∈OP Trk <

∑
k∈OP Tr+1,k

holds. Constraint set 12 is introduced to edge out vacant
position(s).
Finally, the transmission time between machines in posi-

tions r and r + 1 can be determined as follows.

MTTr ≤MTl,l′ + A
(
2− Trk − Tr+1,k ′

)
+A (2− Ok − Ok ′)+ A (2− Ykl − Yk ′l′) ,

∀l, l ′ ∈ Mk , ∀r ∈ R, r< |R| , ∀k, k ′∈OP, k 6=k ′

(13)

MTTr ≥MTl,l′ − A
(
2− Trk − Tr+1,k ′

)
−A (2− Ok − Ok ′)− A (2− Ykl − Yk ′l′) ,

∀l, l ′ ∈ Mk , ∀r ∈ R, r< |R| , ∀k, k ′∈OP, k 6=k ′

(14)

After applying constraint set 12, vacant positions are all
arranged at the bottom of positions. The transmission time
between two machines can be calculated for two adjacent
positions where operations with corresponding machines
have been assigned; the two constraint sets will be relaxed
if either one position (position r or r + 1) is a vacant position
(Trk or Tr+1,k ′ equals 0), and corresponding transmission
time is 0.

For each feature, it should be assigned to a proper place,
and more importantly, the precedence relationships between
features are forced to follow a correct sequence. Therefore,
the following two constraint sets are employed.

|F |∑
h=1

Vih = 1, ∀i ∈ F (15)

H∑
h=1

Vih ≥
H∑
h=1

Vi′h − A
(
1− FPi,i′

)
,

∀i, i′ ∈ F, i 6= i′ ∀H ∈ [1 |F |] (16)

Finally, the energy consumption coefficient of two adjacent
features is determined using constraint sets 17 and 18.

Wh ≥ λi,i′ − A
(
2− Vih − Vi′,h+1

)
,

∀i, i′ ∈ F, i 6= i′, ∀h ∈ [1 |F |] (17)

Wh ≤ λi,i′ + A
(
2− Vih − Vi′,h+1

)
,

∀i, i′ ∈ F, i 6= i′, ∀h ∈ [1 |F |] (18)

The MILP model above for the process planning problem
studied in this paper has not been investigated before; the
proposed MILP model can be applied to solve process plan-
ning problems. Nevertheless, due to massive 0-1 variables in
the model, a satisfactory solution usually cannot be captured
using the commercial solvers in reasonable computational
time. To overcome such drawbacks, many researchers turn
for aid to meta-heuristics; this research, however, tries to
develop a novel approach for the bi-objective process plan-
ning optimization problem using a dynamic programming-
like heuristic algorithm.
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IV. THE DP-LIKE HEURISTIC ALGORITHM
Dynamic programming is suitable for the cases where a series
of interrelated decisionmaking is required. After one decision
is made, the current state is transformed into a new optimal
state, and the global optimal solution is obtained after all the
stages are completed. In the proposed MILP model, all the
features can be obtained by performing operation selection,
operation sequencing, and machine selection simultaneously;
in the proposed DP-like heuristic, however, it is impossible
to decide which operation can be selected and which one to
be left as it is because the number of operations in operation
sets of a feature is not determined (for example, according to
Table 1 there is only one operation O13 in the first operation
set of feature F9 while the other operation set has two opera-
tionsO14−O15); in other words, the number of stages in a DP
model in such a case is not determined. Instead, the proposed
DP-like heuristic is established based on features since the
number of features is predetermined. Meanwhile, with the
given ECCM, the best feature processing sequence can also
be captured using the dynamic programming based approach
such that a process plan (feature sequence) with lowest energy
consumption can be obtained by minimizing the sum of
elements in the corresponding ECCM (e.g.

∑
λi,i′ ). In the

following, the DP-like heuristic algorithm will be detailed.

A. SEARCH MECHANISM
The operation sequence can be determined one by one from
the first operation (operation ID = 1) to the last one in a
conventional manner; in the proposed algorithm, however,
the backward recursion searchmechanism is adopted and thus
the search process can be started from any one of the available
features with the lowest priorities according to the given fea-
ture precedence relationships. Since the feature permutation
in a process plan has an impact on the energy consumption
during manufacturing, both the production time as well as the
total energy consumption will be considered in a weighted
sum manner to realize the multi-objective optimization. For
the first objective, e.g. the total production time, it consists of
two parts: the machining time and the part transmission time
between machines. For the other objective, a more ‘‘green’’
feature processing sequence can be obtained by properly
sequencing two features that have no precedence relation-
ship (placing the feature i before feature i′ if λi,i′ < λi′,i).
If two features have no precedence relationship, as analyzed
before [6], this may result in great differences in energy con-
sumption. By referencing to the ECCM, the optimal or near
optimal feature processing sequence for low carbon emission
can be determined. Thus, based on the Yin et al.’s method
and the normalization technique, the energy consumption
coefficient of two features can be calculated. Eq.19 gives
the corresponding ECCM of the example part in Table 1.
According to Table 1, feature 4 is bound to be arranged
before feature 7, and therefore, λ4,7 in 19 equals 0; for fea-
tures 5 and 9, however, they have no precedence relationship
and clearly feature 5 should be processed directly before

feature 9 if possible because λ9,5 > λ5,9. After this, about
21% of the energy will be saved compared with the case
where feature 9 is placed directly before feature 5.

λ=



0 0 0 1 1 0.62 0.8 1 0.99 0.66 0.89
0 0 0 0.59 0.83 1 1 1 1 1 1
0 0 0 1 0.6 1 0.85 1 1 0.57 0.72

0.84 1 0.51 0 0 0 0 0.53 1 0.9 1
0.91 1 1 0 0 0 0 1 0.79 0.99 0.76
1 0.85 0.57 0 0 0 0 0.79 1 0.9 1
1 0.98 1 0 0 0 0 0.88 1 1 0.91

0.61 0.74 0.67 1 0.8 1 1 0 0 0 0
1 0.58 0.51 0.59 1 0.97 0.52 0 0 0 0
1 0.7 1 1 1 1 0.88 0 0 0 0
1 0.82 1 0.58 1 0.99 1 0 0 0 0


(19)

In single objective optimization, the total cumulative pro-
duction time can be deemed as the current objective value;
in multi-objective optimization, the weighted sum manner
is adopted to minimize the two objectives simultaneously.
Suppose each feature can be deemed as a stage, the immediate
total production time and the energy consumption from stage
(the total objective value) k to stage k − 1 can be formulated
as T (Sj,k−1, Si,k ), where i and j are the indexes of states
that represent the determined feature as well as the selected
machine for that stage. In the backward search mechanism,
the algorithm begins by determining the best feature with
the corresponding machine(s) for operations in an operation
set with the the lowest priority; that is, the total cumulative
objective value of the last stage (for the last feature) sat-
isfies T̃ (SN ) = T (Sj,N ), where N is the total number of
features or stages. For the stage except the last stage, e.g. stage
k − 1, the optimal policy can be obtained using a recursive
procedure based on the cumulative total production time up
to stage k:

T̃ (Sk−1) = min
1≤i≤m

{
T̃ (Sk)+ T

(
Si,k−1, Sj,k

)}
(20)

where T̃ (Sk−1) denotes the cumulative total production time
from stage N up to stage k − 1 and m refers to the the
number of available states in stage k − 1. We assume
that the two objectives are equally important in this multi-
objective optimization, and the total objective value can thus

be expressed as the sum of the two ratios:
∑(

tk,l+MTl,l′
)

UB1
+∑

λi,i′

UB2
; where UB1 and UB2 are the upper bounds of the two

objectives, and they can be obtained by adding up the produc-
tion time, transmission time between machines, and energy
consumption coefficients in the extreme case, e.g. UB1 =(∑

tk,lmax +
∑
|Si|MTl,l′max

)
andUB2 = |F |λi,i′max. If one

aims to obtain the best result from the last stage to stage
k − 1, he will first obtain the best results from stage N to
stage k; consequently, the best result of stage 1 is obtained
at last. As we discussed before, the significant barriers stem
from the operation sets because there may be more than one
operations in an operation set and some features may have
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more than one operation sets. Worse still, one should decide
a feasible precedence relationship between operations. For a
certain stage, there may be more than one available features
and each feature should be considered. Only one feature will
be selected for a stage finally.

B. DETERMINE FEATURES FOR A STAGE
According to Table 1, since the ‘‘Feature precedence’’
column only gives some broad or loose restrictions, the fea-
ture to be assigned for a stage is not determined. For example,
the precedence relationships given in Table 1 can be depicted
with a directed graph shown in Fig. 2a) (a feature in the
figure can also be called a ’node’).

FIGURE 2. Directed graphs of the example part in Table 1: a) The direct
graph of the example part in Table 1. b) and c): Direct graphs used to
illustrate DP-like heuristic algorithm.

For a easy implementation of the proposed heuristic algo-
rithm, two dummy nodes (features), e.g. S and E , have been
added in Fig. 2a) as a symbol of the start and the completion
of the manufacturing process respectively. Therefore, there
are totally N ′ = N + 2 stages. Clearly, some features
have no precedence relationships; for example, any one of
three features: F3, F7 and F11 can be selected for the stage
N ′ − 1 in a backward recursion procedure. In order to avoid
any infeasibility, based on the characteristics of the directed
graph, Algorithm 2 is provided to determine a set of feasible
features for a certain stage. Given a predetermined feature
′node′ in stage k , according to Algorithm 2, all the available
features for stage k − 1 after node can be obtained in either
of the following two cases:
• Except the feature node and feature i itself, if node i does
not point to the nodes that have not been processed, then
it can be selected as an alternative node for the stage
k − 1. In Fig. 2b), if E is exactly the predetermined
feature node in stage k , F3, F7 and F11 can be three
alternative features for stage k − 1. However, if there

is an arc coming from F7 to F11 as shown in Fig. 2b),
feature F7 cannot been deemed as an alternative node in
stage k − 1 any more according to this rule.

• For an unprocessed node i, if i has no precedence rela-
tionship with node and the nodes which i points to have
all been processed in previous stages, then node i can
be deemed as an alternative feature for stage k − 1.
In Fig. 2b), suppose features E , F7 and F11 have been
processed and node F7 is given as the selected feature
node in stage k , in such a case node F3 is one of the
available feature to be considered in stage k − 1.

If a node i satisfies the condition in Algorithm 2, it may be
selected in stage k − 1; then similar process is repeated for
the (k − 2)th stage until the algorithm reaches the first stage,
where only the dummy node S is considered.

Algorithm 2 Determine Alternative Features for Stage k − 1
Require: TF : the total number of features;
node: the given feature in stage k;
Pre[i][j]: =1, if node i points to node j; =0, otherwise;
Ped[i]: =1, if node i have been processed; =0, otherwise.

Ensure: FS: the set that contains alternative features for
stage k − 1;

for i← 1 to TF do
flag← true
if (Pre[i][node] == 1)and(Ped[i] == 0) then

for i′← 1 to TF do
if (i′ 6= node)and(i′ 6= i)and(Ped[i′] ==
0)and(Pre[i][i′] 6= 0) then
flag← false; Exit the for-loop.

end if
end for
if flag == true then
FS ← i

end if
end if
flag← true
if (Ped[i] == 0)and(Pre[i][node] ==

0)and(Pre[node][i] == 0) then
for i′← 1 to TF do

if (i′ 6= node)and(Pre[i][i′] ==

1)and(Ped[i′] == 0) then
flag← false; Exit the for-loop.

end if
end for
if flag == true then
FS ← i

end if
end if

end for

C. APPROXIMATION EVALUATION STRATEGY
In some cases, a feature may have more than one operation
sets and an operation set may have more than one operations.
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TABLE 3. Transmission time between machines.

On the other hand, the proposed heuristic algorithm works
based on the features instead of operations; therefore, we shall
develop an approximation method to evaluate the production
time in an operation set of a feature. For the features that have
only one operation set and only one operation in the operation
set, its production time can be directly calculated. For the
feature that has two or more operation sets, the production
time of each operation set should be evaluated and recorded;
further, if there are more than one operations in an operation
set, each operation will be evaluated to obtain production
time. Finally, the total production time of each operation set
in a feature is compared and the operation set with minimum
production time is selected as the production time of the
feature. Then, the feature with minimum production time in
all the available features will be selected for the stage.

For example, Fig. 2c) gives a feasible feature permutation
for 13 stages (marked with dotted arrows) based on the
backward recursion mechanism. Clearly, feature F8 will be
processed at first except the dummy node S. Assume that
feature F3 has been evaluated with the backward sequence
E → F7 → F11 → F6 → F10 → F3 shown in Fig. 2c),
three features are available for the next stage: F2, F5 and F9;
each of the three features has two operation sets according to
Table 1. Provided that the machine of feature F3 is M5 with
processing time 46, for feature F2, operations in two opera-
tion sets O2−O3 and O4−O5 are checked one by one. In an
operation set, the last operation should be evaluated first; in
the case of F2, operation O3(O5) is evaluated before O2(O4).
With the transmission time between any two machines given
in Table 3, the minimum production time of two opera-
tion sets of F2 is 45 (O6(M5)→ O3(M2)→ O2(M6)) and
48 (O6(M5)→ O5(M9)→ O4(M10)) respectively. There-
fore, the first operation set (O6(M5)→ O3(M2)→ O2(M6))
is deemed as the best operation set of feature F2. Similarly,
the best production time for features F5 and F9 can also be
obtained respectively. After that, the feature with minimum
production time is selected for the stage; then, the proce-
dure discussed above is repeated till the dummy node S is
encountered. For the two dummy nodes, we assume that
the machining time as well as transmission time between
machines in any case is 0.

V. EXPERIMENTS WITH DISCUSSIONS
The proposed algorithm is coded in C++ language and
implemented on a computer with an Intel i7-7700 CPU
(3.6GHz) and 16GB of memory. In order to verify the effec-
tiveness of the proposed heuristic algorithm, some experi-
ments are performed, and the resultant production time and
the energy consumption of each instance is compared with
that obtained by other approaches. This paper assumes that
there are 15 machines with the transmission time given
in Table 3. For a comprehensive evaluation of the proposed
algorithm, both the single-objective and the multi-objective
optimizations are performed successively.

A. CASE 1
The data of this instance is given in Table 1. Li et al. [21]
have also solved this instance using amodified particle swarm
optimization (PSO) algorithm; corresponding results are pre-
sented in Table 4. The total production time of this instance
for single objective optimization is 360 using the proposed
DP-like heuristic algorithm while the value is 377 using other
meta-heuristics. Clearly, the proposed heuristic is much bet-
ter than meta-heuristic algorithms. This shows the powerful
search capability of the proposed DP-like heuristic algorithm
in single objective optimization.
In multi-objective optimization, both the two criteria are

considered. For a clear comparison, corresponding results are
listed in Table 5 as follows. According to Table 5, the total
production time has increased by 6.4 percent in the multi-
objective optimization case. For the other criterion, surpris-
ingly, promising results have been observed. It shows that the
energy consumption in the multi-objective optimization case
takes up only 21.2% of that in the single objective optimiza-
tion case; in other words, the energy consumption in single
objective optimization will be 4.72 (= 7.46/1.58) times more
than the one where the environment related criterion, e.g.
energy consumption, is considered. Computational results
show that considering only total production time or other
economy-related criteria in process planning optimization is
not enough because thismay induce great negative impacts on
environment (more energy consumption means more carbon
emission). It also shows that the proposed multi-objective
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TABLE 4. Single objective optimization results of case 1.

TABLE 5. Multi-objective and single objective optimization results of case 1.

TABLE 6. The data of case 2.

DP-like heuristic algorithm can strike a balance between the
economical criterion and the environment related criterion.

B. CASE 2
Case 2 is taken from [40]; the part is shown in Fig. 3a) and
corresponding data is presented in Table 6. Table 7 gives the
computational results of this instance in single objective opti-
mization case. The total production time obtained by DP-like
heuristic is 222, and the ones obtained by other approaches
are also 222. It can be found that the machine M1 was
selected for each operation to reduce the total transmission
time between machines in both process plans in Table 7.

Although the total production time can be shortened by using
machineM1 frequently in this case, the negative effect is that
the machine utilization rate (machine work load) of M1 is
considerable high and this will further intensify the wear and
tear of machine tools.

The ECCM used in multi-objective optimization of
Case 2 is presented in 21. Table 8 presents both of the
multi-objective and single objective optimization results of
this case. Computational results demonstrate that it is quite
necessary to consider environment related criteria in pro-
cess planning optimization because in this case about 35.1%
(= 4.16−2.7

4.16 ) of the total energy consumption can be saved
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TABLE 7. Single objective optimization results of case 2.

TABLE 8. Multi-objective and single objective optimization results of case 2.

TABLE 9. The data of case 3.

with the identical total production time.

λ=



0 0 0.94 1 0.62 0 1 0 0
0 0 1 1 1 0 0.83 0 0.8
1 0.5 0 1 1 1 0.68 0.99 1

0.65 0.63 0.81 0 0 0 0.67 0 0.6
1 0.5 0.53 0 0 0.55 0.57 0.74 0.86
0 1 0.92 0 1 0 0.61 0 1

0.57 1 1 1 1 1 0 0.7 1
0.75 0.69 1 0.91 1 0 1 0 1
0 1 0.63 1 1 0 0.96 0 0


(21)

C. CASE 3
The data of this case is taken from [41] and the part is shown
in Fig. 3b). Corresponding data is presented in Table 9 and it

can be seen that this part contains 7 features. Computational
results as well as comparisons are presented in Table 10.
Again, the total production time values obtained by the pro-
posed algorithm and meta-heuristics are the same. However,
Table 10 reveals that meta-heuristic algorithms cannot always
ensure relative good results because the mean value of the
results obtained by ’Simple SA’ is larger than the best
one 212.

The corresponding ECCM in multi-objective optimization
of this case is given in 22. Table 11 gives the comparison
between the results of single objective optimization and that
of the multi-objective optimization. As presented in Table 11,
if we concentrate on total production time only, the corre-
sponding value is 212 and it is slightly better than the one
obtained in multi-objective optimization; To put this in per-
spective, however, the result in multi-objective optimization
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TABLE 10. Single objective optimization results of case 3.

TABLE 11. Multi-objective and single objective optimization results of case 3.

FIGURE 3. Two parts used in case 2 and 3: a) The example part used in
Case 2. b) The example part used in Case 3.

looks more promising because the energy consumption in
multi-objective optimization is better than the one in single
objective optimization by 9.7 percentage points (= 4.2−3.83

4.2 )

and the value of the total production time criterion in multi-
objective optimization is worse than that of single objective
optimization by 4.5% only (= 222−212

222 ).

λ =



0 0 0 0 0 0 0
0 0 0.81 0.81 0.98 0.92 0.9
0 1 0 1 1 1 1
0 1 0.6 0 0.87 0.68 0.86
0 1 0.74 1 0 1 0.52
0 1 0.82 1 0.96 0 0.82
0 1 0.79 1 1 1 0


(22)

The genetic algorithm (GA) is a well-known and wide
applied meta-heuristic algorithm. Besides the process plan-
ning problems, it has been applied to many difficult optimiza-
tion problems with satisfactory results obtained because it
is a powerful approach to address NP-hard problems. As a
representative meta-heuristic algorithm, we adopt GA for
experimental comparisons in this research. We solve the the
same process planning instances using the well-known GA,
and the weighted sum manner is adopted in multi-objective
optimization in GA. The genetic algorithm is coded using
C++ language and performed on the same computer. In GA,
the size of population is set to 200 with the crossover prob-
ability 0.7 and the algorithm is terminated after 100 itera-
tions. For each case, it is executed for 10 independent times.
We compare the results obtained by the proposed heuristic
algorithm with the ones obtained by the genetic algorithm as
presented in Table 12.

For the first case, the average total production time
is 384.2, and it is worse than the result obtained by the
proposed DP-like heuristic algorithm. Although the best total
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TABLE 12. Results comparison between algorithms.

production time in GA is 381, as the inherent shortcoming
of meta-heuristics stated above, the GA cannot always cap-
ture promising solutions and the solution quality cannot be
ensured in each computation: in the worst case, the total
production time is 389. The average total production time
using GA is 384.2 and it is still larger than the one of DP-like
heuristic algorithm(383). For the other criterion, the two algo-
rithms get a tie. Thus, the proposed algorithm outperforms
GA in general. For the second case, according to Table 12,
the superiority of the DP-like heuristic algorithm can be
observed again: the proposed algorithm outperforms GA in
both of the two criteria: the results obtained by DP-like
heuristic algorithm are equal to the best ones obtained by GA.
Because GA cannot ensure the best solution each time, for the
mean values of the two criteria, the value of DP-like heuristic
algorithm is better than that of GA. In Case 3, the two algo-
rithms show different advantages and strengths. For the total
production time criterion, the DP-like heuristic algorithm
outperforms GA with maximum improvement rate 5.93%(
=
|222−236|

236

)
while GA is slighter better than the proposed

algorithm in energy consumption optimization; nevertheless,
the improvement rate of GA on the energy consumption
criterion is rather limited in this case (the improvement rate of
GA is 1.86% = |3.76−3.83|3.76 ). Clearly, the total production time
criterion receives more improvements in this case; therefore,
provided that the two criteria are equally important, a decision
maker may squint towards the results of the proposed DP-
like heuristic approach. Besides, due to the congenitally defi-
cient of the meta-heuristic algorithms, a satisfactory solution
is not ensured in each computation in meta-heuristic based
optimizations; in some computations onemay obtain an indif-
ferent solution. Thus, with a comprehensive comparison of
the two algorithms, it can be seen that the proposed DP-like
heuristic algorithm generally performs better than GA and
this reflects the superiority of the DP-like heuristic algorithm.

VI. CONCLUSIONS
Carbon emission reduction in manufacturing has received
tremendous research attentions in recent years. This paper
gives an optimization modeling and solving method for both
total production time and energy consumption reduction in
process planning. Based on the existing energy consumption
evaluation method, the energy consumption coefficients in
an ECCM are established to describe the variety degree of
energy consumption in sequencing two features which have
no precedence relationship.Wefirst established a novelMILP

model for a kind of process planning problem, where the
operation flexibility, the sequence flexibility and the machin-
ing flexibility are expressed in a table, using a position based
modeling technique. Before this, there is no suitable MILP
model developed for such process planning problems and
hence such problems cannot be solved using the branch and
bound method in commercial solvers. In the proposed model,
the total energy consumption of a process plan is mapped
into the sum of elements in the ECCM for all the neighbour-
ing features. Due to the complexity in solving the problem,
we then developed a dynamic programming like heuristic
algorithm to address the problem. In the proposed heuristic
algorithm, each feature of a part is deemed as a stage and
the optimization is optimized stage by stage in a recursive
manner with some approximate treatments in total production
time evaluation. In order to test the algorithm, three typical
instances, which have been reported and tested by other meta-
heuristics, are used in the experiments to demonstrate the
effectiveness of the proposed heuristic algorithm. Both the
single objective and themulti-objective optimizations are per-
formed. In single objective optimization, promising results
have been observed: the results obtained by the proposed
algorithm are as good as or better than the ones obtained by
the meta-heuristic algorithms. This reflects the effectiveness
and the powerful search capability of the proposed algorithm
in conventional single objective process planning optimiza-
tion. In multi-objective optimization, both the two criteria,
e.g. the total production time and the energy consumption,
have been optimized. Results in multi-objective optimization
and the ones obtained in single objective optimization have
been compared. It shows that taking environment related
criteria into consideration is quite necessary in process plan-
ning since such multi-objective optimization can strike a
balance between the two criteria. In other words, the optimal-
ity or near optimality of environment related criteria cannot
be ensured in single objective optimization where only the
economy related criteria, e.g. total production time, is consid-
ered. To illustrate the superiority of the proposed algorithm,
the well-known genetic algorithm has also been adopted
to optimize the three instances and corresponding results
have been compared: it shows that the resultant solutions
of DP-like heuristic algorithm are better than that of GA in
general.

Since the example parts in three instances are taken
from real manufacturing environment and more impor-
tantly, the corresponding ECCM of a part can be estab-
lished by existing energy consumption evaluation method,
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the proposed algorithm can be used in real-life optimization
problems. Therefore, the proposed method are very practi-
cal in both total production time and energy consumption
(carbon emission) reduction in real-life process planning
optimization; it provides a novel perspective and a general
optimization framework for carbon emission reduction in
process planning stage.

According to experimental results, some machines are
selected frequently by the algorithm in order to reduce the
transmission time between machines; however, this does
not match the actual situation in shop floor because the
unbalanced machine workload will intensify the wear and
tear of machine tools. Therefore, a new objective related
to balance machine workload can be considered in process
planning stage in future research. Besides, through draw-
ing lessons from vehicular route planning [42], [43], more
effective and efficient methods can be developed in optimal
feature sequencing, and this can be considered in further
research. More in-depth and effective features will also be
considered as further research directions; for example, less
raw material usage, green production processes, and material
reversibility in production can be considered and optimized
in process planning optimizations.
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